ON SOME BOUNDARY VALUE PROBLEMS FOR
 A CLASS OF HYPERBOLIC SYSTEMS OF SECOND ORDER IN CONIC DOMAINS

S. KHARIBEGASHVILI

Received 16 December 2003

For one class of hyperbolic systems of second order, we consider multidimensional versions of the Darboux problem in conic domains. A priori estimates of solutions of these problems are obtained. The existence of a solution of the Darboux problems is proved under the supplementary conditions imposed on the coefficients of the system, when the data support of the problem is of temporary type.

1. Statement of the problem

In the Euclidean space \mathbb{R}^{n+1} of the variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and t we consider a system of linear differential equations of the kind

$$
\begin{equation*}
L u=u_{t t}-\sum_{i, j=1}^{n} A_{i j} u_{x_{i} x_{j}}+\sum_{i=1}^{n} B_{i} u_{x_{i}}+C u=F, \tag{1.1}
\end{equation*}
$$

where $A_{i j}\left(A_{i j}=A_{j i}\right), B_{i}$, and C are given real $(m \times m)$-matrices, F is a given and u is an unknown m-dimensional real vector, $n \geq 2, m>1$.

Below, the matrices $A_{i j}$ will be assumed to be symmetric and constant, and for any m-dimensional real vectors $\eta_{i}, i=1, \ldots, n$, we have the inequality

$$
\begin{equation*}
\sum_{i, j=1}^{n} A_{i j} \eta_{i} \eta_{j} \geq c_{0} \sum_{i=1}^{n}\left|\eta_{i}\right|^{2}, \quad c_{0}=\text { const }>0 \tag{1.2}
\end{equation*}
$$

It can be easily verified that the system (1.1) by virtue of the condition (1.2) is hyperbolic.

Let D be the conic domain $\left\{(x, t) \in \mathbb{R}^{n+1}:|x| g(x /|x|)<t<+\infty\right\}$ lying in the half-space $t>0$, and bounded by the conic manifold $S=\left\{(x, t) \in \mathbb{R}^{n+1}: t=|x| g(x /|x|)\right\}$, where g is an entirely definite, positive, continuous, piecewise smooth function given on the unit sphere of the space \mathbb{R}^{n}. For $\tau>0$, by $D_{\tau}:=\left\{(x, t) \in \mathbb{R}^{n+1}:|x| g(x /|x|)<t<\tau\right\}$ we denote the domain lying in the half-space $t>0$, bounded by the cone S and the hyperplane $t=\tau$.

Let $S_{0}=\partial D_{\tau_{0}} \cap S$ be the conic portion of the boundary of $D_{\tau_{0}}$ for some $\tau_{0}>0$. Suppose that $S_{1}, \ldots, S_{k_{1}}, S_{k_{1}+1}, \ldots, S_{k_{1}+k_{2}}$ are nonintersecting smooth conic open hypersurfaces, where $S_{1}, \ldots, S_{k_{1}}$ are the characteristic manifolds of the system (1.1), and $S_{0}=\bigcup_{i=1}^{k_{1}+k_{2}} \bar{S}_{i}$, where \bar{S}_{i} is the closure of S_{i}.

Consider the following boundary value problem: find in the domain $D_{\tau_{0}}$ a solution $u(x, t)$ of the system (1.1) satisfying the conditions

$$
\begin{gather*}
\left.u\right|_{S_{0}}=f_{0} \tag{1.3}\\
\Gamma^{i} u_{t} \mid S_{i}=f_{i}, \quad i=1, \ldots, k_{1}+k_{2} \tag{1.4}
\end{gather*}
$$

where $f_{i}, i=0,1, \ldots, k_{1}+k_{2}$, are given real \varkappa_{i}-dimensional vectors, $\Gamma^{i}, i=1, \ldots, k_{1}+k_{2}$, are given constant $\left(\varkappa_{i} \times m\right)$-matrices with $\varkappa_{0}=m, 0 \leq \varkappa_{i} \leq m, i=1, \ldots, k_{1}+k_{2}$. Here, the number $\varkappa_{i}, 1 \leq i \leq m$, shows to what extent the part S_{i} of the boundary $\partial D_{\tau_{0}}$ is occupied; in particular, $\varkappa_{i}=0$ denotes that the corresponding part S_{i} in the boundary condition (1.4) is completely free from the boundary conditions. Below we will see that for the problem (1.1), (1.3), (1.4) to be correct, we must choose the number \varkappa_{i} in a well-defined way, depending on the geometric properties of the hypersurface S_{i}.

