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Let f be a measurable function defined on the unit polydisc U” in C" and let w;(z;),
j =1,...,n, be admissible weights on the unit disk U, with distortion functions v;(z;),
FELU) = 1 1 1S lgzg, < ooh, where | flhps = fiory MA@y, and
‘ﬁg’j\](U”) = ifg’j\,(U”) N H(U"). We prove the following result: if p,q € [1,00) and for
all j=1,...,n,y;(z;)(9f/0z;)(2) € .Efg:?\], then f € &d‘g’j\, and there is a positive constant

C = C(p,q,wj,n) such that || fll yrs =< C(I£(0)| + X, IIWj(af/azj)llgggv)-

1. Introduction

Let U' = U be the unit disk in the complex plane, dm(z) = (1/m)dr df the normalized
Lebesgue measure on U, U” the unit polydisc in complex vector space C" and H(U") the
space of all analytic functions on U". For z,w € C" we write z - w = (z1W1,...,Z,Wy); et
is an abbreviation for (e/,...,e%); dt = dt, - - - dt,; d0 = dO, - - - dO, and r, O are vectors
in C". If we write 0 < r < 1, where r = (1,...,7,) itmeans 0 < r; < 1 for j = 1,...,n.

For f € H(U") and p € (0, o) we usually write

1/p
1 .
My(f,r) = <(2ﬂ)n J[O,Zﬂ]" | f(r-e") |pd0> , for0<r<l1 (1.1)

for the integral means of f.

Let w(s), 0 < s < 1, be a weight function which is positive and integrable on (0,1). We
extend w on U by setting w(z) = w(|z|). We may assume that our weights are normalized
so that fol w(s)ds = 1.

Let ifg = ig(U”) denotes the class of all measurable functions defined on U” such
that

171, = | 171 TTwy(zi)dm(z;) < o, (12)
j=1
where w;(z;), j = 1,...,n, are admissible weights on the unit disk U.
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The weighted Bergman space &ﬁg is the intersection of ifg and H(U"). For wj(zj) =
(1-lz; [2)%, a; >—1, j = 1,...,n, we obtain the classical Bergman space AP(dV;3), see [1,
page 33].

Let ig’fl]\, = ifg’j\,(U"), p>q >0, denotes the class of all measurable functions defined
on U” such that

e = MH o) < o (13)

and &Qp 1 be the intersection of §EP 1 and H(U"). When p = q we denote &Qp 1 ~ by &ﬁ

In the case p = ¢, these two norms are equivalent on the space H(U"), but t the later one
is more suitable for calculations than the first one. The result is contained in the following
lemma.

LeMmMmA 1.1. The norms || - ||&q[1 and || - ||&qlf are equivalent on the space H(U").

Proof. By the polar coordinates it is easy to see that || f|| o” <2"||f ||9¢P for every f €
H(U"), moreover || fl g < 2"||f||$qv for every f measurable on U™,
Now we prove that there is a positive constant C, which is independent of f, such that

£ 1Lz < Cllfll 2, (14)

for every f € H(U"). Without loss of generality we may assume that n = 2. Let f €
H(U"), then

172 £1/2 172 r1 1 1/2 1 1
If12, J J +J J +J J +J J g(rir)dn dr, (1.5)
wN 0 0 0 1/2 1/2J0 1/2 J1/2

where g(r1,12) = Mﬁ( f>ri,r2)wi (r)wz(r2). Now we estimate these four integrals, which
we denote by I, i = 1,2,3,4.

Since f € H(U?) then the function f is analytic in each variable separately on U and
consequently Mg( f,r1,12) is nondecreasing function in r, and 7, see, for example, [3].
Let

Co, = Jol/zwi(ri)/f/z wi(r;), i=1,2. (1.6)

Note that C,,, i = 1,2, are well defined and finite numbers since w; are positive integrable
functions on (0,1).
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Using the above mentioned facts and definitions, we have
12 (12
L SMg(f, 1/2,1/2)J J w1 (Tl)a)z(i’z)dﬁ di’z
o Jo

1 1
= Cw1 szMg(f, 1/2, 1/2)J J a)l(l’l)a)z(rz)dﬁ d?’z
1/2J1/2

(1.7)
< Cy, Co, Mg(f,ﬁ,f’z)wl(Vl)wz(rz)dﬁdrz
1/2 1/2
<4C,, sz 1/2M£ (f>ri,r2) wi () wa (r2) riradry dr,
1/2
L < J] MP f 1/2 1’2)[ w1 (Tl)dﬁwZ(Tz)drz
= Cy, M;‘?(ﬂ 1/2,r2) w1 (r1) w2 (r2)dr dr,
1212
O (1.8)
< Cw1 Mg(f,rl,rz)wl (Tl)wz(rz)di’l drz
1/2 1/2
< 4Cw1 Mg(f,ﬁ,rz)a)l(Tl)a)z(i‘z)ﬁrzdﬁ d?’z.
172 0172
Similarly
I; < 4C,, ) 1/2M£ (f,r1,r2) w1 (r1) wa (r2)riradry dry. (1.9)
Finally, it is clear that
1 1
14 < 4J1/2 1/2M‘£ (f,rl,rz)wl (T])a)z(rz)ﬁrzdﬁ d?’z. (110)
From (1.7)—(1.10), we obtain
1F115 = (Cay +1) (Cay + )ILF UG, (1.11)
as desired.
Following [8], for a given weight w we define the function
def !
v = valn ® o J wwdu, 0<r<l, (1.12)
and we call it the distortion function of w. We put y(z) = y(|z|) forz € U. O

