WEIGHTED INTEGRALS OF HOLOMORPHIC FUNCTIONS IN THE UNIT POLYDISC

STEVO STEVIĆ

Received 28 September 2003

Let f be a measurable function defined on the unit polydisc U^n in \mathbb{C}^n and let $\omega_j(z_j)$, $j=1,\ldots,n$, be admissible weights on the unit disk U, with distortion functions $\psi_j(z_j)$, $\mathcal{L}^{p,q}_{\vec{\omega},N}(U^n)=\{f\mid \|f\|_{\mathcal{L}^{p,q}_{\vec{\omega},N}}<\infty\}$, where $\|f\|_{\mathcal{L}^{p,q}_{\vec{\omega},N}}^q=\int_{[0,1)^n}M_p^q(f,r)\prod_{j=1}^n\omega_j(r_j)dr_j$, and $\mathcal{L}^{p,q}_{\vec{\omega},N}(U^n)=\mathcal{L}^{p,q}_{\vec{\omega},N}(U^n)\cap H(U^n)$. We prove the following result: if $p,q\in[1,\infty)$ and for all $j=1,\ldots,n$, $\psi_j(z_j)(\partial f/\partial z_j)(z)\in\mathcal{L}^{p,q}_{\vec{\omega},N}$, then $f\in\mathcal{L}^{p,q}_{\vec{\omega},N}$ and there is a positive constant $C=C(p,q,\omega_j,n)$ such that $\|f\|_{\mathcal{L}^{p,q}_{\vec{\omega},N}}\leq C(|f(0)|+\sum_{j=1}^n\|\psi_j(\partial f/\partial z_j)\|_{\mathcal{L}^{p,q}_{\vec{\omega},N}}$.

1. Introduction

Let $U^1 = U$ be the unit disk in the complex plane, $dm(z) = (1/\pi)dr d\theta$ the normalized Lebesgue measure on U, U^n the unit polydisc in complex vector space \mathbf{C}^n and $H(U^n)$ the space of all analytic functions on U^n . For $z, w \in \mathbf{C}^n$ we write $z \cdot w = (z_1w_1, \dots, z_nw_n)$; $e^{i\theta}$ is an abbreviation for $(e^{i\theta_1}, \dots, e^{i\theta_n})$; $dt = dt_1 \cdots dt_n$; $d\theta = d\theta_1 \cdots d\theta_n$ and r, θ are vectors in \mathbf{C}^n . If we write $0 \le r < 1$, where $r = (r_1, \dots, r_n)$ it means $0 \le r_j < 1$ for $j = 1, \dots, n$.

For $f \in H(U^n)$ and $p \in (0, \infty)$ we usually write

$$M_{p}(f,r) = \left(\frac{1}{(2\pi)^{n}} \int_{[0,2\pi]^{n}} |f(r \cdot e^{i\theta})|^{p} d\theta\right)^{1/p}, \quad \text{for } 0 \le r < 1$$
 (1.1)

for the integral means of f.

Let $\omega(s)$, $0 \le s < 1$, be a weight function which is positive and integrable on (0,1). We extend ω on U by setting $\omega(z) = \omega(|z|)$. We may assume that our weights are normalized so that $\int_0^1 \omega(s) ds = 1$.

Let $\mathscr{L}^p_{\vec{\omega}}=\mathscr{L}^p_{\vec{\omega}}(U^n)$ denotes the class of all measurable functions defined on U^n such that

$$||f||_{\mathcal{L}^{p}_{\vec{\omega}}}^{p} = \int_{U^{n}} |f(z)|^{p} \prod_{j=1}^{n} \omega_{j}(z_{j}) dm(z_{j}) < \infty,$$
 (1.2)

where $\omega_j(z_j)$, j = 1,...,n, are admissible weights on the unit disk U.