It will be assumed that the elements of the matrices B_{i} and C in the system (1.1) are bounded, measurable functions in the domain $D_{\tau_{0}}$, and the right-hand side of that system $F \in L_{2}\left(D_{\tau_{0}}\right)$.

Note that a particular case of the problem (1.1), (1.3), (1.4) is the Cauchy characteristic problem (or the Goursat problem with data support on a characteristic conoid) [$7,9,18,24]$ and also multidimensional analogues of the first and the second Darboux problems $[1,2,5,13,14,15,21,22,23,25]$. In the case of a second-order hyperbolic system with the same principal part the question on the unique solvability of Goursat problem with data on a characteristic conoid has been investigated in [6]. In [3, 4] we can find general statement of characteristic problems for second-order hyperbolic systems, as well as examples of systems for which the corresponding homogeneous characteristic problem has nontrivial solutions (a finite set of linearly independent solutions in one cases and an infinite set of these solutions in other cases). The works [11, 12] are worth noticing in which the problem (1.1), (1.3) is considered for the case when the conic hypersurface S_{0} is of temporary type. The same problem in a dihedral angle of temporary type has been considered in [16].

2. The methods of selecting the numbers \varkappa_{i} and matrices Γ^{i} in the boundary conditions (1.4), depending on geometric properties of S_{i}

By virtue of the condition (1.2), the symmetric matrix $Q\left(\xi^{\prime}\right)=\sum_{i, j=1}^{n} A_{i j} \xi_{i} \xi_{j}, \xi^{\prime}=\left(\xi_{1}, \ldots\right.$, $\left.\xi_{n}\right) \in \mathbb{R}^{n} \backslash\{(0, \ldots, 0)\}$ is positive definite. Therefore there exists an orthogonal matrix $T=T\left(\xi^{\prime}\right)$ such that the matrix $T^{-1}\left(\xi^{\prime}\right) Q\left(\xi^{\prime}\right) T\left(\xi^{\prime}\right)$ is diagonal, and its elements μ_{1}, \ldots, μ_{m} on the diagonal are positive, that is, $\mu_{i}=\widetilde{\lambda}_{i}^{2}\left(\xi^{\prime}\right)>0, \tilde{\lambda}_{i}>0, i=1, \ldots, m$. Note that without restriction of generality we may assume that $\tilde{\lambda}_{m}\left(\xi^{\prime}\right) \geq \cdots \geq \tilde{\lambda}_{1}\left(\xi^{\prime}\right)>0 \forall \xi^{\prime} \in \mathbb{R}^{n} \backslash$ $\{(0, \ldots, 0)\}$. Below it will be assumed that the multiplicities $\ell_{1}, \ldots, \ell_{s}$ of these values do not
depend on ξ^{\prime}, and we put

$$
\begin{align*}
\lambda_{1}\left(\xi^{\prime}\right) & =\tilde{\lambda}_{1}\left(\xi^{\prime}\right)=\cdots=\tilde{\lambda}_{\ell_{1}}\left(\xi^{\prime}\right)<\lambda_{2}\left(\xi^{\prime}\right)=\tilde{\lambda}_{\ell_{1}+1}\left(\xi^{\prime}\right)=\cdots=\tilde{\lambda}_{\ell_{1}+\ell_{2}}\left(\xi^{\prime}\right) \\
& <\lambda_{s}\left(\xi^{\prime}\right)=\tilde{\lambda}_{m-\ell_{s}+1}\left(\xi^{\prime}\right)=\cdots=\tilde{\lambda}_{m}\left(\xi^{\prime}\right), \quad \xi^{\prime} \in \mathbb{R}^{n} \backslash\{(0, \ldots, 0)\} \tag{2.1}
\end{align*}
$$

Note that according to (2.1) and owing to the continuous dependence of roots of the characteristic polynomial of a symmetric matrix on its elements, $\lambda_{1}\left(\xi^{\prime}\right), \ldots, \lambda_{s}\left(\xi^{\prime}\right)$ are continuous homogeneous functions of degree 1 [10, page 434].