Definition 1.2 [8]. We say that a weight w is admissible if it satisfies the following condi-
tions:
(i) there is a positive constant A = A(w) such that

1
w(r) > J w(u)du, for0<r<]l; (1.13)

1-rJs
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(ii) w is differentiable and there is a positive constant B = B(w) such that

w(r), for0<r<l; (1.14)

(iii) for each sufficiently small positive & there is a positive constant C = C(J,w) such
that

w(r)
sup ———— < C. 1.15
05r1<31 w(r+8y(r)) ( )
Observe that (i) implies Ay(r) < 1 —r thus for sufficiently small positive § we have r +
O0y(r) < 1 and the quantity in the denominator of the fraction in (iii) is well defined.

For a list of examples of admissible weights, see [8, pages 660—663]. The following
theorem was proved in [8].

THEOREM 1.3. Suppose 1 < p < o0 and w is an admissible weight with distortion function
Y. Then

L | F@) [Po@)dm(z) = | f(0)]” + JU | @) [Py (@)Pw(z)dm(z), (1.16)

for all analytic functions f on the unit disc U, where dm(z) = rdrd0/m denotes the normal-
ized Lebesgue area measure on U.

The above means that there are finite positive constants C and C’ independent of f

such that the left- and right-hand sides L( f) and R(f) satisty

CR(f) < L(f) < C'R(f) (1.17)

for all analytic f.

Some generalizations of Theorem 1.3 in many directions can be found in [10, 11]. In
[5, 6, 9] was also investigated Bergman space of analytic functions with weights other
than classical. Closely related results for the classical weight w(r) = (1 —r)%, a« > —1, are
presented in [1, 2, 3, 4, 7, 13].

Using a Bergman type projection B, : £7(dV;) — s4?(d V), in [1] the authors proved
the following theorem.

THEOREM 1.4. Let p € [1,00), aj > —1, j = 1,...,n and m be a fixed positive integer and let
k= (ki,....,kn) € (Z:)". Let f be a holomorphic function defined on the polydisc U" in C".
Then for a = (a1,...,a), f € AP(dVy) if and only if

[ﬁ(l— Izjlz)kj]m<z>e$1’(dvg) vkl = m. (1.18)
=1

azlf1 .0z
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Moreover,
I (Z 2ol 3 10181 |22 )
AP(dVy) = ; . + —1zj ; . .
k|=0 azlf ---leﬁ [kl=m!lLj=1 ! aZ]f - -azlﬁ £P(dVy)

(1.19)

In [11] among other things we proved the following theorem which generalizes Theo-
rem 1.4.

THEOREM 1.5. Let k = (ky,...,k,) € (Z4)", f be a holomorphic function defined on the
polydisc U" in C" and w;(z;), j = 1,...,n are admissible weights on the unit disk U, with
distortion functions y;(z;). If f € sﬁg and p >0, then

|n v (z) M ey (1.20)
Jj ] )
j=1

azlfl C Oz

Moreover, let m be a fixed positive integer. Then there is a positive constant C = C(p,w;,m,n)
such that

m—1 n
gl . o f
A ,EZC( O]+ [ W'](Z‘)} - (1.21)
54w \klZQO azlfl - aZ]y(,n Ik%m j=1 / / azlfl e aZ}r(zn :gg

In the same paper, we formulate and give a sketch of a proof of the following partially
converse of Theorem 1.5.

TuEOREM 1.6. Let f € H(U") and wj(z;), j = 1,...,n are admissible weights on the unit
disk U, with distortion functions y;(z;). If p € [1,00) and forall j = 1,...,n, y;(z;)(df/0z;)
(z) € SEg, then f € &ﬂg and there is a positive constant C = C(p,wj,n) such that

of
l//j£ gg). (122)

]

||f||ﬂgs6(|f(0>l+i
j=1

In communication with other specialists in this field it has turned out that the proofis
more complicated than we have expected. Hence in this note we will present a clear de-
tailed proof of Theorem 1.6. Also, we prove the following generalization of Theorem 1.6.