Copyright © 2005 Hindawi Publishing Corporation Journal of Inequalities and Applications 2005:5 (2005) 583–591 DOI: 10.1155/JIA.2005.583

The weighted Bergman space $\mathcal{A}^p_{\vec{\omega}}$ is the intersection of $\mathcal{L}^p_{\vec{\omega}}$ and $H(U^n)$. For $\omega_j(z_j) = (1 - |z_j|^2)^{\alpha_j}$, $\alpha_j > -1$, j = 1, ..., n, we obtain the classical Bergman space $\mathcal{A}^p(dV_{\vec{\omega}})$, see [1, page 33].

Let $\mathcal{L}_{\vec{\omega},N}^{p,q} = \mathcal{L}_{\vec{\omega},N}^{p,q}(U^n)$, p,q > 0, denotes the class of all measurable functions defined on U^n such that

$$||f||_{\mathcal{L}^{p,q}_{\vec{\omega},N}}^{q} = \int_{[0,1)^n} M_p^q(f,r) \prod_{j=1}^n \omega_j(r_j) dr_j < \infty, \tag{1.3}$$

and $\mathcal{A}^{p,q}_{\vec{\omega},N}$ be the intersection of $\mathcal{L}^{p,q}_{\vec{\omega},N}$ and $H(U^n)$. When p=q we denote $\mathcal{A}^{p,q}_{\vec{\omega},N}$ by $\mathcal{A}^p_{\vec{\omega},N}$. In the case p=q, these two norms are equivalent on the space $H(U^n)$, but the later one is more suitable for calculations than the first one. The result is contained in the following lemma.

Lemma 1.1. The norms $\|\cdot\|_{\mathcal{A}^p_{\vec{a}}}$ and $\|\cdot\|_{\mathcal{A}^p_{\vec{a},N}}$ are equivalent on the space $H(U^n)$.

Proof. By the polar coordinates it is easy to see that $\|f\|_{\mathcal{A}^p_{\vec{\omega}}} \leq 2^n \|f\|_{\mathcal{A}^p_{\vec{\omega},N}}$ for every $f \in H(U^n)$, moreover $\|f\|_{\mathcal{L}^p_{\vec{\omega}}} \leq 2^n \|f\|_{\mathcal{L}^p_{\vec{\omega},N}}$ for every f measurable on U^n .

Now we prove that there is a positive constant C, which is independent of f, such that

$$||f||_{\mathcal{A}^p_{\vec{z},N}} \le C||f||_{\mathcal{A}^p_{\vec{z}}},\tag{1.4}$$

for every $f \in H(U^n)$. Without loss of generality we may assume that n = 2. Let $f \in H(U^n)$, then

$$||f||_{\mathcal{A}_{\vec{w},N}^p}^p = \int_0^{1/2} \int_0^{1/2} + \int_0^{1/2} \int_{1/2}^1 + \int_{1/2}^1 \int_0^{1/2} + \int_{1/2}^1 \int_{1/2}^1 g(r_1, r_2) dr_1 dr_2, \tag{1.5}$$

where $g(r_1, r_2) = M_p^p(f, r_1, r_2)\omega_1(r_1)\omega_2(r_2)$. Now we estimate these four integrals, which we denote by I_i , i = 1, 2, 3, 4.

Since $f \in H(U^2)$ then the function f is analytic in each variable separately on U and consequently $M_p^p(f, r_1, r_2)$ is nondecreasing function in r_1 and r_2 , see, for example, [3]. Let

$$C_{\omega_i} = \int_0^{1/2} \omega_i(r_i) / \int_{1/2}^1 \omega_i(r_i), \quad i = 1, 2.$$
 (1.6)

Note that C_{ω_i} , i = 1, 2, are well defined and finite numbers since ω_i are positive integrable functions on (0,1).

