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Using inequalities for a certain function appearing in the half-linear version of Picone’s
identity, we show that oscillatory properties of the half-linear second-order differential
equation (r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) = |x|p−2x, p > 1, can be investigated via os-
cillatory properties of a certain associated second-order linear differential equation. This
linear equation plays the role of a Sturmian majorant, in a certain sense, if p ≥ 2, and the
role of a minorant if p ∈ (1,2].

1. Introduction

In this paper, we deal with oscillatory properties of the half-linear second-order differen-
tial equation

(
r(t)Φ(x′)

)′
+ c(t)Φ(x)= 0, Φ(x)= |x|p−2x, p > 1. (1.1)

In the recent years, considerable similarity between oscillatory properties of (1.1) and its
special case, the linear Sturm-Liouville equation

(
r(t)x′

)′
+ c(t)x = 0, (1.2)

has been found, see, for example, [1] and the references given therein. On the other hand,
some natural differences were pointed out, mostly caused by the fact that the solution
space of (1.1) has only one half of the properties which characterize linearity, namely ho-
mogeneity, but generally not additivity. This fact is also a motivation for the terminology
half-linear equation.

One of the important differences between (1.1) and (1.2) is missing transformation
theory for half-linear equations. More precisely, the transformation x = h(t)y, where h
is a differentiable function such that rh′ is also differentiable, applied to (1.2), gives the
following (linear) identity:

h(t)
[(
r(t)x′

)′
+ c(t)x

]= (R(t)y′
)′

+C(t)y, (1.3)
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where

R(t)= h2(t)r(t), C(t)= h(t)
[(
r(t)h′(t)

)′
+ c(t)h(t)

]
. (1.4)

In particular, if x is a solution of (1.2), y is a solution of the equation

(
R(t)y′

)′
+C(t)y = 0. (1.5)

Identity (1.3) can be verified by a direct differentiation and one can easily find that the
important role is played by the linearity of the differential operator (r(t)x′)′. Since the
operator (r(t)Φ(x′))′ is no longer linear, the transformation (1.3) has no immediate half-
linear extension.

The transformation formula (1.3) for linear equation (1.2) is used in many oscillation
criteria for this equation, with the following idea. Equation (1.2) is transformed into an
“easier” equation (1.5), oscillatory properties of the easier equation (1.5) are studied and
then the obtained results are “translated” back to original equation (1.2). The missing
half-linear extension of (1.3) excludes the possibility to study (1.1) using this method.

In this paper we try, in a certain sense, to eliminate this disadvantage of the qualitative
theory of (1.1). We elaborate a method which enables to compare oscillatory properties
of (1.1) with oscillatory properties of a certain associated linear equation of the form
(1.2) and then to use the results of the deeply developed linear oscillation theory in the
investigation of (1.1). If p = 2 in (1.1), this “certain associated linear equation” is just
(1.5), so our method can be regarded as an extension of the linear transformation method
to half-linear equations (1.1). The linearization method which we establish is based on
the inequalities for the function P which appears in the half-linear Picone identity (see
Lemma 2.1 below) and on inequalities for solutions of Riccati equations associated with
(1.2).

The idea to investigate half-linear equations via associated linear equations has been
introduced in the paper [5], where the case r(t) ≡ 1 in (1.1) considered, (1.1) is viewed
as a perturbation of the half-linear Euler-type differential and then it is compared with
some associated linear differential equation. Here we extend this idea to the general half-
linear equation (1.1). This equation is viewed as a perturbation of a half-linear equation
of the same form (not necessarily of Euler-type) and then compared with an associated
linear equation. Similarly to results of [5], we find considerable difference between the
case p ≥ 2 and 1 < p ≤ 2 in (1.1).

2. Preliminaries

In this section, we recall some basic facts of the half-linear oscillation theory. Recall that
(1.1) is said to be disconjugate in an interval I ⊂ R if every nontrivial solution of this
equation has at most one zero point in I . Equation (1.1) is said to be nonoscillatory if
there exists T ∈R such that this equation is disconjugate on [T ,∞), in the opposite case
(1.1) is said to be oscillatory. This definition of oscillation and nonoscillation of (1.1) is
the same as in the linear case since it is known, see, for example, [2] or [4], that the linear
Sturmian theory extends verbatim to (1.1), in particular, all solutions of this equations are
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either oscillatory, that is, have infinitely many zeros tending to ∞, or are nonoscillatory,
they have only a finite number of zeros on each interval of the form [T ,∞).

