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We analyze the univalence of the solutions of the biharmonic equation. In particular,
we show that if F is a biharmonic map in the form F(z) = r2G(z), |z| < 1, where G is
harmonic, then F is starlike whenever G is starlike. In addition, when F(z) = r2G(z) +
K(z), |z| < 1, where G and K are harmonic, we show that F is locally univalent whenever
G is starlike and K is orientation preserving.

1. Introduction

A continuous complex-valued function F = u+ iv in a domain D ⊆ C is biharmonic if the
laplacian of F is harmonic. Note that �F is harmonic in D, if F satisfies the biharmonic
equation�(�F)= 0, where

�= 4
∂2

∂z∂z
. (1.1)

In any simply connected domain D, it can be shown that F has the form

F = r2G+K , z = reiθ , (1.2)

where G and K are harmonic in D. It is known [1, 2, 3] that H and G can be expressed as,

G= g1 + g2,

K = k1 + k2,
(1.3)

where g1, g2, k1, and k2 are analytic in D (for details, see [1, 2, 3]). Lewy showed, see [2, 3],
that a harmonic function W is locally univalent if Jacobian of W , JW ,

JW =
∣∣Wz

∣∣2−∣∣Wz

∣∣2 �= 0. (1.4)
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We say that a function W is orientation preserving if the

JW =
∣∣Wz

∣∣2−∣∣Wz

∣∣2
> 0. (1.5)

Note that the composition F ◦ φ of a harmonic function F with analytic function φ is
harmonic, while this is not true when F is biharmonic. Without loss of generality, we
consider the class of biharmonic mappings defined on the unit disc U .

Biharmonic functions arise in many physical situations, particularly in fluid dynamics
and elasticity problems. Most important applications of the theory of functions of a com-
plex variable were obtained in the plane theory of elasticity and in the approximate theory
of plates subject to normal loading. That is, in cases when the solutions are biharmonic
functions or functions associated with them. In linear elasticity, if the equations are for-
mulated in terms of displacements for two-dimensional problems then the introduction
of a stress function leads to a fourth-order equation of biharmonic type. For instance, the
stress function is proved to be biharmonic for an elastically isotropic crystal undergoing
phase transition, which follows spontaneous dilatation. Biharmonic functions also arise
when dealing with transverse displacements of plates and shells. The biharmonic function
can describe the deflection of a thin plate subjected to uniform loading over its surface
with fixed edges. Biharmonic functions arise in fluid dynamics, particularly in Stokes flow
problems (i.e., low-Reynolds-number flows). There is a wealth of applications for Stokes
flow such as in engineering and biological transport phenomena (for details, see [5, 6, 7]).
Fluid flow through a narrow pipe or channel, such as that used in micro-fluidics, involves
low Reynolds number. Seepage flow through cracks and pulmonary alveolar blood flow
can also be approximated by Stokes flow. Stokes flow also arises in flow through porous
media, which have been long applied by civil engineers to groundwater movement. The
industrial applications include the fabrication of microelectronic components, the effect
of surface roughness on lubrication, the design of polymer dies and the development of
peristaltic pumps for sensitive viscous materials. In natural systems, creeping flows are
important in biomedical applications and studies of animal locomotion.

We consider in Section 2 the case when F = r2G. We prove that when G maps ∂U
univalently onto a bounded Jordan curve and that F maps U onto the inside of the Jordan
curve then G is univalent inside U . In addition, we prove that F is starlike whenever G is
starlike.

In Section 3, we give sufficient conditions that make F = r2G + K locally univalent.
Some examples are given.

2. The case F = r2G

First we establish the following.

Theorem 2.1. Let D be a simply connected domain bounded by a Jordan curve. Let Ψ be
a positively oriented one to one continuous function from the boundary of U , ∂U , onto the
boundary of D, ∂D. Let G be the solution of the Dirichlet problem with respect to Ψ and F
be the corresponding biharmonic functions, given by F = r2G. If F is onto and F(z)= 0 only
when z = 0 then G is one to one and onto.
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Proof. Let a ∈ U and b = F(a). Let J denote the line segment in D, containing b, inter-
secting ∂D exactly twice and given by: αu+ βv = γ, γ ≥ 0. Let I = F−1(J). Note that a∈ I
and I intersects ∂U exactly twice.

Next, we show that I is a simple curve in U . Let

G(z)= u1(z) + iv1(z),

w(z)= αu1(z) +βv1(z).
(2.1)

Then w(z) is real harmonic in U , w(z) = γ/|z|2 for all z ∈ I , J1 = G(I) = {(u1,v1) :
αu1(z) +βv1(z)= γ/|z|2} and G−1(J1)= I .

First, note that I cannot contain an open disk, if it does then w(z) = γ/|z|2 on that
open disk. Simple calculation shows that the function γ/|z|2 is subharmonic in U\{0}.
Hence w would be subharmonic and not harmonic on that open disk (assuming that the
disk does not contain 0). This is impossible.