Using the above mentioned facts and definitions, we have

$$I_{1} \leq M_{p}^{p}(f, 1/2, 1/2) \int_{0}^{1/2} \int_{0}^{1/2} \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2}$$

$$= C_{\omega_{1}} C_{\omega_{2}} M_{p}^{p}(f, 1/2, 1/2) \int_{1/2}^{1} \int_{1/2}^{1} \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2}$$

$$\leq C_{\omega_{1}} C_{\omega_{2}} \int_{1/2}^{1} \int_{1/2}^{1} M_{p}^{p}(f, r_{1}, r_{2}) \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2}$$

$$\leq 4 C_{\omega_{1}} C_{\omega_{2}} \int_{1/2}^{1} \int_{1/2}^{1} M_{p}^{p}(f, r_{1}, r_{2}) \omega_{1}(r_{1}) \omega_{2}(r_{2}) r_{1} r_{2} dr_{1} dr_{2},$$

$$I_{2} \leq \int_{1/2}^{1} M_{p}^{p}(f, 1/2, r_{2}) \int_{0}^{1/2} \omega_{1}(r_{1}) dr_{1} \omega_{2}(r_{2}) dr_{2}$$

$$= C_{\omega_{1}} \int_{1/2}^{1} \int_{1/2}^{1} M_{p}^{p}(f, 1/2, r_{2}) \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2}$$

$$\leq C_{\omega_{1}} \int_{1/2}^{1} \int_{1/2}^{1} M_{p}^{p}(f, r_{1}, r_{2}) \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2}$$

$$\leq 4 C_{\omega_{1}} \int_{1/2}^{1} \int_{1/2}^{1} M_{p}^{p}(f, r_{1}, r_{2}) \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2}$$

$$\leq 4 C_{\omega_{1}} \int_{1/2}^{1} \int_{1/2}^{1} M_{p}^{p}(f, r_{1}, r_{2}) \omega_{1}(r_{1}) \omega_{2}(r_{2}) r_{1} r_{2} dr_{1} dr_{2}.$$

$$(1.8)$$

Similarly

$$I_3 \le 4C_{\omega_2} \int_{1/2}^1 \int_{1/2}^1 M_p^p(f, r_1, r_2) \omega_1(r_1) \omega_2(r_2) r_1 r_2 dr_1 dr_2. \tag{1.9}$$

Finally, it is clear that

$$I_4 \le 4 \int_{1/2}^1 \int_{1/2}^1 M_p^p(f, r_1, r_2) \omega_1(r_1) \omega_2(r_2) r_1 r_2 dr_1 dr_2.$$
 (1.10)

From (1.7)–(1.10), we obtain

$$||f||_{\mathcal{A}_{\vec{a}}^{p}}^{p} \le (C_{\omega_{1}} + 1)(C_{\omega_{2}} + 1)||f||_{\mathcal{A}_{\vec{a}}^{p}}^{p}, \tag{1.11}$$

as desired.

Following [8], for a given weight ω we define the function

$$\psi(r) = \psi_{\omega}(r) \stackrel{\text{def}}{=} \frac{1}{\omega(r)} \int_{r}^{1} \omega(u) du, \quad 0 \le r < 1, \tag{1.12}$$

and we call it the *distortion function* of ω . We put $\psi(z) = \psi(|z|)$ for $z \in U$.

Definition 1.2 [8]. We say that a weight ω is *admissible* if it satisfies the following conditions:

(i) there is a positive constant $A = A(\omega)$ such that

$$\omega(r) \ge \frac{A}{1-r} \int_{r}^{1} \omega(u) du, \quad \text{for } 0 \le r < 1; \tag{1.13}$$

(ii) ω is differentiable and there is a positive constant $B = B(\omega)$ such that

$$\omega'(r) \le \frac{B}{1-r}\omega(r), \quad \text{for } 0 \le r < 1;$$
 (1.14)

(iii) for each sufficiently small positive δ there is a positive constant $C = C(\delta, \omega)$ such that

$$\sup_{0 \le r < 1} \frac{\omega(r)}{\omega(r + \delta \psi(r))} \le C. \tag{1.15}$$

Observe that (i) implies $A\psi(r) \le 1 - r$ thus for sufficiently small positive δ we have $r + \delta\psi(r) < 1$ and the quantity in the denominator of the fraction in (iii) is well defined.

For a list of examples of admissible weights, see [8, pages 660–663]. The following theorem was proved in [8].

