
SOME INEQUALITIES FOR SUMS OF NONNEGATIVE
DEFINITE MATRICES IN QUATERNIONS

YONGGE TIAN AND GEORGE P. H. STYAN

Received 9 January 2004 and in revised form 24 December 2004

Some matrix versions of the Cauchy-Schwarz and Frucht-Kantorovich inequalities are es-
tablished over the quaternionic algebra. As applications, a group of inequalities for sums
of Hermitian nonnegative definite matrices over the quaternionic algebra are derived.

Let a= a0 + a1i+ a2 j + a3k be a quaternion, where a0, . . . ,a3 are numbers from the real
field R and the three imaginary units i, j, and k satisfy

i2 = j2 = k2 =−1, i j =− ji= k, jk =−k j = i, ki=−ik = j. (1)

The collection of all quaternions is denoted byH and is called the real quaternionic alge-
bra. This algebra was first introduced by Hamilton in 1843 (see [5, 6]), and is often called
the Hamilton quaternionic algebra.

It is well known thatH is an associative division algebra over R. For any a= a0 + a1i+
a2 j + a3k ∈H, the conjugate of a = a0 + a1i + a2 j + a3k is defined to be a = a0 − a1i−
a2 j− a3k, which satisfies

a= a, a+ b= a+ b, ab = ba (2)

for all a,b ∈ H. The norm of a is defined to be |a| = √aa = √aa =
√
a2

0 + a2
1 + a2

2 + a2
3.

Let A= (ast) be an m×n matrix over H, where ast ∈H. The conjugate transpose of A is
defined to beA∗ = (ats). A square matrixA overH is called Hermitian ifA∗ =A. General
properties of matrices overH can be found in [13, 18].

BecauseH is noncommutative, one cannot directly extend various results on complex
numbers to quaternions. On the other hand, H is known to be algebraically isomorphic
to the two matrix algebras consisting of

ψ(a)
def=

a0 + a1i −(a2 + a3i

)
a2− a3i a0− a1i


∈ C2×2, φ(a)

def=



a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0


∈R4×4,

(3)
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respectively. Moreover, it is shown in [13] that the diagonal matrix diag(a,a) satisfies the
following universal similarity factorization equality (USFE):

Pdiag(a,a)P∗ = ψ(a), (4)

where

P = 1√
2

[
1 −i
− j k

]
(5)

is a unitary matrix over H, that is, PP∗ = P∗P = I2; the diagonal matrix diag(a,a,a,a)
satisfies the following USFE:

Qdiag(a,a,a,a)Q∗ = φ(a), (6)

where the matrix Q has the following independent expression:

Q =Q∗ = 1
2




1 i j k
−i 1 k − j
− j −k 1 i
−k j −i 1


 , (7)

which is a unitary matrix overH.
The two equalities in (4) and (6) reveal two fundamental facts that the quaternion a

is an eigenvalue of multiplicity two for the complex matrix ψ(a) and an eigenvalue of
multiplicity four for the real matrix φ(a).

In general, for any m×n matrix A= A0 +A1i+A2 j +A3k ∈Hm×n, where A0, . . . ,A3 ∈
Rm×n, the block-diagonal matrix diag(A,A) satisfies the following universal factorization
equality:

P2mdiag(A,A)P∗2n =
[
A0 +A1i −(A2 +A3i

)
A2−A3i A0−A1i

]
def= Ψ(A)∈ C2m×2n, (8)

where P2m and P∗2n are the following two unitary matrices overH:

P2m = 1√
2

[
Im −iIm
− jIm kIm

]
, P∗2n =

1√
2

[
In jIn
iIn −kIn

]
. (9)

In particular, if m= n, then (8) becomes a USFE over H. Let A= A0 +A1i+A2 j +A3k ∈
Hm×n, where A0, . . . ,A3 ∈Rm×n. Then the block-diagonal matrix diag(A,A,A,A) satisfies
the following universal factorization equality:

Q4mdiag(A,A,A,A)Q∗4n =



A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0


 def= Φ(A)∈R4m×4n, (10)
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where Q4t is the following unitary matrix overH:

Q4t =Q∗4t =
1
2




It iIt jIt kIt
−iIt It kIt − jIt
− jIt −kIt It iIt
−kIt jIt −iIt It


 , t =m,n. (11)

In particular, if m= n, then (10) becomes a USFE over H. Result (10) was also shown in
Tian [13] in the investigation of various universal block-matrix factorizations. The two
universal block-matrix factorizations in (8) and (10) can be used to extend various results
in complex and real matrix theory to quaternionic matrices.