It is easily seen that the roots with respect to ξ_{n+1} of the characteristic polynomial $\operatorname{det}\left(E \xi_{n+1}^{2}-Q\left(\xi^{\prime}\right)\right)$ of the system (1.1) are the numbers $\xi_{n+1}= \pm \lambda_{i}\left(\xi_{1}, \ldots, \xi_{n}\right), i=1, \ldots, s$, with the multiplicities k_{1}, \ldots, k_{s}, where E is the unit $(m \times m)$-matrix. Therefore the cone of normals

$$
\begin{equation*}
K=\left\{\xi=\left(\xi_{1}, \ldots, \xi_{n}, \xi_{n+1}\right) \in \mathbb{R}^{n+1}: \operatorname{det}\left(E \xi_{n+1}^{2}-Q\left(\xi^{\prime}\right)\right)=0\right\} \tag{2.2}
\end{equation*}
$$

of the system (1.1) consists of its separate connected components

$$
\begin{equation*}
K_{i}^{ \pm}=\left\{\xi \in\left(\xi^{\prime}, \xi_{n+1}\right) \in \mathbb{R}^{n+1}: \xi_{n+1} \mp \lambda_{i}\left(\xi^{\prime}\right)=0\right\}, \quad i=1, \ldots, s \tag{2.3}
\end{equation*}
$$

Denote by $D_{i}^{-}=\left\{\xi=\left(\xi^{\prime}, \xi_{n+1}\right) \in \mathbb{R}^{n+1}: \xi_{n+1}+\lambda_{i}\left(\xi^{\prime}\right)<0\right\}$ the conic domain whose boundary is the conic hypersurface $K_{i}^{-}, i=1, \ldots, s$. By (2.1) we have $D_{1}^{-} \supset D_{2}^{-} \supset \cdots \supset$ D_{s}^{-}. Let $G_{i}=D_{i-1}^{-} \backslash \overline{D_{i}^{-}}$for $1<i \leq s$, and $G_{1}=\mathbb{R}_{-}^{n+1} \backslash \overline{D_{1}^{-}}, \mathbb{R}_{-}^{n+1}=\left\{\xi \in \mathbb{R}^{n+1}: \xi_{n+1}<0\right\}$, while $G_{s+1}=D_{s}^{-}$.

Since for the unit vector of outer normal $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}\right)$ at the points of the cone S different from its vertex $O(0, \ldots, 0)$, we have

$$
\begin{equation*}
\alpha_{i}=\frac{\partial g_{0} / \partial x_{i}}{\sqrt{1+\left|\nabla_{x} g_{0}\right|^{2}}}, \quad i=1, \ldots, n, \quad \alpha_{n+1}=\frac{-1}{\sqrt{1+\left|\nabla_{x} g_{0}\right|^{2}}} \tag{2.4}
\end{equation*}
$$

with $\nabla_{x}=\left(\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}\right), g_{0}(x)=|x| g(x /|x|)$, it holds

$$
\begin{equation*}
\left.\alpha_{n+1}\right|_{S \backslash O}<0 . \tag{2.5}
\end{equation*}
$$

According to our supposition, the smooth conic hypersurface S_{i} for $1 \leq i \leq k_{1}$ is a characteristic one. Therefore, taking into account that $S_{i} \subset S_{0} \subset S$ and the inequality (2.5) is fulfilled, for some index $m_{i}, 1 \leq m_{i} \leq s$, we have

$$
\begin{equation*}
\left.\alpha\right|_{S_{i}} \in K_{m_{i}}^{-}, \quad i=1, \ldots, k_{1} \tag{2.6}
\end{equation*}
$$

Since the hypersurface S_{i} for $k_{1}+1 \leq i \leq k_{1}+k_{2}$ at none of its points is characteristic, by virtue of $S_{i} \subset S_{0} \subset S$ and (2.5) as well as by definition of the domains G_{j}, there exists an index $n_{i}, 1 \leq n_{i} \leq s+1$, such that

$$
\begin{equation*}
\left.\alpha\right|_{S_{i}} \in G_{n_{i}}, \quad i=k_{1}+1, \ldots, k_{1}+k_{2} . \tag{2.7}
\end{equation*}
$$

Without restriction of generality we assume that $m_{1} \leq \cdots \leq m_{k_{1}}$ and $n_{k_{1}+1} \leq \cdots \leq$ $n_{k_{1}+k_{2}}$.

