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Some matrix versions of the Cauchy-Schwarz and Frucht-Kantorovich inequalities are es-
tablished over the quaternionic algebra. As applications, a group of inequalities for sums
of Hermitian nonnegative definite matrices over the quaternionic algebra are derived.

Leta = ap + a1i+ ay j + ask be a quaternion, where ay,...,as are numbers from the real
field R and the three imaginary units i, j, and k satisfy

t=jP=K=-1, ij=—ji=k,  jk=-kj=i, ki=-ik=j (1)

The collection of all quaternions is denoted by H and is called the real quaternionic alge-
bra. This algebra was first introduced by Hamilton in 1843 (see [5, 6]), and is often called
the Hamilton quaternionic algebra.

It is well known that H is an associative division algebra over R. For any a = ag + a;i +
a,j +ask € H, the conjugate of a = ay + ayi+ ayj + ask is defined to be a = ap — a1i —
a,j — ask, which satisfies

ll

=a, a+b=a+b, ab="ba (2)

for all a,b € H. The norm of a is defined to be |a| = v/aa = Vaa = \/a} +a?} + a3 + a?.
Let A = (ay) be an m X n matrix over H, where a;; € H. The conjugate transpose of A is
defined to be A* = (@y). A square matrix A over H is called Hermitian if A* = A. General
properties of matrices over H can be found in [13, 18].

Because H is noncommutative, one cannot directly extend various results on complex
numbers to quaternions. On the other hand, H is known to be algebraically isomorphic
to the two matrix algebras consisting of

ay —dy —ay —as

def | A1 ao —as a
c (CZXZ, ¢(a) 1¢l c [R4><4,
ap as ao —a]

as —ay aj ao

def ap+ai —(a2+a3i)
(a) = : .
ay — asl ap —apt
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450 Inequalities for matrices

respectively. Moreover, it is shown in [13] that the diagonal matrix diag(a, a) satisfies the
following universal similarity factorization equality (USFE):

Pdiag(a,a)P* = y(a), (4)
where
1 1 —1
el A ?

is a unitary matrix over H, that is, PP* = P*P = I,; the diagonal matrix diag(a,a,a,a)
satisfies the following USFE:

Qdiag(a,a,a,a)Q* = ¢(a), (6)
where the matrix Q has the following independent expression:

1 i j ok
1| =i 1k -
20-j -k 1 i)
-k j —i 1

(7)

which is a unitary matrix over H.

The two equalities in (4) and (6) reveal two fundamental facts that the quaternion a
is an eigenvalue of multiplicity two for the complex matrix y(a) and an eigenvalue of
multiplicity four for the real matrix ¢(a).

In general, for any m X n matrix A = Ao+ A1i+ Ay j + Ask € H™", where A,...,As €
R™" the block-diagonal matrix diag(A,A) satisfies the following universal factorization
equality:

2mx2n
Ar—Asi Ag—Aii | TAECTE ®

Ao+ Al —(Ar+Asi e
szdiag(A,A)Pz*n:[ ot A (4 31)} =

where P, and P35, are the following two unitary matrices over H:

N R . 1 [L I
sz_ﬁ[—jlm klm}’ PZ"_ﬁ[iIn —kln]' ©)

In particular, if m = n, then (8) becomes a USFE over H. Let A = Ag + Aji+ Ayj+ Ask €
H™*", where Ay, ...,A; € R™*". Then the block-diagonal matrix diag(A,A, A, A) satisfies
the following universal factorization equality:

Ao —A1 —Az —A3
. A Ao —A3 A def
* — 4mx4n
Qumdiag(A,A,A,A)Qf, = A Ay Ay A D(A) eR , (10)

A Ay A Ao
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where Qg is the following unitary matrix over H:

I, il, I, kI,
1| —il, I kI, —jI
—O* = =
Qur = Qi 2| —jl, —kI, I il |
~kI, jI,  —il, I

t=m,n. (11)

In particular, if m = n, then (10) becomes a USFE over H. Result (10) was also shown in
Tian [13] in the investigation of various universal block-matrix factorizations. The two
universal block-matrix factorizations in (8) and (10) can be used to extend various results
in complex and real matrix theory to quaternionic matrices.

For a general m X n matrix A over C, the Moore-Penrose inverse AT of A is defined to
be the unique n X m matrix X satisfying the four Penrose equations AXA = A, XAX = X,
(AX)* = AX and (XA)* = XA. General properties of the Moore-Penrose inverse can be
found in [2, 3].

The Moore-Penrose inverse AT of a matrix A over H is defined to be the matrix X over
H satisfying the four Penrose equations AXA = A, XAX = X, (AX)* = AX and (XA)* =
XA. The existence and uniqueness of AT of A over H can be shown through the following
Lemma 1(g).