If x is a solution of (1.1) such that x(t) �= 0 in some interval I ⊂ R, then the function
w = rΦ(x′)/Φ(x) is a solution of the generalized Riccati equation

w′ + c(t) + (p− 1)r1−q(t)|w|q = 0, (2.1)

where q is the conjugate number of p, that is, 1/p+ 1/q = 1.
An important role in our investigation is played by half-linear Picone’s identity. We

present this identity in a modified form here, the general formulation can be found in [7].

Lemma 2.1. Let w be a solution of (2.1) which exists on some interval I ⊂R. Then for every
function ξ which is differentiable in this interval

r(t)|ξ′|p− c(t)|ξ|p = [w(t)|ξ|p]′ + pr1−q(t)P
(
rq−1ξ′,w(t)Φ(ξ)

)
, (2.2)

where

P(u,v)= |u|
p

p
−uv+

|v|q
q
≥ 0 (2.3)

with equality if and only if v =Φ(u).

In the following lemma, the function P(u,v) is compared with a certain associated
quadratic function. The proof of inequalities given in this lemma can be found, for ex-
ample, in [3].

Lemma 2.2. We have the following inequalities for u,v ∈R, u �= 0:

P(u,v)≤ 1
2
|u|2−p(v−Φ(u)

)2
, p ≥ 2, (2.4)

P(u,v)≥ 1
2
|u|2−p(v−Φ(u)

)2
, p ∈ (1,2]. (2.5)

We will also need the following inequalities for solutions of a pair of Riccati equations
associated with (1.1), for the proof, which follows from a general statement for solutions
of differential inequalities, we refer to [6].

Lemma 2.3. Consider a pair of half-linear differential equations (1.1) and

(
R(t)Φ(y′)

)′
+C(t)Φ(y)= 0, (2.6)

where the functions R,C satisfy the same assumptions as r and c. Suppose that (2.6) is a
Sturmian majorant of (1.1) in an interval I ⊂ R, that is, 0 < R(t) ≤ r(t), c(t) ≤ C(t) for
t ∈ I , and suppose that Riccati equation associated with (2.6)

v′ +C(t) + (p− 1)R1−q(t)|v|q = 0, (2.7)
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has a solution v which exists on the whole interval I . If w is a solution of the Riccati equation
(2.1) associated with (1.1), such that w(t0)= v(t0) for some t0 ∈ I , then w also exists on the
whole interval I . Moreover, w(t)≥ v(t) for t ≥ t0 and w(t)≤ v(t) for t ≤ t0.

We finish this section with basic properties of “half-linear harmonic oscillator” equa-
tion as presented in [4]. Consider the equation(

Φ(x′)
)′

+ (p− 1)Φ(x)= 0 (2.8)

and let

πp = 2π
p sin(π/p)

(2.9)

is the “half-linear π.” Further, denote by sinp t the solution of (2.8) given by the initial
condition x(0) = 0, x′(0) = 1. This solution has many of the properties of the classical
sine function. In particular, it is the odd 2πp periodic function satisfying sinp t > 0 for
t ∈ (0,πp), sinp πp = 0, (sinp t)′ > 0 for t ∈ (0,πp/2), and (sinp t)′ < 0 for t ∈ (πp/2,πp).
We also denote cosp t = (sinp t)′.

3. Linearization method

Together with (1.1) we consider the equation of the same form(
r(t)Φ(x′)

)′
+ c̃(t)Φ(x)= 0, (3.1)

this equation is supposed to be disconjugate in an interval I ⊂R and let h be its solution
such that h(t) > 0 for t ∈ I . Moreover, we will suppose that h′(t) �= 0 in this interval. The
Picone identity for (3.1) and the associated Riccati equation reads as follows:

r(t)|ξ′|p− c̃(t)|ξ|p = [wh(t)|ξ|p]′ + pr1−q(t)P
(
rq−1ξ′,wh(t)Φ(ξ)

)
, (3.2)

where

wh(t)= r(t)Φ(h′)
Φ(h)

. (3.3)

We denote

R(t) := r(t)h2(t)
∣∣h′(t)∣∣p−2

, C(t) := (c(t)− c̃(t)
)
hp(t) (3.4)

and consider the linear Sturm-Liouville equation

(
R(t)y′

)′
+
p

2
C(t)y = 0. (3.5)

The Riccati equation associated with this linear equation (related by the substitution u=
2R(t)y′/py) is

u′ +C(t) +
p

2
u2

R(t)
= 0. (3.6)
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The first of our main results reads as follows.