By $Q_{0}(\xi)=E \xi_{n+1}^{2}-Q\left(\xi^{\prime}\right)$ we denote the characteristic matrix of the system (1.1) and consider the problem on reduction of the quadratic form $\left(Q_{0}(\xi) \eta, \eta\right)$ to the canonic form, when $\xi=\alpha$ is the unit vector of the normal to the hypersurface $S_{i}, i=1 \leq i \leq k_{1}+k_{2}$, outer with respect to the domain $D_{\tau_{0}}$. Here $\eta \in \mathbb{R}^{m}$ and (\cdot, \cdot) denotes the scalar product in the Euclidean space \mathbb{R}^{m}.

As far as

$$
\begin{align*}
& T^{-1}\left(\alpha^{\prime}\right) Q(\alpha) T\left(\alpha^{\prime}\right) \\
& \quad=\operatorname{diag}(\underbrace{\lambda_{1}^{2}\left(\alpha^{\prime}\right), \ldots, \lambda_{1}^{2}\left(\alpha^{\prime}\right)}_{\ell_{1}}, \ldots, \underbrace{\lambda_{s}^{2}\left(\alpha^{\prime}\right), \ldots, \lambda_{s}^{2}\left(\alpha^{\prime}\right)}_{\ell_{s}}), \quad \alpha^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \tag{2.8}
\end{align*}
$$

for $\eta=T \zeta$, we have

$$
\begin{align*}
\left(Q_{0}(\alpha) \eta, \eta\right)= & \left(\left(T^{-1} Q_{0} T\right)(\alpha) \zeta, \zeta\right)=\left(\left(E \alpha_{n+1}^{2}-\left(T^{-1} Q T\right)\left(\alpha^{\prime}\right)\right) \zeta, \zeta\right) \\
= & \left(\alpha_{n+1}^{2}-\lambda_{1}^{2}\left(\alpha^{\prime}\right)\right) \zeta_{1}^{2}+\cdots+\left(\alpha_{n+1}^{2}-\lambda_{1}^{2}\left(\alpha^{\prime}\right)\right) \zeta_{\ell_{1}}^{2} \\
& +\left(\alpha_{n+1}^{2}-\lambda_{2}^{2}\left(\alpha^{\prime}\right)\right) \zeta_{\ell_{1}+1}^{2}+\cdots+\left(\alpha_{n+1}^{2}-\lambda_{2}^{2}\left(\alpha^{\prime}\right)\right) \zeta_{\ell_{1}+\ell_{2}}^{2} \tag{2.9}\\
& +\cdots+\left(\alpha_{n+1}^{2}-\lambda_{s}^{2}\left(\alpha^{\prime}\right)\right) \zeta_{m-\ell_{s}+1}^{2}+\cdots+\left(\alpha_{n+1}^{2}-\lambda_{s}^{2}\left(\alpha^{\prime}\right)\right) \zeta_{m}^{2}
\end{align*}
$$

For $1 \leq i \leq k_{1}$, that is, in (2.6), since $\alpha_{n+1}^{2}-\lambda_{m_{i}}^{2}\left(\alpha^{\prime}\right)=0$, by virtue of (2.1), we have

$$
\begin{gather*}
{\left.\left[\alpha_{n+1}^{2}-\lambda_{j}^{2}\left(\alpha^{\prime}\right)\right]\right|_{K_{\bar{m}_{i}}}>0, \quad j=1, \ldots, m_{i}-1 ;\left.\quad\left[\alpha_{n+1}^{2}-\lambda_{m_{i}}^{2}\left(\alpha^{\prime}\right)\right]\right|_{K_{\bar{m}_{i}}}=0,} \\
{\left.\left[\alpha_{n+1}^{2}-\lambda_{j}^{2}\left(\alpha^{\prime}\right)\right]\right|_{K_{\overline{m_{i}}}}<0, \quad j=m_{i}+1, \ldots, s .} \tag{2.10}
\end{gather*}
$$