Second, we show that I cannot contain a loop without 0 in the inside, because if it does
then, as w is harmonic, γ/|z|2 is subharmonic and w(z) = γ/|z|2 on that loop, w(z) >
γ/|z|2 inside the loop. Consequently, F maps the loop to J and the inside of that loop to
the right of J . This is topologically impossible.

Third, note that if I loops around 0, then as the index of I around 0 is zero and the
condition F(z)= 0 only when z = 0, I must contain a loop without 0 inside. Consequently
by the second step, this is impossible.

Similarly, one can argue that I cannot contain a loop with no open inside. Hence I is a
simple curve that divides U into two components. In one component w(z) > γ/|z|2 and
in the other one, w(z) < γ/|z|2.

Rotate J counterclockwise. Since Ψ is positively oriented, the corresponding I will ro-
tate counterclockwise.

Let

k(z)=w(z) + iV(z), (2.2)

where V is the harmonic conjugate of w. Then k(z) is analytic in U and, for z ∈ I ,

Rek(z)=w(z)= γ/|z|2. (2.3)

Note that in one side of I , Rek(z) > γ/|z|2 and in the other one, Rek(z) < γ/|z|2. Then,
near a, k maps one side of I to one side of k(I) and the other to the other side. Hence
k′(z) �= 0 at z = a and

αu1x(a) +βv1x(a) �= 0 (2.4)

or

αu1y(a) +βv1y(a) �= 0. (2.5)
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Figure 2.1

Choose α = v1y(a) and β = −u1y(a). This makes (2.5) = 0, hence (2.4) �= 0 and the
determinant (the Jacobian of G) of the system is not zero. Since G is one to one on ∂U , the
degree principle implies that G is one to one in U and, in addition, G is onto (see [2]). �

The following example shows that if G is one to one, it does not follow that F is one to
one.

Example 2.2. Let G(z)= zez + 0.4 + 0.2i and F(z)= r2G(z).

By drawing contours, using the f (z) software (see Figure 2.1), we showed that in |z| <
0.8, G is one to one while F is not.

Following we show that when G is starlike then F is starlike and univalent.

Definition 2.3. We say that a biharmonic (harmonic) function is starlike on U if it is
orientation-preserving, F(0) = 0, F(z) �= 0 when z �= 0 and the curve: F(reit) is starlike
with respect to the origin for each 0 < r < 1. In other words, ∂argF(reit)/∂t = Re(zFz −
zFz/F) > 0.

Remark 2.4. Note that starlike functions are univalent in U . The starlikeness condition
implies that, for each 0 < r < 1, F is univalent on the circle |z| = r and as F(0) = 0, the
orientation-preserving condition and the degree principle imply that it is univalent on
|z| ≤ r and maps |z| < r onto the inside of the curve F(reit).

If we denote the measure of starlikeness of F by

Fst = Re
zFz − zFz

F
(2.6)

then we have the following lemma.

Lemma 2.5. Let F be a biharmonic mapping in the unit disc U . If F is of the form F = r2G,
where G is a harmonic mapping in U then

JF = 2r2|G|2Gst + r4JG. (2.7)
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Proof. Since F = r2G this implies that

Fz = zG+ r2Gz,

Fz = zG+ r2Gz.
(2.8)

Hence, it follows that

∣∣Fz∣∣2 = (zG+ r2Gz
)(
zG+ r2Gz

)= r2|G|2 + r2zGzG+ r2zGzG+ r4
∣∣Gz

∣∣2
,

∣∣Fz

∣∣2 = (zG+ r2Gz
)(
zG+ r2Gz

)= r2|G|2 + r2zGzG+ r2zGzG+ r4
∣∣Gz

∣∣2
.

(2.9)

Thus the Jacobian of F is given by

JF(z)= ∣∣Fz∣∣2−∣∣Fz

∣∣2

= r2G
(
zGz − zGz

)
+ r2G

(
zGz − zGz

)
+ r4

(∣∣Gz

∣∣2−∣∣Gz

∣∣2
)

= r2[zGGz + zGGz− zGGz − zGGz
]

+ r4
(∣∣Gz

∣∣2−∣∣Gz

∣∣2
)

= r2[2Re
(
zGGz

)− 2Re
(
zGGz

)]
+ r4

(∣∣Gz

∣∣2−∣∣Gz

∣∣2
)

= 2r2|G|2 Re
(
zGz − zGz

G

)
+ r4

(∣∣Gz

∣∣2−∣∣Gz

∣∣2
)

= 2r2|G|2Gst + r4JG.

(2.10)

�

Theorem 2.6. Let F be a biharmonic mapping in the unit discU . If F is of the form F = r2G,
where G is a starlike harmonic mapping in U then F is starlike univalent in U .

Proof. The lemma and the definition of starlikeness imply that JF(z) > 0, for all z ∈ U .
Hence F is orientation-preserving and locally univalent. Direct calculations imply that

Fst =Gst. (2.11)

Hence F is starlike in U . �

Corollary 2.7. r2 f (z) is starlike for all conformal starlike function f .