Tueorem 1.7. Let f € H(U") and wj(z;), j = 1,...,n are admissible weights on the unit
disk U, with distortion functions y;(z;). If p,q € [1,00) and for all j = 1,...,n, yj(z;)
(0f/0zj)(2) € .555-}’5\,, then f € &ﬁg’j\, and there is a positive constant C = C(p,q,wj,n) such
that

0
V’jl

Zj

IIfIIﬂe)quC<|f(0)|+Z , ) (1.23)
o j=1 EEN
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2. An auxiliary results
In this section, we prove an auxiliary result which we use in the proof of the main result.

LEmMA 2.1. Suppose 1 < p < o0 and f € H(U"). Then

i P SYR A
M (f,tr) < pM (f,tr);r,Mp(azi,tr), (2.1)

almost everywhere.

Proof. For f = 0 the result is obvious. If f # 0, at points where f is not zero, we have

D fter-e) 17 = pl fler-e®) 7D | plar- o))

d oo
< plflor )P Sl

= pl fltr-®) [P (V[ (tr-?),r- ) |

< pl )" S,

i=1

)

(2.2)

g—fi(tr - e') '

From (2.2) and by the dominated convergence theorem we obtain

d
EM{,’( fotr) <

Zr,J f(tr-e®) P!

0,27]"

g—f (tr - €9) ‘d@. (2.3)

<i
If p = 1 the assertion is clear. If p > 1, applying in the last integral Holder’s inequality

with exponents p/(p — 1) and p we obtain the result. O

COROLLARY 2.2. Suppose p,q € [1,00) and f € H(U"). Then

d & 0
dtMp(f tr) < qM (f:tr) Z"iMp (é)tf>, (2.4)

almost everywhere.

Proof. Computing (d/dt)Mj(f,tr) and then using Lemma 2.1 we prove the corollary.
O

3. Proofs of the theorem

In this section, we prove the main results in this paper.

Proof of Theorem 1.6. Without loss of generality, we may assume that n = 2, and £(0,0) =
0. Also we assume that f is not constant and all integrals are finite. In order to avoid some
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complicated notations we use M E (f,rt,r,t) instead of Mﬁ (r1t,r2t). We have

IIfII"p
A

= Jl Jl (Jl dng(rlt,rzt)dt>w1(T1)w2(72)d7’1 dr,
<pj J (J Mp (rit,rat) ZMP< 11, rzt)r,dt) 1(r1) wy (r2)dry dry

<o) J; (Jy " ooty (5 s o (o) s )
I R T A v PO P

<o, [ (J; 45" rant (o) s)ontrrontrinar
+pjol Jol (J:MII’H(“’T)MP@i”b )df)wl(h)wz(rz)dn dr,

= pjl Jl (Mp_l(s’rz)Mp(aa*{’s’rz) f @1 (n)dr ) wa () dsdrs
+PJ J (M7 (e )Mp(gf,n,r> Llwz(”z)drz)wl(rl)d‘rdrl

_pJ J MP s,rz)Mp<3f,5,r2>1//1( Ywi(s)w; (r2)dsdr,

+PJ I My (r,T )Mp<§f,r1, )wz(f)wz(r)wl(rl)drdrl.

(3.1)
If p > 1, by Holder inequality, we get
J J My s,rz)Mp<gf,S,Tz)Wl(S)wl(S)wz(”Z)derz
(p=1/p
< (L L Mg (s,rz)wl(s)a)z(rz)dsdrz) ,
1,1 P p (3:2)
<L JO M) (a—i,s,rz)wf(s)wl(s)wz(rz)dsdrz)
1/p
=17, (J J Mp( ,s,rz)vn (s)wl(s)wz(rz)dsdrz) :
Similarly,
J J My (r,T <§f>rl) )WZ(T)CUZ(T)CUI(VI)deﬁ
(3.3)

<IIfI7, (j j MP( SR LA IE: )wl(n)drdn)l/p.



590 Weighted integrals of holomorphic functions

From (3.1)—(3.3) we obtain the result in this case. For p = 1 the result it follows from
(3.3). If f is constant the result is clear. To remove the restriction of the finiteness of
the integrals we consider holomorphic functions f,(z) = f(pz), p € (0,1) and use the
Monotone Convergence theorem, when p — 1. O

Open question 3.1. Does Theorem 1.6 hold in the case 0 < p < 12

Remark 3.2. In the case when w;(z;), j = 1,...,n, are the classical weights (1 — |z;|)%,
j =1,...,n, a positive answer to Open question 3.1 was given in [12].

Proof of Theorem 1.7. If f(0,0) = 0, is not constant and all integrals are finite, then by
Corollary 2.2, as in the proof of Theorem 1.6, we obtain

nfnqunfqu(jjamg( ,&h)wdﬂwd)wﬂhﬁkdhym

g (3.4)
+WWJJJM( mjﬁmmmmmmh),
that is,
2
1fllggra < g 92|l (3.5)
The rest of the proof is similar to the proof of Theorem 1.6. O
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