If $k_{1}+1 \leq i \leq k_{1}+k_{2}$, that is, in (2.7), by the definition of the domain $G_{n_{i}}$ it follows from (2.1) that for $n_{i} \leq s$

$$
\begin{array}{ll}
{\left.\left[\alpha_{n+1}^{2}-\lambda_{j}^{2}\left(\alpha^{\prime}\right)\right]\right|_{G_{n_{i}}}>0,} & j=1, \ldots, n_{i}-1, \\
{\left.\left[\alpha_{n+1}^{2}-\lambda_{j}^{2}\left(\alpha^{\prime}\right)\right]\right|_{G_{n_{i}}}<0,} & j=n_{i}, \ldots, s, \text { and for } n_{i}=s+1, \tag{2.11}\\
{\left.\left[\alpha_{n+1}^{2}-\lambda_{j}^{2}\left(\alpha^{\prime}\right)\right]\right|_{G_{n_{i}}}>0,} & j=1, \ldots, s .
\end{array}
$$

Denote by \varkappa_{i}^{+}and \varkappa_{i}^{-}the positive and negative indices of inertia of the quadratic form $\left(Q_{0}(\alpha) \eta, \eta\right)$ for $\alpha \in K_{m_{i}}^{-}$when $1 \leq i \leq k_{1}$, and for $\alpha \in G_{n_{i}}$ when $k_{1}+1 \leq i \leq k_{1}+k_{2}$. For $1 \leq i \leq k_{1}$, by (2.9) and (2.10), we have

$$
\begin{equation*}
\varkappa_{i}^{+}=\ell_{1}+\cdots+\ell_{m_{i}-1}, \quad \varkappa_{i}^{-}=\ell_{m_{i}+1}+\cdots+\ell_{s}, \quad(\operatorname{def})_{m_{i}}=\ell_{m_{i}} \tag{2.12}
\end{equation*}
$$

where (def) $)_{m_{i}}$ is the defect of that form, and $\varkappa_{i}^{+}=0$ for $m_{i}=1$. When $k_{1}+1 \leq i \leq k_{1}+k_{2}$, by virtue of (2.9) and (2.11), we have

$$
\begin{equation*}
\varkappa_{i}^{+}=\ell_{1}+\cdots+\ell_{n_{i}-1}, \quad \varkappa_{i}^{-}=\ell_{n_{i}}+\cdots+\ell_{s}, \tag{2.13}
\end{equation*}
$$

and $\varkappa_{i}^{+}=0$ for $n_{i}=1$.
If now $\zeta=C^{i} \eta$ is any nondegenerated linear transformation reducing the quadratic form $\left(Q_{0}(\alpha) \eta, \eta\right)$ in case (2.12) and (2.13) to the canonic form, then owing to the invariance of indices of inertia of a quadratic form with respect to nondegenerated linear transformations, we have

$$
\begin{equation*}
\left(Q_{0}(\alpha) \eta, \eta\right)=\sum_{j=1}^{\varkappa_{i}^{+}}\left[\Lambda_{i j}^{+}(\alpha, \eta)\right]^{2}-\sum_{j=1}^{\varkappa_{i}^{-}}\left[\Lambda_{i j}^{-}(\alpha, \eta)\right]^{2}, \quad 1 \leq i \leq k_{1}+k_{2} \tag{2.14}
\end{equation*}
$$

Here

$$
\begin{align*}
\Lambda_{i j}^{+}(\alpha, \eta) & =\sum_{p=1}^{m} c_{j p}^{i}(\alpha) \eta_{p}, \quad \Lambda_{i j}^{-}(\alpha, \eta)=\sum_{p=1}^{m} c_{\varkappa_{i}^{+}+j, p}^{i}(\alpha) \eta_{p} \tag{2.15}\\
C^{i} & =C^{i}(\alpha)=\left(c_{j p}^{i}(\alpha)\right)_{j, p=1}^{m}, \quad 1 \leq i \leq k_{1}+k_{2}
\end{align*}
$$

According to (2.15), in the boundary conditions (1.4) we take as the matrix Γ^{i} the matrix of the order $\left(\varkappa_{i} \times m\right)$, where $\varkappa_{i}=\varkappa_{i}^{+}, 1 \leq i \leq k_{1}+k_{2}$, whose elements $\Gamma_{j p}^{i}$ are given by the equality

$$
\begin{equation*}
\Gamma_{j p}^{i}=c_{j p}^{i}(\alpha), \quad j=1, \ldots, \varkappa_{i}^{+} ; p=1, \ldots, m, \tag{2.16}
\end{equation*}
$$

where $\alpha \in K_{m_{i}}^{-}$for $1 \leq i \leq k_{1}$, and $\alpha \in G_{n_{i}}$ for $k_{1}+1 \leq i \leq k_{1}+k_{2}$.
Below it will be assumed that in the boundary conditions (1.4) the elements $\Gamma_{j p}^{i}$ of matrices Γ^{i} on S_{i} are the bounded measurable functions. It will also be assumed that the domain $D_{\tau_{0}}$ is a Lipschitz one [19, page 68].