For a general m×n matrix A over C, the Moore-Penrose inverse A† of A is defined to
be the unique n×m matrix X satisfying the four Penrose equations AXA=A, XAX = X ,
(AX)∗ = AX and (XA)∗ = XA. General properties of the Moore-Penrose inverse can be
found in [2, 3].

The Moore-Penrose inverse A† of a matrix A overH is defined to be the matrix X over
H satisfying the four Penrose equations AXA=A, XAX = X , (AX)∗ =AX and (XA)∗ =
XA. The existence and uniqueness of A† of A overH can be shown through the following
Lemma 1(g).

Some consequences derived from (8) and (10) are given below, which will be used in
the sequel.

Lemma 1. Let A,B ∈Hm×n, C ∈Hn×p, and λ∈R. Then
(a) A= B⇔Ψ(A)=Ψ(B);
(b) Ψ(A+B)=Ψ(A) +Ψ(B);
(c) Ψ(AC)=Ψ(A)Ψ(C);
(d) Ψ(λA)=Ψ(Aλ)= λΨ(A);
(e) Ψ(A∗)=Ψ∗(A);
(f) if A is nonsingular, then Ψ(A−1) = Ψ−1(A) and A−1 = (1/2)E2mΨ−1(A)E∗2m, where

E2m = [Im, jIm];
(g) A† satisfies Ψ(A†)=Ψ†(A) and A† = (1/2)E2nΨ†(A)E∗2m.

The two factorizations in (8) and (10) enable us to extend various results on real
and complex matrices into quaternionic matrices. In the past several years, various in-
equalities for quaternions and matrices in quaternions were considered; see, for example,
[11, 12, 15, 16, 17, 19]. In this paper, we will consider some basic matrix inequalities in
Löwner partial ordering over H. As applications, we give a group of matrix inequalities
for sums of Hermitian nonnegative definite matrices overH.

In complex matrix analysis, two Hermitian matricesA and B of the same order are said
to satisfy the Löwner partial orderingA� B if B−A is nonnegative definite. It was shown
in Marshall and Olkin [9] that if the complex matrix A of order n is Hermitian positive
definite with its eigenvalues λ1 � λ2 � ··· � λn > 0, while an n× p complex matrix X
satisfies X∗X = Ip, then

(
X∗AX

)−1 � X∗A−1X �
(
λ1 + λn

)2

4λ1λn

(
X∗AX

)−1
. (12)
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Various extensions of (12) for complex matrices are also investigated in the literature (see,
e.g., [1, 4, 7, 8, 9, 10]).

Lemma 2. Let A ∈ Cn×n be a nonnull Hermitian nonnegative definite matrix with rank
r � n and the r positive eigenvalues of A are λ1 � λ2 � ···� λr > 0, and let X be an n× p
complex matrix. Then

X∗PAX
(
X∗AX

)†
X∗PAX � X∗A†X �

(
λ1 + λr

)2

4λ1λr
X∗PAX

(
X∗AX

)†
X∗PAX , (13)

where PA = AA† is the orthogonal projector onto the range (column space) of A.

The inequality on the left-hand side of (13) was first given by Baksalary and Puntanen
[1], the inequality on the right-hand side of (13) was established by Drury et al. [4]. The
left-hand side of (13) was extended to a more general situation by Pečarić et al. [10] as
follows.

Lemma 3. Let A∈ Cn×n be a nonnegative definite matrix and let P ∈ Cn×p and Q ∈ Cn×q.
Then

Q∗AQ�Q∗AP
(
P∗AP

)†
P∗AQ,

rank
[
Q∗AQ−Q∗AP(P∗AP)†P∗AQ]= rank[AP,AQ]− rank(AP).

(14)

Moreover, the following statements are equivalent:
(a) the equality in (14) holds;
(b) Range (AQ)⊆ Range (AP), that is, there is a Z such that APZ = AQ;
(c) AQ = AP(P∗AP)†P∗AQ.

The following general result was shown in [14].

Lemma 4. LetA1, . . . ,Ak ∈ Cn×n be Hermitian nonnegative definite matrices, and letN1, . . . ,
Nk ∈ Cn×p. Then

k∑
i=1

N∗
i AiNi �

( k∑
i=1

AiNi

)∗( k∑
i=1

Ai

)†( k∑
i=1

AiNi

)
, (15)

with equality if and only if there is a Z such that AiZ = AiNi, i = 1, . . . ,k. Furthermore, let
X1, . . . ,Xk ∈ Cn×q. Then

k∑
i=1

N∗
i AiNi �

( k∑
i=1

X∗i AiNi

)∗( k∑
i=1

X∗i AiXi

)†( k∑
i=1

X∗i AiNi

)
, (16)

with equality if and only if there is a Z such that (AiXi)Z =AiNi, i= 1, . . . ,k.