Theorem 1.3. Suppose $1 \le p < \infty$ and ω is an admissible weight with distortion function ψ . Then

$$\int_{U} |f(z)|^{p} \omega(z) dm(z) \approx |f(0)|^{p} + \int_{U} |f'(z)|^{p} \psi(z)^{p} \omega(z) dm(z), \tag{1.16}$$

for all analytic functions f on the unit disc U, where $dm(z) = r dr d\theta/\pi$ denotes the normalized Lebesgue area measure on U.

The above means that there are finite positive constants C and C' independent of f such that the left- and right-hand sides L(f) and R(f) satisfy

$$CR(f) \le L(f) \le C'R(f)$$
 (1.17)

for all analytic f.

Some generalizations of Theorem 1.3 in many directions can be found in [10, 11]. In [5, 6, 9] was also investigated Bergman space of analytic functions with weights other than classical. Closely related results for the classical weight $\omega(r) = (1-r)^{\alpha}$, $\alpha > -1$, are presented in [1, 2, 3, 4, 7, 13].

Using a Bergman type projection $\mathbf{B}_{\alpha}: \mathcal{L}^p(dV_{\vec{\alpha}}) \to \mathcal{A}^p(dV_{\vec{\alpha}})$, in [1] the authors proved the following theorem.

THEOREM 1.4. Let $p \in [1, \infty)$, $\alpha_j > -1$, j = 1, ..., n and m be a fixed positive integer and let $\mathbf{k} = (k_1, ..., k_n) \in (\mathbf{Z}_+)^n$. Let f be a holomorphic function defined on the polydisc U^n in \mathbf{C}^n . Then for $\vec{\alpha} = (\alpha_1, ..., \alpha_n)$, $f \in \mathcal{A}^p(dV_{\vec{\alpha}})$ if and only if

$$\left[\prod_{j=1}^{n} \left(1 - |z_{j}|^{2}\right)^{k_{j}}\right] \frac{\partial^{|\mathbf{k}|} f}{\partial z_{1}^{k_{1}} \dots \partial z_{n}^{k_{n}}}(z) \in \mathcal{L}^{p}(dV_{\vec{\alpha}}) \quad \forall |\mathbf{k}| = m.$$

$$(1.18)$$

Moreover,

$$||f||_{\mathcal{A}^{p}(dV_{\vec{a}})} \approx \left(\sum_{|\mathbf{k}|=0}^{m-1} \left| \frac{\partial^{|\mathbf{k}|} f}{\partial z_{1}^{k_{1}} \cdots \partial z_{n}^{k_{n}}} (0) \right| + \sum_{|\mathbf{k}|=m} \left| \left| \left[\prod_{j=1}^{n} \left(1 - |z_{j}|^{2} \right)^{k_{j}} \right] \frac{\partial^{m} f}{\partial z_{1}^{k_{1}} \cdots \partial z_{n}^{k_{n}}} \right| \right|_{\mathcal{L}^{p}(dV_{\vec{a}})} \right). \tag{1.19}$$

In [11] among other things we proved the following theorem which generalizes Theorem 1.4.

THEOREM 1.5. Let $\mathbf{k} = (k_1, ..., k_n) \in (\mathbf{Z}_+)^n$, f be a holomorphic function defined on the polydisc U^n in \mathbf{C}^n and $\omega_j(z_j)$, j = 1, ..., n are admissible weights on the unit disk U, with distortion functions $\psi_j(z_j)$. If $f \in \mathcal{A}^p_{\vec{\omega}}$ and p > 0, then

$$\left[\prod_{j=1}^{n} \psi_{j}^{k_{j}}(z_{j})\right] \frac{\partial^{|\mathbf{k}|} f}{\partial z_{1}^{k_{1}} \cdots \partial z_{n}^{k_{n}}}(z) \in \mathcal{L}_{\vec{\omega}}^{p}. \tag{1.20}$$