3. Derivation of an a priori estimate for a solution of problem (1.1), (1.3), (1.4)

Below, if it will not cause misunderstanding, instead of $u=\left(u_{1}, \ldots, u_{m}\right) \in\left[W_{2}^{k}\left(D_{\tau_{0}}\right)\right]^{m}$ we will write simply $u \in W_{2}^{k}\left(D_{\tau_{0}}\right)$. The condition $F=\left(F_{1}, \ldots, F_{m}\right) \in L_{2}\left(D_{\tau_{0}}\right)$ should be understood analogously. Let $u \in W_{2}^{2}\left(D_{\tau_{0}}\right)$ be a solution of the problem (1.1), (1.3), (1.4). Multiplying both parts of the system of (1.1) scalarly by the vector $2 u_{t}$ and integrating the obtained expression with respect to $D_{\tau}, 0<\tau \leq \tau_{0}$, we obtain

$$
\begin{align*}
2 \int_{D_{\tau}}(& \left.F-\sum_{i=1}^{n} B_{i} u_{x_{i}}-C u\right) u_{t} d x d t \\
= & \int_{D_{\tau}}\left[\frac{\partial\left(u_{t}, u_{t}\right)}{\partial t}+2 \sum_{i, j=1}^{n} A_{i j} u_{x_{j}} u_{t x_{i}}\right] d x d t-2 \int_{S_{0} \cap\{t \leq \tau\}} \sum_{i, j=1}^{n} A_{i j} u_{t} u_{x_{j}} \alpha_{i} d s \\
= & \int_{\partial D_{\tau} \backslash S_{0}}\left(u_{t} u_{t}+\sum_{i, j=1}^{n} A_{i j} u_{x_{i}} u_{x_{j}}\right) d x \\
& +\int_{S_{0} \cap\{t \leq \tau\}}\left[\left(u_{t} u_{t}+\sum_{i, j=1}^{n} A_{i j} u_{x_{i}} u_{x_{j}}\right) \alpha_{n+1}-2 \sum_{i, j=1}^{n} A_{i j} u_{t} u_{x_{j}} \alpha_{i}\right] d s \\
= & \int_{\partial D_{\tau} \backslash S_{0}}\left(u_{t} u_{t}+\sum_{i, j=1}^{n} A_{i j} u_{x_{i}} u_{x_{j}}\right) d x \tag{3.1}\\
& +\int_{S_{0} \cap\{t \leq \tau\}} \alpha_{n+1}^{-1}\left[\sum_{i, j=1}^{n} A_{i j}\left(\alpha_{n+1} u_{x_{i}}-\alpha_{i} u_{t}\right)\left(\alpha_{n+1} u_{x_{j}}-\alpha_{j} u_{t}\right)\right. \\
= & \quad \int_{\partial D_{\tau} \backslash S_{0}}\left(u_{t} u_{t}+\sum_{i, j=1}^{n} A_{i j} u_{x_{i}} u_{x_{j}}^{2}\right) d x \\
& +\int_{S_{0} \cap\{t \leq \tau\}}^{n} \alpha_{n+1}^{n}\left[\sum_{i, j=1}^{n} A_{i j} \alpha_{i j}\left(\alpha_{n+1} u_{x_{i}}-\alpha_{i} u_{t}\right)\left(\alpha_{n+1} u_{t}\right] d s\right. \\
& +\int_{S_{0} \cap\{t \leq \tau\}} \alpha_{n+1}^{-1}\left(Q_{0}(\alpha) u_{t}, u_{t}\right) d s .
\end{align*}
$$

Since $\left(\alpha_{n+1}\left(\partial / \partial x_{i}\right)-\alpha_{i}(\partial / \partial t)\right)$ is an inner differential operator on the conic hypersurface S_{0}, according to (1.3) and the boundedness of $\left|\alpha_{n+1}^{-1}\right|$ on S_{0}, we have

$$
\begin{align*}
& \left|\int_{S_{0} \cap\{t \leq \tau\}} \alpha_{n+1}^{-1}\left[\sum_{i, j=1}^{n} A_{i j}\left(\alpha_{n+1} u_{x_{i}}-\alpha_{i} u_{t}\right)\left(\alpha_{n+1} u_{x_{j}}-\alpha_{j} u_{t}\right)\right] d s\right| \tag{3.2}\\
& \quad \leq c_{1}\left\|f_{0}\right\|_{W_{0}^{1}\left(S_{0} \cap\{t \leq \tau\}\right)}^{2}, \quad c_{1}=\text { const }>0 .
\end{align*}
$$