Theorem 3.1. Suppose that p ≥ 2 and that linear equation (3.5) is disconjugate in an in-
terval I . Then half-linear equation (1.1) is also disconjugate in this interval.

Proof. Disconjugacy of (3.5) implies the existence of a solution u of (3.6) on interval
I . Fix a t0 ∈ I and consider the solution of (2.1) satisfying the initial condition w(t0) =
h−p(t0)u(t0) +wh(t0), where wh is given by (3.3). We will show that this solution exists on
the whole interval I . This then implies the required result—disconjugacy of (1.1) on I .

Substituting ξ = h in (3.2) and using the fact that P(rq−1h′,whΦ(h))= 0, we get

r(t)|h′|p− c̃(t)hp = [wh(t)hp
]′
. (3.7)

Subtracting this equation from (2.2) with ξ = h and using the identity

P
(
r(t)h′,w(t)Φ(h)

)= hp(t)P
(
Φq
(
wh
)
,w
)
, Φq(s)= |s|q−2s, (3.8)

we obtain

−(c(t)− c̃(t)
)
hp(t)= [(w(t)−wh(t)

)
hp(t)

]′
+ pr1−q(t)hp(t)P

(
Φq
(
wh
)
,w
)
. (3.9)

Further, using inequality (2.4) of Lemma 2.2, we have

pr1−qhpP
(
Φq
(
wh
)
,w
)≤ p

2
r1−qhp

∣∣∣∣rq−1 h
′

h

∣∣∣∣2−p(
w−wh

)2

= p

2
r1−q+(q−1)(2−p)|h′|2−php−2+p−2p[hp

(
w−wh

)]2

= p

2r|h′|p−2h2

[
hp
(
w−wh

)]2
.

(3.10)

Hence, if we denote v = hp(w−wh), using notation (3.4), we see that v satisfies the in-
equality

v′ +C(t) +
p

2
v2

R(t)
≥ 0. (3.11)

Denote C̃(t) :=−v′ − (p/2)(v2/R). Then v′ + C̃(t) + (p/2)(v2/R)= 0 andC(t)− C̃(t)≥
0 for t ∈ I , that is, (3.5) is a majorant of the equation

(
R(t)y′

)′
+
p

2
C̃(t)y = 0. (3.12)

Since v(t0)= hp(t0)(w(t0)−wh(t0))= u(t0), by Lemma 2.3 (which covers also the linear
case treated here) the function v, which is a solution of the Riccati equation associated
with (3.12) (again by the substitution v = 2Ry′/py)

v′ + C̃(t) +
p

2
v2

R(t)
= 0, (3.13)
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exists on the whole interval I . This means that w = h−pv +wh exists on this interval as
well, and hence (1.1) is disconjugate on I . �

Theorem 3.2. Suppose that 1 < p ≤ 2 and that half-linear equation (1.1) is disconjugate in
an interval I . Then linear equation (3.5) is also disconjugate in I .

Proof. We proceed similarly as in the previous proof. Disconjugacy of (1.1) implies the
existence of a solution w of the associated Riccati equation (2.1) which is defined in the
whole interval I . The function v = hp(w−wh) satisfies (3.9). Now, since p ∈ (1,2], we
have by Lemma 2.2

v′ +C(t) +
p

2
v2

R(t)
≤ 0. (3.14)

We again denote C̃ = −v′ − (p/2)(v2/R). Then C̃(t) ≥ C(t), that is, (3.12) is a majorant
of (3.5) and v satisfies (3.13). Hence the solution u of (3.6) satisfying the same initial
condition as v at some t0 ∈ I exists on the whole interval I by Lemma 2.3 and this means
that (3.5) is also disconjugate on I . �

As an immediate consequence of the previous two theorems we have the following
statements.