Moreover, let m be a fixed positive integer. Then there is a positive constant $C = C(p, \omega_j, m, n)$ such that

$$||f||_{\mathcal{A}^{p}_{\vec{\omega}}} \ge C \left(\sum_{|\mathbf{k}|=0}^{m-1} \left| \frac{\partial^{|\mathbf{k}|} f}{\partial z_{1}^{k_{1}} \cdots \partial z_{n}^{k_{n}}} (0) \right| + \sum_{|\mathbf{k}|=m} \left| \left[\prod_{j=1}^{n} \psi_{j}^{k_{j}} (z_{j}) \right] \frac{\partial^{m} f}{\partial z_{1}^{k_{1}} \cdots \partial z_{n}^{k_{n}}} \right|_{\mathcal{L}^{p}_{\vec{\omega}}} \right). \quad (1.21)$$

In the same paper, we formulate and give a sketch of a proof of the following partially converse of Theorem 1.5.

Theorem 1.6. Let $f \in H(U^n)$ and $\omega_j(z_j)$, j = 1, ..., n are admissible weights on the unit disk U, with distortion functions $\psi_j(z_j)$. If $p \in [1, \infty)$ and for all j = 1, ..., n, $\psi_j(z_j)(\partial f/\partial z_j)$ $(z) \in \mathcal{L}^p_{\vec{o}}$, then $f \in \mathcal{A}^p_{\vec{o}}$ and there is a positive constant $C = C(p, \omega_j, n)$ such that

$$||f||_{\mathcal{A}^{p}_{\vec{\omega}}} \leq C \left(\left| f(0) \right| + \sum_{j=1}^{n} \left\| \psi_{j} \frac{\partial f}{\partial z_{j}} \right\|_{\mathcal{L}^{p}_{\vec{\omega}}} \right). \tag{1.22}$$

In communication with other specialists in this field it has turned out that the proof is more complicated than we have expected. Hence in this note we will present a clear detailed proof of Theorem 1.6. Also, we prove the following generalization of Theorem 1.6.

THEOREM 1.7. Let $f \in H(U^n)$ and $\omega_j(z_j)$, j = 1,...,n are admissible weights on the unit disk U, with distortion functions $\psi_j(z_j)$. If $p,q \in [1,\infty)$ and for all j = 1,...,n, $\psi_j(z_j)$ $(\partial f/\partial z_j)(z) \in \mathcal{L}^{p,q}_{\vec{\omega},N}$, then $f \in \mathcal{A}^{p,q}_{\vec{\omega},N}$ and there is a positive constant $C = C(p,q,\omega_j,n)$ such that

$$||f||_{\mathcal{A}^{p,q}_{\vec{\omega},N}} \le C\left(|f(0)| + \sum_{j=1}^{n} \left| \left| \psi_j \frac{\partial f}{\partial z_j} \right| \right|_{\mathcal{L}^{p,q}_{\vec{\omega},N}}\right). \tag{1.23}$$

2. An auxiliary results

In this section, we prove an auxiliary result which we use in the proof of the main result.

Lemma 2.1. Suppose $1 \le p < \infty$ and $f \in H(U^n)$. Then

$$\frac{d}{dt}M_p^p(f,tr) \le pM_p^{p-1}(f,tr)\sum_{i=1}^n r_i M_p\left(\frac{\partial f}{\partial z_i},tr\right),\tag{2.1}$$

almost everywhere.

Proof. For $f \equiv 0$ the result is obvious. If $f \not\equiv 0$, at points where f is not zero, we have

$$\frac{d}{dt}(|f(tr \cdot e^{i\theta})|^{p}) = p|f(tr \cdot e^{i\theta})|^{p-1} \frac{d}{dt}|f(tr \cdot e^{i\theta})|$$

$$\leq p|f(tr \cdot e^{i\theta})|^{p-1} \left|\frac{d}{dt}(f(tr \cdot e^{i\theta}))\right|$$

$$= p|f(tr \cdot e^{i\theta})|^{p-1}|\langle \nabla f(tr \cdot e^{i\theta}), r \cdot e^{i\theta} \rangle|$$

$$\leq p|f(tr \cdot e^{i\theta})|^{p-1} \sum_{i=1}^{n} r_{i} \left|\frac{\partial f}{\partial z_{i}}(tr \cdot e^{i\theta})\right|.$$
(2.2)