Some consequences derived from (8) and (10) are given below, which will be used in
the sequel.

LeMmMA 1. Let A, B H™", Ce H™P, and X € R. Then
(a) A=B e ¥Y(A) = ¥Y(B);

(b) ¥(A+B) =¥(A) +¥(B);
(c) Y(AC) = ¥(A)Y(C);
(d) Y(AA) = ¥(AL) = AY(A);

)
( ) W(A*) =¥*(A);
() if A is nonsingular, then ¥(A™') = ¥~1(A) and A™' = (1/2)Ey, ¥~ (A)E3,,, where
Eyn =1 m:]I 1
(g) At satisfies V(A1) = ¥1(A) and At = (1/2)E», V1 (A)ES,,.

The two factorizations in (8) and (10) enable us to extend various results on real
and complex matrices into quaternionic matrices. In the past several years, various in-
equalities for quaternions and matrices in quaternions were considered; see, for example,
[11, 12, 15, 16, 17, 19]. In this paper, we will consider some basic matrix inequalities in
Lowner partial ordering over H. As applications, we give a group of matrix inequalities
for sums of Hermitian nonnegative definite matrices over H.

In complex matrix analysis, two Hermitian matrices A and B of the same order are said
to satisfy the Lowner partial ordering A < B if B — A is nonnegative definite. It was shown
in Marshall and Olkin [9] that if the complex matrix A of order # is Hermitian positive
definite with its eigenvalues A; > A, > - - - > A, >0, while an n X p complex matrix X
satisfies X*X = I, then

2
(X*AX) ' <X*ATIX < %(X*Ax)“. (12)
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Various extensions of (12) for complex matrices are also investigated in the literature (see,
eg.[1,4,7,8,9,10]).

LEmMMA 2. Let A € C"™" be a nonnull Hermitian nonnegative definite matrix with rank
r < n and the r positive eigenvalues of A are Ay > 1, = -+ > A, >0, and let X be an n X p
complex matrix. Then

(A +2,)

X*PuX (X*AX) ' X*P,uX, 13
A, A X ( ) A (13)

X*PAX (X*AX) ' X*PyX < X*ATX <

where Py = AA" is the orthogonal projector onto the range (column space) of A.

The inequality on the left-hand side of (13) was first given by Baksalary and Puntanen
[1], the inequality on the right-hand side of (13) was established by Drury et al. [4]. The
left-hand side of (13) was extended to a more general situation by Pecari¢ et al. [10] as
follows.

LEmMA 3. Let A € C™" be a nonnegative definite matrix and let P € C"™P and Q € C"4.
Then

Q*AQ > Q*AP(P*AP) ' P*AQ, »
14
rank [Q*AQ — Q*AP(P*AP) ' P*AQ] = rank[AP, AQ] — rank(AP).

Moreover, the following statements are equivalent:
(a) the equality in (14) holds;
(b) Range (AQ) < Range (AP), that is, there is a Z such that APZ = AQ;
(c) AQ = AP(P*AP)t P*AQ.
The following general result was shown in [14].

LEMMA 4. Let Ay,...,Ax € C"™" be Hermitian nonnegative definite matrices, and let Ny, ...,
N € C™P. Then

k

k * ok Tk
> NFAN; > (ZA,»N,-) (ZA,») (ZA,N,), (15)
i=1 i=1

i=1 i=1

with equality if and only if there is a Z such that A;Z = A;Nj, i = 1,...,k. Furthermore, let
X1,..., X € T4, Then

k k * ok t/k
D> NFAN; > <ZX,-*A,~N,~> (ZX,-*A,X,) <ZX,-*A,~N,~>, (16)

i=1 i=1 i=1 i=1
with equality if and only if there is a Z such that (A;X;)Z = AiNi, i =1,...,k.

In this paper, we consider the extensions of the above inequalities to quaternionic
matrices. It is well known that any Hermitian matrix A € H"*" can be decomposed as
A = PJP*, where P € H™" satisfies PP* = P*P = I,, and ] is a real diagonal matrix, the
entries in ] are called the eigenvalues of A; see, for example, Zhang [18]. If the diagonal
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entries in ] are nonnegative, A is said to be nonnegative definite. If the diagonal entries of
] are all positive, A is said to be positive definite.
From Lemma 1(a) and (e), one derive the following simple result.

LEMMA 5. Let A € H™". Then A is Hermitian if and only if WY(A) is Hermitian; A is Her-
mitian nonnegative definite (positive definite) if and only if V(A) is Hermitian nonnegative
definite (positive definite).

Two Hermitian nonnegative definite matrices A, B € H™*" are said to satisfy the matrix
inequality A < B in Lowner partial ordering if B — A is nonnegative definite.

Our main results on matrix inequalities in Lowner partial ordering are presented be-
low.