In this paper, we consider the extensions of the above inequalities to quaternionic
matrices. It is well known that any Hermitian matrix A ∈Hn×n can be decomposed as
A= PJP∗, where P ∈Hn×n satisfies PP∗ = P∗P = In and J is a real diagonal matrix, the
entries in J are called the eigenvalues of A; see, for example, Zhang [18]. If the diagonal
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entries in J are nonnegative, A is said to be nonnegative definite. If the diagonal entries of
J are all positive, A is said to be positive definite.

From Lemma 1(a) and (e), one derive the following simple result.

Lemma 5. Let A∈Hn×n. Then A is Hermitian if and only if Ψ(A) is Hermitian; A is Her-
mitian nonnegative definite (positive definite) if and only if Ψ(A) is Hermitian nonnegative
definite (positive definite).

Two Hermitian nonnegative definite matricesA,B ∈Hn×n are said to satisfy the matrix
inequality A� B in Löwner partial ordering if B−A is nonnegative definite.

Our main results on matrix inequalities in Löwner partial ordering are presented be-
low.

Theorem 6. Let A ∈ Hn×n be a nonnull Hermitian nonnegative definite matrix with
rank(A) = r � n, the r positive eigenvalues of A be λ1 � λ2 � ··· � λr > 0, and let X ∈
Hn×p. Then

X∗PAX
(
X∗AX

)†
X∗PAX � X∗A†X �

(
λ1 + λr

)2

4λ1λr
X∗PAX

(
X∗AX

)†
X∗PAX , (17)

where PA = AA† is the orthogonal projector onto the range of A.

Proof. Since the r positive eigenvalues of A are λ1 � λ2 � ···� λr > 0, A can be decom-
posed as A = PJP∗, where PP∗ = P∗P = In, J = diag(λ1, . . . ,λr ,0, . . . ,0). Thus, Ψ(A) =
Ψ(P)Ψ(J)Ψ∗(P) and Ψ(P)Ψ∗(P) = Ψ∗(P)Ψ(P) = I2n. This implies that Ψ(A) is a Her-
mitian nonnegative definite matrix over C. Note that the diagonal elements of Ψ(J) are
eigenvalues of Ψ(A) and that the maximum and minimum positive eigenvalues of Ψ(A)
are λ1 and λr , respectively. Thus

Ψ∗(X)PΨ(A)Ψ(X)
[
Ψ∗(X)Ψ(A)Ψ(X)

]†
Ψ∗(X)PΨ(A)Ψ(X)

�Ψ∗(X)Ψ†(A)Ψ(X)

�
(
λ1 + λr

)2

4λ1λr
Ψ∗(X)PΨ(A)Ψ(X)

[
Ψ∗(X)Ψ(A)Ψ(X)

]†
Ψ∗(X)PΨ(A)Ψ(X).

(18)

Applying Lemma 1(c), (d), (e), and (g) to (18) gives

Ψ
[
X∗PAX

(
X∗AX

)†
X∗PAX

]
�Ψ

(
X∗A†X

)

�
(
λ1 + λr

)2

4λ1λr
Ψ
[
X∗PAX

(
X∗AX

)†
X∗PAX

]
.

(19)

Applying Lemma 5 to (19) gives (17). �

Similarly, one can derive from Lemmas 3, 4, and 5 the following two theorems.
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Theorem 7. Let A ∈Hn×n be a nonnegative definite matrix and let P ∈Hn×p and Q ∈
Hn×q. Then

Q∗AQ�Q∗AP
(
P∗AP

)†
P∗AQ, (20)

and with equality in (20) if and only if AQ =AP(P∗AP)†P∗AQ.

Theorem 8. Let A1, . . . ,Ak ∈Hn×n be Hermitian nonnegative definite matrices and let N1,
. . . ,Nk ∈Hn×p. Then

k∑
i=1

N∗
i AiNi �

( k∑
i=1

AiNi

)∗( k∑
i=1

Ai

)†( k∑
i=1

AiNi

)
, (21)

with equality if and only if there is a Z such that AiZ = AiNi, i = 1, . . . ,k. Furthermore, let
X1, . . . ,Xk ∈Hn×q. Then

k∑
i=1

N∗
i AiNi �

( k∑
i=1

X∗i AiNi

)∗( k∑
i=1

X∗i AiXi

)†( k∑
i=1

X∗i AiNi

)
, (22)

with equality if and only if there is a Z such that (AiXi)Z =AiNi, i= 1, . . . ,k.