From (2.2) and by the dominated convergence theorem we obtain

$$\frac{d}{dr}M_p^p(f,tr) \le \frac{p}{(2\pi)^n} \sum_{i=1}^n r_i \int_{[0,2\pi]^n} \left| f(tr \cdot e^{i\theta}) \right|^{p-1} \left| \frac{\partial f}{\partial z_i}(tr \cdot e^{i\theta}) \right| d\theta. \tag{2.3}$$

If p = 1 the assertion is clear. If p > 1, applying in the last integral Hölder's inequality with exponents p/(p-1) and p we obtain the result.

Corollary 2.2. Suppose $p, q \in [1, \infty)$ and $f \in H(U^n)$. Then

$$\frac{d}{dt}M_p^q(f,tr) \le qM_p^{q-1}(f,tr) \sum_{i=1}^n r_i M_p \left(\frac{\partial f}{\partial z_i}, tr\right),\tag{2.4}$$

almost everywhere.

Proof. Computing $(d/dt)M_p^q(f,tr)$ and then using Lemma 2.1 we prove the corollary.

3. Proofs of the theorem

In this section, we prove the main results in this paper.

Proof of Theorem 1.6. Without loss of generality, we may assume that n = 2, and f(0,0) = 0. Also we assume that f is not constant and all integrals are finite. In order to avoid some

complicated notations we use $M_p^p(f, r_1t, r_2t)$ instead of $M_p^p(r_1t, r_2t)$. We have

$$\begin{split} \|f\|_{\mathcal{A}^{p}_{\vec{\omega},N}}^{p} &= \int_{0}^{1} \int_{0}^{1} \left(\int_{0}^{1} \frac{d}{dt} M_{p}^{p}(r_{1}t, r_{2}t) dt \right) \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2} \\ &\leq p \int_{0}^{1} \int_{0}^{1} \left(\int_{0}^{1} M_{p}^{p-1}(r_{1}t, r_{2}t) \sum_{j=1}^{2} M_{p} \left(\frac{\partial f}{\partial z_{i}}, r_{1}t, r_{2}t \right) r_{i} dt \right) \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2} \\ &\leq p \int_{0}^{1} \int_{0}^{1} \left(\int_{0}^{1} M_{p}^{p-1}(r_{1}t, r_{2}) M_{p} \left(\frac{\partial f}{\partial z_{1}}, r_{1}t, r_{2} \right) r_{1} dt \right) \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2} \\ &+ p \int_{0}^{1} \int_{0}^{1} \left(\int_{0}^{1} M_{p}^{p-1}(r_{1}, r_{2}t) M_{p} \left(\frac{\partial f}{\partial z_{2}}, r_{1}, r_{2}t \right) r_{2} dt \right) \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2} \\ &\leq p \int_{0}^{1} \int_{0}^{1} \left(\int_{0}^{r_{1}} M_{p}^{p-1}(s, r_{2}) M_{p} \left(\frac{\partial f}{\partial z_{1}}, s, r_{2} \right) ds \right) \omega_{1}(r_{1}) \omega_{2}(r_{2}) dr_{1} dr_{2} \\ &+ p \int_{0}^{1} \int_{0}^{1} \left(\int_{0}^{r_{2}} M_{p}^{p-1}(r_{1}, \tau) M_{p} \left(\frac{\partial f}{\partial z_{2}}, r_{1}, \tau \right) d\tau \right) \omega_{1}(r_{1}) d\omega_{2}(r_{2}) ds dr_{2} \\ &+ p \int_{0}^{1} \int_{0}^{1} \left(M_{p}^{p-1}(s, r_{2}) M_{p} \left(\frac{\partial f}{\partial z_{1}}, s, r_{2} \right) \int_{s}^{1} \omega_{1}(r_{1}) dr_{1} \right) \omega_{2}(r_{2}) ds dr_{2} \\ &+ p \int_{0}^{1} \int_{0}^{1} M_{p}^{p-1}(s, r_{2}) M_{p} \left(\frac{\partial f}{\partial z_{1}}, s, r_{2} \right) \psi_{1}(s) \omega_{1}(s) \omega_{2}(r_{2}) ds dr_{2} \\ &+ p \int_{0}^{1} \int_{0}^{1} M_{p}^{p-1}(s, r_{2}) M_{p} \left(\frac{\partial f}{\partial z_{1}}, s, r_{2} \right) \psi_{1}(s) \omega_{1}(s) \omega_{2}(r_{2}) ds dr_{2} \\ &+ p \int_{0}^{1} \int_{0}^{1} M_{p}^{p-1}(s, r_{2}) M_{p} \left(\frac{\partial f}{\partial z_{1}}, s, r_{2} \right) \psi_{1}(s) \omega_{1}(s) \omega_{2}(r_{2}) ds dr_{2} \\ &+ p \int_{0}^{1} \int_{0}^{1} M_{p}^{p-1}(r_{1}, \tau) M_{p} \left(\frac{\partial f}{\partial z_{2}}, r_{1}, \tau \right) \psi_{2}(\tau) \omega_{2}(\tau) \omega_{1}(r_{1}) d\tau dr_{1}. \end{split}$$