Corollary 3.3. The following statements hold.
(i) Let 1 < p ≤ 2. If linear equation (3.5) is not disconjugate in an interval I , then (1.1) is

also not disconjugate in this interval.
(ii) Let p ≥ 2. If half-linear equation (1.1) is not disconjugate on I , then linear equation

(3.5) is not disconjugate in I as well.

Remark 3.4. (i) Roughly speaking, if p ≥ 2, the linear equation (3.5) is a Sturmian majo-
rant equation of (1.1), in a certain sense. For p ∈ (1,2], the majorant equation to (3.5) is
half-linear equation (1.1).

(ii) If p = 2, that is, (1.1) reduces to the linear equation (1.2), then (3.5) reduces to the
equation

[
r(t)h2(t)y′

]′
+h2(t)

[
c(t)− c̃(t)

]
y = 0 (3.15)

and this is just the equation which results from (1.2) upon the transformation x = h(t)y,
where h is a solution of (3.1). From this point of view, Theorems 3.1, 3.2 can be regarded
as an extension of the linear transformation method to half-linear equations.

(iii) Elbert and Schneider [5] considered the equation

(
Φ(x′)

)′
+ c(t)Φ(x)= 0 (3.16)

as a perturbation of the Euler-type half-linear differential equation

(
Φ(x′)

)′
+
γp
tp
Φ(x)= 0, γp =

(
p− 1
p

)p

(3.17)
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and oscillatory properties of (3.16) are related to the oscillatory properties of the linear
differential equation

(
t y′
)′

+
1
2

(
p

p− 1

)p−1

tp−1(c(t)− γpt
−p)y = 0. (3.18)

More precisely, under the assumption that
∫∞(c(t)− γpt−p)tp−1dt is convergent and

∫∞
t

(
c(s)− γps

−p)sp−1ds≥ 0 for large t, (3.19)

it is proved: (i) if p > 2, then nonoscillation of (3.18) implies nonoscillation of (3.16);
(ii) if p ∈ (1,2), then nonoscillation of (3.16) implies nonoscillation of (3.18). If we sub-
stitute r ≡ 1, c̃(t) = γpt−p, h(t) = t(p−1)/p in Theorems 3.1, 3.2, oscillatory properties of
(3.16) are related to oscillatory properties of the linear equation

(
t y′
)′

+
p

2

(
p

p− 1

)p−2

tp−1(c(t)− γpt
−p)y = 0. (3.20)

The constant (p/2)(p/(p− 1))p−2 in (3.20) is worse than the corresponding constant in
(3.18) (it is (p− 1)-times bigger). The explanation of the fact that the constant in [5]
is better is the following. In the proof of main results of that paper, a modified version
of Lemma 2.2 has been used. In this modified version, the variables u,v are restricted to
the region 0 ≤ v ≤ Φ(u) and under this restriction the constant p/2 in (2.4), (2.5) can
be replaced by a better constant (q− 1)/2. Note that this restriction on u,v is enabled
by additional assumption (3.19), see [5] for details. However, if no additional restriction
on u,v is available, the constant p/2 in Lemma 2.2 is exact since (2.4), (2.5) reduce to
equalities if v =−Φ(u).

4. Applications

Now we offer some applications of the linearization method established in the previous
section. These applications are only a very limited sample of possibilities to use the results
of linear oscillation theory when investigating (1.1), and are of rather straightforward
character. More sophisticated applications, including looking for additional conditions
under which linear equation (3.5) and half-linear equation (1.1) have the same oscillatory
nature, regardless whether 1 < p ≤ 2 or p ≥ 2, is a subject of the present investigation.

As stated in Corollary 3.3, in case p ∈ (1,2], any conjugacy or oscillation criterion
for (3.5) can be applied also to (1.1), and if p ≥ 2, any disconjugacy and nonoscillation
criterion for (3.5) can be used to study disconjugacy and nonoscillation of (1.1).

We start with applications which are related to the results presented in [10], where
(3.16) is viewed as a perturbation of the one-term equation (Φ(x′))′ = 0, this approach
corresponds to the special case c̃(t) ≡ 0 in the previous section. Recall that we suppose
that (3.1) possesses a solution h such that h(t) > 0 and h′(t) �= 0 in the interval where this
equation and (1.1) are considered.
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Theorem 4.1. Let 1 < p ≤ 2 and c(t)≥ c̃(t) for large t, say t ∈ [t0,∞). Suppose that there
exist t1, t2 such that t0 < t1 < t2 and

[∫ t1

t0
r(t)

∣∣h′(t)∣∣p−2
h2(t)dt

]−1

<
p

2

∫ t2

t1

[
c(t)− c̃(t)

]
hp(t)dt. (4.1)

Then the solution x of (1.1) given by the initial condition x(t0) = 0, x′(t0) = 1 has at least
one zero in (t0,∞).