Example 2.8. It is known that the harmonic Koebe function

k0(z)= h(z) + g(z), (2.12)

where

h(z)=
(
z− 1

2
z2 +

1
6
z3
)

(1− z)−3,

g(z)=
(

1
2
z2 +

1
6
z3
)

(1− z)−3,

(2.13)
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k0

Figure 2.2

w

Figure 2.3

is starlike and hence the function r2k0 is also starlike. k0 maps the unit disk univalently
onto C minus the slit: −∞ < t <−1/6, as is shown in Figure 2.2.

Example 2.9. The following harmonic function:

w(z)= Re(1 + z)/(1− z)− 1 + iIm
(
z/(1− z)2), (2.14)

is starlike and maps onto the half-plane {z : Rez > −1}. Hence the function r2w is also
starlike. See Figure 2.3.

Remark 2.10. We do not know whether the converse of the theorem is true.

3. The general case

Theorem 3.1. Let F = r2G+K be a biharmonic mapping in the unit disc U , where G is
starlike harmonic and K is orientation preserving. If

Re
[
Kz
(
r2G

)
z

]
< Re

[
Kz
(
r2G

)
z

]
, (3.1)

then JF(z) > 0, for z �= 0 and F is locally univalent.
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Proof. Since F = r2G+K , hence

Fz = zG+ r2Gz +Kz, (3.2)

Fz = zG+ r2Gz +Kz. (3.3)

Therefore, for z �= 0,

∣∣∣∣Fz

Fz

∣∣∣∣=
∣∣∣∣G+ zGz +Kz/z

G+ zGz +Kz/z

∣∣∣∣=
∣∣∣∣1 + zGz/G+Kz/zG

1 + zGz/G+Kz/zG

∣∣∣∣. (3.4)

Let

a= zGz

G
, b = Kz

zG
, c = zGz

G
, d = Kz

zG
. (3.5)

Then (3.4) becomes

∣∣∣∣Fz

Fz

∣∣∣∣= |1 + a+ b|2
|1 + c+d|2 . (3.6)

Note that,

|1 + a+ b|2 = (1 + a+ b)
(
1 + a+ b

)
= 1 + 2Re(a) + 2Re(b) + 2Re

(
ab
)

+ |a|2 + |b|2.
(3.7)

Since G is starlike univalent harmonic mapping and K is an orientation preserving
mapping, it follows that

Rea= Re
(
zGz

G

)
< Re

(
zGz

G

)
= Rec (3.8)

and since |Gz| < |Gz| and |Kz| < |Kz|,

|a| =
∣∣∣∣zGz

G

∣∣∣∣ <
∣∣∣∣zGz

G

∣∣∣∣= |c|, |b| =
∣∣∣∣Kz

zG

∣∣∣∣≤
∣∣∣∣Kz

zG

∣∣∣∣= |d|. (3.9)
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We have

2Reb+ 2Re(ab)= 2Reb+ 2Re(ab)= 2Reb(1 + a),

b(1 + a)= Kz

zG

(
1 +

zGz

G

)
,

d(1 + c)= Kz

zG

(
1 +

zGz

G

)
.

(3.10)

Therefore,

b(1 + a)−d(1 + c)= Kz

zG

(
1 +

zGz

G

)
− Kz

zG

(
1 +

zGz

G

)

= Kz

zG
− Kz

zG
+
KzGz

|G|2 −
KzGz

|G|2

= zGKz− zGKz

r2|G|2 +
r2KzGz− r2KzGz

r2|G|2

= 1
r2|G|2

[
Kz
(
zG+ r2Gz

)−Kz
(
zG+ r2Gz

)]

= 1
r2|G|2

[
Kz(r2G

)
z −Kz

(
r2G

)
z

]
.

(3.11)

Hence, it follows from condition (3.1) that Re[b(1 + a)−d(1 + c)] < 0, consequently,

|1 + a+ b|2 > |1 + c+d|2 (3.12)

and the result follows. �

Remark 3.2. Consider the functions

F1(z)= r2z+ z+ z/2= r2G1(z) +K1(z),

F2(z)= r2z

1− z
+ z+ z/2= r2G2(z) +K2(z).

(3.13)

Direct calculations show that F1(z) and F(z) = F2(0.8z) satisfy all conditions of the
theorem and in particular, condition (3.1).
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Figure 3.1

Remark 3.3. The theorem may not be true when G is not starlike. Here is an example:
choose

G(z)= 0.3z2 + z+ 1,

F(z)= r2G(z).
(3.14)

G is orientation preserving and univalent in U . Suppose to the contrary that there are
z1 and z2 in U , z1 �= z2 and G(z1) = G(z2) then it follows that |z1 + z2| = 1/.3|(z1− z2)/
(z1− z2)| > 3.3, impossible. However, it was shown, using Maple, that the equation

JF(z)= ∣∣1.3z3 + 2r2
∣∣2−∣∣0.9r2z+ z2 + z

∣∣2 = 0 (3.15)

has infinitely many zeros with graph as shown in Figure 3.1.
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