THEOREM 6. Let A € H"™" be a nonnull Hermitian nonnegative definite matrix with
rank(A) = r < n, the r positive eigenvalues of Abe Ay 21, > --- 2L, >0, and let X €
H"*P. Then

(A +1,)°

X*P,X (X*AX) ' X*P,X, 17
e A X ( ) A (17)

X*PAX (X*AX) ' X*PaX < X*ATX <
where Py = AAY is the orthogonal projector onto the range of A.

Proof. Since the r positive eigenvalues of A are Ay > A, > -+ - > A, >0, A can be decom-
posed as A = PJP*, where PP* = P*P = [,,, ] = diag(As,...,A,,0,...,0). Thus, ¥(A) =
Y(P)Y(J)¥Y*(P) and Y(P)¥Y*(P) = ¥*(P)¥(P) = L,. This implies that W¥(A) is a Her-
mitian nonnegative definite matrix over C. Note that the diagonal elements of ¥ (J) are
eigenvalues of W(A) and that the maximum and minimum positive eigenvalues of W(A)
are A; and A,, respectively. Thus

¥ (X) Py ¥ (0 [ (X)¥(A)¥(X)] ¥ (X) Py ¥(X)

<Y (AP (X) (18)

M +2,)

ST ¥ (X) Py ¥ (OO [ ¥ (X)W(A) ¥ (X)] W (X) Py ¥(X).

Applying Lemma 1(c), (d), (e), and (g) to (18) gives

WX*P,X (X*AX)  X*PyX] < W(X*ATX)

2 (19)
< %%’;’)W[X*PAX(X*AX)*X*PAX].

Applying Lemma 5 to (19) gives (17). O

Similarly, one can derive from Lemmas 3, 4, and 5 the following two theorems.
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THEOREM 7. Let A € H"™" be a nonnegative definite matrix and let P € H"™? and Q €
H"=4. Then

Q*AQ = Q*AP(P*AP) ' P*AQ, (20)

and with equality in (20) if and only if AQ = AP(P*AP)TP*AQ.

THEOREM 8. Let Ay,...,Ax € H™" be Hermitian nonnegative definite matrices and let Ny,
..., N € H"™P. Then

k k * ok T,k
D> NFAN; > (zA,-N,-> (ZA,-) (ZAiNi), (1)
i=1 i=1 i=1

i=1

with equality if and only if there is a Z such that A;Z = A;Nj, i = 1,...,k. Furthermore, let
X1,..., X € H™4, Then

k k * ok t/k
> NFAN; = (Zx,-*A,-Ni> (zxi*A,-Xi) (zxi*AiNi>, (22)

i=1 i=1 i=1 i=1
with equality if and only if there is a Z such that (A;X;)Z = AiN;, i = 1,...,k.

Various special cases can be derived from (17), (20), (21), and (22). For example, let-
ting N; = A;,i=1,...,k in (21) gives

i=1

with equality if and only if there is a Z such that A;Z = A7, i = 1,...,k; letting N; = I,, and
Xi=A; i=1,...,kin (22) gives

k k k tk
ZA,->( A%)(ZA?) (214%), (24)
i=1 i=1 i=1

i=1

with equality if and only if there is a Z such that A2Z =A;i=1,...,k Letting N; = A}, i =
1,...,k in (21), where t is a positive integer, yields

k k k Tk
ZAIZtJrl > (ZAltJrl) (ZAI) (ZA$+1>) (25)
i=1 i=1 i=1 i=1

with equality if and only if there is a Z such that A;Z = A i =1,..., k. Its dual inequality
by (22) is

k k k Tk
ZAi > ( Alﬁl) (ZAlgtH) (ZAfH)’ (26)
i=1 i=1 i=1

i=1

with equality if and only if there is a Z such that A" Z = A;, i = 1,... k.
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If A; is Hermitian positive definite and N; = A; 'B;, i = 1,...,k, then (21) becomes

k k * ok -1k
> BFfA;'B; > (ZB,-) (ZAJ (ZB,), (27)
i=1 i=1 i=1

i=1

with equality if and only if A7'B; = - - - = A 'Bi. Its dual inequality by (22) is

k k k Tk *
ZA,->< &)(ZB:‘A;lBi) (ZB,-) , (28)
i=1 i=1 i=1

= i=1

with equality if and only if there is a Z such that B;Z = A;,i = 1,...,k.
Letting N; = A], i =1,...,k in (21) yields

k k k Tk
s (En)(£4) (3)
i=1 i=1 i=1 i=1

with equality if and only if there is a Z such that A;Z = P,,,i=1,...,k.
Letting N; = A;rXi, i=1,....,kin (22) gives
k k k Tk
SXFAIX > <ZXi*PAiXi) (ZX,.*A,»Xi) (ZX,.*PA,,Xi>, (30)