Proof. Consider (3.5). The transformation X(s)= y(t), s= ∫ tt0 R−1(τ)dτ, transforms this
equation into the equation

d2

ds2
X +

p

2
R
(
t(s)
)
C
(
t(s)
)
X = 0, (4.2)

where R, C are given by (1.4), t = t(s) being the inverse function of s= s(t). Denote s1 =∫ t1
t0 R

−1(τ)dτ, s2 =
∫ t2
t0 R

−1(τ)dτ. We have

∫ s2

s1

C
(
t(s)
)
R
(
t(s)
)
ds=

∫ t2

t1
C(t)dt =

∫ t2

t1

[
c(t)− c̃(t)

]
hp(t)dt, (4.3)

hence (4.1) can be written in the form

1
s1

<
p

2

∫ s2

s1

C
(
t(s)
)
R
(
t(s)
)
ds. (4.4)

Now consider the solution X of (4.2) given by the initial condition X(0)= 0, X ′(0)= 1.
Then (4.4) and [12, Theorem 1] imply that this solution has a zero in (0,∞) and this
means that the solution y of (3.5) given by y(t0)= 0, y′(t0)= 1 has a zero in (t0,∞). Now,
by Corollary 3.3(i), the solution of (1.1) given by x(t0)= 0, x′(t0)= 1 has a zero in (t0,∞)
as well. �

The existence of a pair or conjugate points relative to (1.1) in a given interval (the
previous theorem gives a sufficient condition for the existence of such a pair of points)
play an important role in the investigation positivity of the p-degree functional

�0(y;a,b)=
∫ b

a

{
r(t)|y′|p− c(t)|y|p}dt (4.5)

over the class of C1 functions satisfying y(a)= 0= y(b), see [8, 9]. If we consider a more
general functional

�(y;a,b)= γ
∣∣y(a)

∣∣p + �0(y;a,b), (4.6)

where γ is a real constant, over the class of functions satisfying only one-side restriction
y(b)= 0, the positivity of � can be characterized via nonexistence of a zero point of the
solution of (1.1) given by the initial condition x(a)= 1, r(a)Φ(x′(a))= γ. The following
statement deals with a problem of this kind.



O. Došlý and S. Peña 543

Theorem 4.2. Suppose that c(t) > c̃(t) for t ∈ (t0,∞) and there exist t1, t2 ∈ [t0,∞), t1 < t2,
such that

p

2

∫ t1

t0

[
c(t)− c̃(t)

]
hp(t)dt >

(∫ t2

t1

dt

r(t)h2(t)
∣∣h′(t)∣∣p−2

)−1

. (4.7)

Then the solution x of (1.1) given by the initial condition

x
(
t0
)= 1, x′

(
t0
)=wh

(
t0
)
, (4.8)

where wh is given by (3.3), has a zero in (t0, t2].

Proof. Similarly as in the previous proof, the transformation of independent variable
s = ∫ tt0 R−1(τ)dτ, transforms this equation into (4.2). Denoting s1 =

∫ t1
t0 R

−1(t)dt, s2 =∫ t2
t1 R

−1(t)dt, similarly as in the previous proof, inequality (4.7) can he written in the form

1
s2

<
p

2

∫ s1

s0

C
(
t(s)
)
R
(
t(s)
)
ds. (4.9)

Now consider the solution X of (4.2) given by the initial condition X(0)= 1, X ′(0)= 0.
Then (4.9) and [12, Theorem 4] imply that this solution has a zero in [0, s1 + s2) and this
means that the solution y of (3.5) given by y(t0) = 1, y′(t0) = 0 has a zero in (t0, t2) as
well. Let u(t)= 2R(t)y′/py, then u is a solution of (3.6) and u(t0)= 0, u(t3−)=−∞ for
some t3 ∈ (t0, t2) (where t3 is the zero of y). Let v(t) = h−pu + wh, since 1 < p ≤ 2, by
Lemma 2.2, we have