If p > 1, by Hölder inequality, we get

$$\int_{0}^{1} \int_{0}^{1} M_{p}^{p-1}(s, r_{2}) M_{p} \left(\frac{\partial f}{\partial z_{1}}, s, r_{2}\right) \psi_{1}(s) \omega_{1}(s) \omega_{2}(r_{2}) ds dr_{2}
\leq \left(\int_{0}^{1} \int_{0}^{1} M_{p}^{p}(s, r_{2}) \omega_{1}(s) \omega_{2}(r_{2}) ds dr_{2}\right)^{(p-1)/p},
\left(\int_{0}^{1} \int_{0}^{1} M_{p}^{p} \left(\frac{\partial f}{\partial z_{1}}, s, r_{2}\right) \psi_{1}^{p}(s) \omega_{1}(s) \omega_{2}(r_{2}) ds dr_{2}\right)^{1/p}
= \|f\|_{\mathcal{M}_{\tilde{\omega}, N}^{p-1}}^{p-1} \left(\int_{0}^{1} \int_{0}^{1} M_{p}^{p} \left(\frac{\partial f}{\partial z_{1}}, s, r_{2}\right) \psi_{1}^{p}(s) \omega_{1}(s) \omega_{2}(r_{2}) ds dr_{2}\right)^{1/p}.$$
(3.2)

Similarly,

$$\int_{0}^{1} \int_{0}^{1} M_{p}^{p-1}(r_{1}, \tau) M_{p} \left(\frac{\partial f}{\partial z_{2}}, r_{1}, \tau\right) \psi_{2}(\tau) \omega_{2}(\tau) \omega_{1}(r_{1}) d\tau dr_{1} \\
\leq \|f\|_{\mathcal{A}_{\omega N}^{p}}^{p-1} \left(\int_{0}^{1} \int_{0}^{1} M_{p}^{p} \left(\frac{\partial f}{\partial z_{2}}, r_{1}, \tau\right) \psi_{2}^{p}(\tau) \omega_{2}(\tau) \omega_{1}(r_{1}) d\tau dr_{1}\right)^{1/p}.$$
(3.3)

From (3.1)–(3.3) we obtain the result in this case. For p=1 the result it follows from (3.3). If f is constant the result is clear. To remove the restriction of the finiteness of the integrals we consider holomorphic functions $f_{\rho}(z) = f(\rho z)$, $\rho \in (0,1)$ and use the Monotone Convergence theorem, when $\rho \to 1$.

Open question 3.1. Does Theorem 1.6 hold in the case 0 ?