Various special cases can be derived from (17), (20), (21), and (22). For example, let-
ting Ni = Ai, i= 1, . . . ,k in (21) gives

k∑
i=1

A3
i �

( k∑
i=1

A2
i

)( k∑
i=1

Ai

)†( k∑
i=1

A2
i

)
, (23)

with equality if and only if there is a Z such that AiZ =A2
i , i= 1, . . . ,k; letting Ni = In and

Xi = Ai, i= 1, . . . ,k in (22) gives

k∑
i=1

Ai �
( k∑
i=1

A2
i

)( k∑
i=1

A3
i

)†( k∑
i=1

A2
i

)
, (24)

with equality if and only if there is a Z such thatA2
i Z = Ai, i= 1, . . . ,k. LettingNi =Ati , i=

1, . . . ,k in (21), where t is a positive integer, yields

k∑
i=1

A2t+1
i �

( k∑
i=1

At+1
i

)( k∑
i=1

Ai

)†( k∑
i=1

At+1
i

)
, (25)

with equality if and only if there is a Z such thatAiZ =At+1
i , i= 1, . . . ,k. Its dual inequality

by (22) is

k∑
i=1

Ai �
( k∑
i=1

At+1
i

)( k∑
i=1

A2t+1
i

)†( k∑
i=1

At+1
i

)
, (26)

with equality if and only if there is a Z such that At+1
i Z =Ai, i= 1, . . . ,k.
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If Ai is Hermitian positive definite and Ni = A−1
i Bi, i= 1, . . . ,k, then (21) becomes

k∑
i=1

B∗i A
−1
i Bi �

( k∑
i=1

Bi

)∗( k∑
i=1

Ai

)−1( k∑
i=1

Bi

)
, (27)

with equality if and only if A−1
1 B1 = ··· =A−1

k Bk. Its dual inequality by (22) is

k∑
i=1

Ai �
( k∑
i=1

Bi

)( k∑
i=1

B∗i A
−1
i Bi

)†( k∑
i=1

Bi

)∗
, (28)

with equality if and only if there is a Z such that BiZ = Ai, i= 1, . . . ,k.
Letting Ni =A†i , i= 1, . . . ,k in (21) yields

k∑
i=1

A†i �
( k∑
i=1

PAi

)( k∑
i=1

Ai

)†( k∑
i=1

PAi

)
, (29)

with equality if and only if there is a Z such that AiZ = PAi , i= 1, . . . ,k.
Letting Ni =A†i Xi, i= 1, . . . ,k in (22) gives

k∑
i=1

X∗i A
†
i Xi �

( k∑
i=1

X∗i PAiXi

)( k∑
i=1

X∗i AiXi

)†( k∑
i=1

X∗i PAiXi

)
, (30)

with equality if and only if there is a Z such that (AiXi)Z =AiA†i Xi, i= 1, . . . ,k. In partic-
ular, if all Ai are Hermitian positive definite, then

k∑
i=1

X∗i A
−1
i Xi �

( k∑
i=1

X∗i Xi

)( k∑
i=1

X∗i AiXi

)†( k∑
i=1

X∗i Xi

)
, (31)

with equality if and only if there is a Z such that (AiXi)Z = Xi, i = 1, . . . ,k. The above
inequality can be written equivalently as

k∑
i=1

X∗i AiXi �
( k∑
i=1

X∗i Xi

)( k∑
i=1

X∗i A
−1
i Xi

)†( k∑
i=1

X∗i Xi

)
, (32)

with equality if and only if there is a Z such that XiZ =AiXi, i= 1, . . . ,k.
Letting Xi =√wiIn, i= 1, . . . ,k with

∑k
i=1wi = 1 in the above inequality gives

k∑
i=1

wiA
†
i �

( k∑
i=1

wiPAi

)( k∑
i=1

wiAi

)†( k∑
i=1

wiPAi

)
, (33)

with equality if and only if there is a Z such that AiZ =AiA†i , i= 1, . . . ,k. In particular,

w1A
−1
1 + ···+wkA

−1
k �

(
w1A1 + ···+wkAk

)−1
, (34)

with equality if and only if A1 = ··· = Ak.
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Theorem 9. Let A1, . . . ,Ak ∈ Hn×n be nonnull Hermitian nonnegative definite matrices.
Then

k∑
i=1

A†i � (m+M)2

4mM

( k∑
i=1

PAi

)( k∑
i=1

Ai

)†( k∑
i=1

PAi

)
, (35)

where M and m are, respectively, the maximum and minimum positive eigenvalues of A1,
. . . ,Ak.