i=1 i=1 i=1 i=1

with equality if and only if there is a Z such that (4;X;)Z = AiA;rXi, i=1,...,k. In partic-
ular, if all A; are Hermitian positive definite, then

k k k T/ k
> XFATX > (zxi*xi) <zX,-*A,-Xi) <2X,-*Xi>, (31)
i=1 i=1 i=1 i=1

with equality if and only if there is a Z such that (A;X;)Z = X;, i = 1,...,k. The above
inequality can be written equivalently as

k k k Tk
D> XFAX; > (ZX;"X) (ZX,-*AilX,») (in*xi>, (32)
i=1 i=1 i=1 i=1

with equality if and only if there is a Z such that X;Z = A;X;, i = 1,... k.
Letting X; = \/wil,, i = 1,...,k with >¥  w; = 1 in the above inequality gives

k k k Tk
DowiAl > (zwiPA,.) (ZwiAi) (ZW,PA,.), (33)
i=1 i=1 i=1 i=1

with equality if and only if there is a Z such that A;Z = A,-A;r ,i=1,...,k. In particular,

WIAT AW A > (WA - -+kak)_l, (34)

with equality if and only if A; = - - - = Ay.
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THEOREM 9. Let Ay,...,Ax € H™" be nonnull Hermitian nonnegative definite matrices.
Then

k t m+M k f k
LA

i=1

where M and m are, respectively, the maximum and minimum positive eigenvalues of A,
Ag
oAk

In fact, let A = diag(A,,...,Ax) and X = [I,,,...,I,]. Then X*PoX = Py, + Py, + -+ - +
Py, X*AX = A+ -+ - + Ay, and X*ATX = Al +o- +A,l. In this case, the right-hand
side of (17) becomes (35).

Combining (29) and (35) yields a two-side inequality for the sum Z.l:1 A,l

where S = 21; I AA;r , where M and m are, respectively, the maximum and minimum pos-
itive eigenvalues of A,..., A.

If Ay,...,Ax are nonnull Hermitian nonnegative definite, so are Al,...,A}: and M~!
and m~! are, respectively, the minimum and maximum positive eigenvalues of Al,. .. ,A,l.
Replacing A; with A, i = 1,...,k and replacing M and m with M~ and m~, respectively,
in (36), we obtain the following two-side inequality for the sum Zl{:l Aj

k k
s(ZM) <> A< (m+M) (zA*) (37)
i=1 i=1

where § = zleAA,l , M and m are, respectively, the maximum and minimum positive
eigenvalues of Ay,..., A.

It is well known in complex matrix theory that if a complex matrix A is Hermitian,
then AAT = ATA. If a quaternionic matrix A is Hermitian, then W(A) is Hermitian by
Lemma 5. Hence, W(A)¥1(A) = WT(A)¥(A). From this equality and Lemma 1(a), (c),
and (g), one can obtain that if a quaternionic matrix A is Hermitian, then AAT = ATA.
Notice that S = 3 | P, is Hermitian. It follows that SSt = S'S. On the other hand, it is
easy to verify that for any nonnegative definite matrices Aj,...,Ax over C

k k k
Range(ZPAl) = Range(ZA,-) = Range(ZA?). (38)

i=1 i=1 i=1
Thus
k k k k k k
SST(ZAi) = <2Ai>SlS— > A ss*(ZM) = (zA,T>STS_ >l (39)
i=1 i=1 i=1 i=1 i=1 i=1

These matrix equalities can be extended to any nonnegative definite matrices Ay,...,Ax
over H through Lemmas 1 and 5. In such cases, Pre- and post-multiplying (36) and (37)
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by St yields the following two inequalities:

amM & L.
—CNTstalst <[ YA < stAlst,
(m+ M)?

i=1

i=1 i=1

(40)
4mM

k k Tk
R Nstast <[ YAl <Y stast
(m+M )2 Z (g' ! ; !
for nonnull Hermitian nonnegative definite matrices Ay,...,Ax over H, where M and m

are, respectively, the maximum and minimum positive eigenvalues of Aj,..., A.
If Ay,...,Ax are Hermitian positive definite over H, then (36) reduces to
-1

k k
2 . 1< m+M
K <ZIA> <Sat el (}x) , (1)

where M and m are, respectively, the maximum and minimum positive eigenvalues of
Ay,...,Ak. In particular, when k = 2, (41) becomes

-1

2
4(A+B)'<A'+BIL M(AHB)—% (42)
mM
or equivalently,
2
JAA+B)B<A+B< M )44y, (43)

where M and m are, respectively, the maximum and minimum positive eigenvalues of A
and B.

The product A(A + B)~!B is well known in the literature as the parallel sum of A and
B. Thus (43) is in fact a two-side inequality between the sum and parallel sum of two
Hermitian positive definite matrices over H.
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