Remark 3.2. In the case when $\omega_j(z_j)$, j = 1,...,n, are the classical weights $(1 - |z_j|)^{\alpha_j}$, j = 1,...,n, a positive answer to Open question 3.1 was given in [12].

Proof of Theorem 1.7. If f(0,0) = 0, is not constant and all integrals are finite, then by Corollary 2.2, as in the proof of Theorem 1.6, we obtain

$$||f||_{\mathcal{A}_{\vec{\omega},N}^{p,q}}^{q} \leq ||f||_{\mathcal{A}_{\vec{\omega},N}^{p,q}}^{q-1} \left(\int_{0}^{1} \int_{0}^{1} M_{p}^{q} \left(\frac{\partial f}{\partial z_{1}}, s, r_{2} \right) \psi_{1}^{q}(s) \omega_{1}(s) \omega_{2}(r_{2}) ds dr_{2} \right)^{1/q} + ||f||_{\mathcal{A}_{\vec{\omega},N}^{p,q}}^{q-1} \left(\int_{0}^{1} \int_{0}^{1} M_{p}^{q} \left(\frac{\partial f}{\partial z_{2}}, r_{1}, \tau \right) \psi_{2}^{q}(\tau) \omega_{2}(\tau) \omega_{1}(r_{1}) d\tau dr_{1} \right)^{1/q},$$

$$(3.4)$$

that is,

$$||f||_{\mathcal{A}_{\vec{a},N}^{p,q}} \le \sum_{j=1}^{2} \left| \left| \psi_{j} \frac{\partial f}{\partial z_{j}} \right| \right|_{\mathcal{L}_{\vec{a},N}^{p,q}}.$$

$$(3.5)$$

The rest of the proof is similar to the proof of Theorem 1.6.

References

- [1] G. Benke and D.-C. Chang, A note on weighted Bergman spaces and the Cesáro operator, Nagoya Math. J. **159** (2000), 25–43.
- [2] D.-C. Chang and B. Q. Li, Sobolev and Lipschitz estimates for weighted Bergman projections, Nagoya Math. J. 147 (1997), 147–178.
- [3] P. L. Duren, *Theory of H^p spaces*, Pure and Applied Mathematics, vol. 38, Academic Press, New York, 1970.
- [4] T. M. Flett, *The dual of an inequality of Hardy and Littlewood and some related inequalities*, J. Math. Anal. Appl. **38** (1972), 746–765.
- [5] T. L. Kriete III and B. D. MacCluer, Composition operators on large weighted Bergman spaces, Indiana Univ. Math. J. 41 (1992), no. 3, 755–788.
- [6] P. Lin and R. Rochberg, Hankel operators on the weighted Bergman spaces with exponential type weights, Integral Equations Operator Theory 21 (1995), no. 4, 460–483.
- [7] J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of Cⁿ, Trans. Amer. Math. Soc. **328** (1991), no. 2, 619–637.
- [8] A. Siskakis, Weighted integrals of analytic functions, Acta Sci. Math. (Szeged) 66 (2000), no. 3-4, 651–664.
- [9] S. Stević, Composition operators on the generalized Bergman space, J. Indian Math. Soc. (N.S.) **69** (2002), no. 1-4, 61-64.
- [10] ______, Weighted integrals of harmonic functions, Studia Sci. Math. Hungar. **39** (2002), no. 1-2, 87–96.
- [11] ______, Weighted integrals of holomorphic functions in Cⁿ, Complex Var. Theory Appl. 47 (2002), no. 9, 821–838.

- [12] ______, Weighted integrals of holomorphic functions on the polydisc, Z. Anal. Anwendungen 23 (2004), no. 3, 577-587.
- [13] K. J. Wirths and J. Xiao, An image-area inequality for some planar holomorphic maps, Results Math. 38 (2000), no. 1-2, 172–179.

Stevo Stević: Mathematical Institute of Serbian Academy of Science, Knez Mihailova 35/I, 11000 Beograd, Serbia

E-mail addresses: sstevic@ptt.yu; sstevo@matf.bg.ac.yu