In fact, let A= diag(A1, . . . ,Ak) and X = [In, . . . ,In]. Then X∗PAX = PA1 +PA2 + ···+
PAk , X

∗AX = A1 + ··· +Ak, and X∗A†X = A†1 + ··· +A†k . In this case, the right-hand
side of (17) becomes (35).

Combining (29) and (35) yields a two-side inequality for the sum
∑k

i=1A
†
i

S

( k∑
i=1

Ai

)†
S�

k∑
i=1

A†i � (m+M)2

4mM
S

( k∑
i=1

Ai

)†
S, (36)

where S=∑k
i=1AA

†
i , where M and m are, respectively, the maximum and minimum pos-

itive eigenvalues of A1, . . . ,Ak.
If A1, . . . ,Ak are nonnull Hermitian nonnegative definite, so are A†1 , . . . ,A†k and M−1

andm−1 are, respectively, the minimum and maximum positive eigenvalues of A†1 , . . . ,A†k .
Replacing Ai with A†i , i= 1, . . . ,k and replacing M and m with M−1 and m−1, respectively,
in (36), we obtain the following two-side inequality for the sum

∑k
i=1Ai:

S

( k∑
i=1

A†i

)†
S�

k∑
i=1

Ai �
(m+M)2

4mM
S

( k∑
i=1

A†i

)†
S, (37)

where S =∑k
i=1AA

†
i , M and m are, respectively, the maximum and minimum positive

eigenvalues of A1, . . . ,Ak.
It is well known in complex matrix theory that if a complex matrix A is Hermitian,

then AA† = A†A. If a quaternionic matrix A is Hermitian, then Ψ(A) is Hermitian by
Lemma 5. Hence, Ψ(A)Ψ†(A) = Ψ†(A)Ψ(A). From this equality and Lemma 1(a), (c),
and (g), one can obtain that if a quaternionic matrix A is Hermitian, then AA† = A†A.
Notice that S=∑k

i=1PAi is Hermitian. It follows that SS† = S†S. On the other hand, it is
easy to verify that for any nonnegative definite matrices A1, . . . ,Ak over C

Range

( k∑
i=1

PAi

)
= Range

( k∑
i=1

Ai

)
= Range

( k∑
i=1

A†i

)
. (38)

Thus

SS†
( k∑
i=1

Ai

)
=
( k∑
i=1

Ai

)
S†S=

k∑
i=1

Ai, SS†
( k∑
i=1

A†i

)
=
( k∑
i=1

A†i
)
S†S=

k∑
i=1

A†i . (39)

These matrix equalities can be extended to any nonnegative definite matrices A1, . . . ,Ak
over H through Lemmas 1 and 5. In such cases, Pre- and post-multiplying (36) and (37)
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by S† yields the following two inequalities:

4mM
(m+M)2

k∑
i=1

S†A†i S
† �

( k∑
i=1

Ai

)†
�

k∑
i=1

S†A†i S
†,

4mM
(m+M)2

k∑
i=1

S†AiS† �
( k∑
i=1

A†i

)†
�

k∑
i=1

S†AiS†

(40)

for nonnull Hermitian nonnegative definite matrices A1, . . . ,Ak over H, where M and m
are, respectively, the maximum and minimum positive eigenvalues of A1, . . . ,Ak.

If A1, . . . ,Ak are Hermitian positive definite overH, then (36) reduces to

k2

( k∑
i=1

Ai

)−1

�
k∑
i=1

A−1
i � k2 (m+M)2

4mM

( k∑
i=1

Ai

)−1

, (41)

where M and m are, respectively, the maximum and minimum positive eigenvalues of
A1, . . . ,Ak. In particular, when k = 2, (41) becomes

4(A+B)−1 �A−1 +B−1 � (m+M)2

mM
(A+B)−1, (42)

or equivalently,

4A(A+B)−1B �A+B � (m+M)2

mM
A(A+B)−1B, (43)

where M and m are, respectively, the maximum and minimum positive eigenvalues of A
and B.

The product A(A+B)−1B is well known in the literature as the parallel sum of A and
B. Thus (43) is in fact a two-side inequality between the sum and parallel sum of two
Hermitian positive definite matrices overH.
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