0= u′ +C(t) +
p

2
u2

R(t)
≤ u′ +C(t) + pr1−q(t)hp(t)P

(
Φq
(
wh
)
,v
)
. (4.10)

and v(t0)= wh(t0)= r(t0)Φ(h′(t0))/Φ(h(t0)). Substituting for v in (4.10), we get (after a
short computation)

v′ + c(t) + (p− 1)r1−q(t)|v|q ≥ 0. (4.11)

Denote C̃ =−v′ − (p− 1)r1−q|v|q. Then

v′ + C̃(t) + (p− 1)r1−q(t)|v|q = 0 (4.12)

and C̃(t)≤ c(t) for t ∈ [t0, t3). Consider the solution w of (2.1) given by the initial condi-
tion w(t0)= v(t0)=wh(t0). By Lemma 2.3 w(t)≤ v(t) for t ≥ t0, that is, w(t4−)=−∞ for
some t4 ∈ (t0, t3] which means that the solution of (1.1) given by x(t0)= 0, x′(t0)=wh(t0)
has a zero at t4 ∈ (t0, t2). �

Now we turn our attention to the case p ≥ 2. In this case, disconjugacy of (3.5) in a
given interval implies the same property of (1.1). The classical linear Lyapunov criterion
states that (1.2) is disconjugate in [a,b] provided∫ b

a
c+(t)dt <

4∫ b
a r−1(t)dt

, (4.13)
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where c+ =max{0,c}. This criterion has been extended to (1.1) in several papers, see, for
example, [4, 13], and states that (1.1) is disconjugate in [a,b] if

∫ b

a
c+(t)dt <

2p(∫ b
a r

1−q(t)dt
)p−1 . (4.14)

In the previous inequality, (1.1) is viewed as a perturbation of the one-term equation
(r(t)Φ(x′))′ = 0. The below given corollary deals with the case when (1.1) is viewed as a
perturbation of disconjugate equation (3.1). The first part of the statement follows im-
mediately from Theorem 3.1 and (4.13). The second part is the application of the first
one to the case when [a,b] = [0,πp/2], where πp is given by (2.9), and c̃(t) = ((p− 1−
δ)/(p − 1))1/p with 0 < δ < p − 1. In the third part, we consider (3.16) as a perturba-
tion of Euler equation (3.17) and we apply (4.13) to (3.5) with C(t) = (c(t)− c̃(t))tp−1,

R(t)= ((p− 1)/p
)p−2

t−1.

Corollary 4.3. Let p ≥ 2.
(i) Suppose that

p

2

∫ b

a

(
c(t)− c̃(t)

)
+h

p(t) <
4∫ b

a r(t)h2(t)
∣∣h′(t)∣∣p−2

dt
, (4.15)

then (1.1) is disconjugate on [a,b].
(ii) Suppose that there exists 0 < δ < p− 1 and 0 < β < (1−αp)(πp/2), where αp = ((p−

1− δ)/(p− 1))1/p. If

p

2

∫ πp/2

0
C(t)dt <

4∫ πp/2
0 R−1(t)dt

, (4.16)

where

R(t)=
(
p− 1− δ

p− 1

)(p−2)/p

sin2
p

(
αpt+β

)
cos

p−2
p
(
αpt+β

)
,

C(t)=
[
c(t)−

(
p− 1− δ

p− 1

)1/p]
sin

p
p
(
αpt+β

)
,

(4.17)

then (3.16) is disconjugate in [0,πp/2].
(iii) Suppose that

lg
b

a

∫ b

a

(
c(t)− γp

tp

)
tp−1dt <

8
p

(
p− 1
p

)p−2

, (4.18)

then (3.16) is disconjugate in [a,b]⊂ (0,∞).

Remark 4.4. Throughout the paper, the function h is a solution of (3.1). In the recent
paper [11] oscillatory properties of (3.16) are investigated and this equation is viewed
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as a perturbation of (3.17). In the oscillation criteria of that paper, the function h(t) =
t(p−1)/p lg2/p t appears, which is not a solution of (3.17), but it only close to a solution of
this equation, in a certain sense. This suggest another idea for the next investigation, to
formulate the results of our paper in the situation when the function h which appears in
(3.4) is not a solution of (3.1) but it close to it, in a certain sense. This problem is also a
subject of the present investigation.
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