On the other hand, by virtue of (2.14), (2.15), (2.16), and (1.4), (2.5), we get

$$
\begin{align*}
\int_{S_{0} \cap\{t \leq \tau\}} & \alpha_{n+1}^{-1}\left(Q_{0}(\alpha) u_{t}, u_{t}\right) d s \\
= & -\sum_{i=1}^{k_{1}+k_{2}} \int_{S_{i} \cap\{t \leq \tau\}}\left\{\left|\alpha_{n+1}^{-1}\right| \sum_{j=1}^{\varkappa_{i}^{+}}\left[\Lambda_{i j}^{+}\left(\alpha, u_{t}\right)\right]^{2}\right\} d s \\
& +\sum_{i=1}^{k_{1}+k_{2}} \int_{S_{i} \cap\{t \leq \tau\}}\left\{\left|\alpha_{n+1}^{-1}\right| \sum_{j=1}^{\varkappa_{i}^{-}}\left[\Lambda_{i j}^{-}\left(\alpha, u_{t}\right)\right]^{2}\right\} d s \tag{3.3}\\
\geq & -\sum_{i=1}^{k_{1}+k_{2}} \int_{S_{i} \cap\{t \leq \tau\}}\left\{\left|\alpha_{n+1}^{-1}\right| \sum_{j=1}^{\varkappa_{i}^{+}}\left[\Lambda_{i j}^{+}\left(\alpha, u_{t}\right)\right]^{2}\right\} d s \\
\geq & \left.-c_{2} \sum_{i=1}^{k_{1}+k_{2}} \int_{S_{i} \cap\{t \leq \tau\}}\left\{\sum_{j=1}^{\varkappa_{i}^{+}}\left[\Lambda_{i j}\left(\alpha, u_{t}\right)\right]^{2}\right\} d s=-c_{2} \sum_{i=1}^{k_{1}+k_{2}}\left\|f_{i}\right\|_{L_{2}\left(S_{i} \cap\{t \leq \tau\}\right)}\right)
\end{align*}
$$

where $0<c_{2}=\sup _{S_{0}}\left|\alpha_{n+1}^{-1}\right|<+\infty$.
Suppose

$$
\begin{equation*}
w(\tau)=\int_{\partial D_{\tau} \backslash S_{0}}\left(u_{t} u_{t}+\sum_{i, j=1}^{n} A_{i j} u_{x_{i}} u_{x_{j}}\right) d x, \quad \tilde{u}_{i}=\alpha_{n+1} u_{x_{i}}-\alpha_{i} u_{t} . \tag{3.4}
\end{equation*}
$$

Then by the boundedness and measurability of elements of the matrices B_{i} and C in the system (1.1), as well as by (3.1), (3.2), and (3.3), we obtain

$$
\begin{align*}
w(\tau) \leq & c_{3} \int_{0}^{\tau} w(t) d t+c_{4} \int_{D_{\tau}} u u d x d t+c_{5}\left\|f_{0}\right\|_{W_{2}^{1}\left(S_{0} \cap\{t \leq \tau\}\right)}^{2} \\
& +c_{6} \sum_{i=1}^{k_{1}+k_{2}}\left\|f_{i}\right\|_{L_{2}\left(S_{i} \cap\{t \leq \tau\}\right)}^{2}+c_{7}\|F\|_{L_{2}\left(D_{\tau}\right)}^{2} . \tag{3.5}
\end{align*}
$$

Here and in what follows, all the encountered values $c_{i}, i \geq 1$, are positive constants, independent of u.

Let $\left(x, \tau_{x}\right)$ be the point of intersection of the conic hypersurface S and the line parallel to the t-axis and passing through the point $(x, 0)$. We have

$$
\begin{equation*}
u(x, \tau)=u\left(x, \tau_{x}\right)+\int_{\tau_{x}}^{\tau} u_{t}(x, t) d t, \quad \tau \geq \tau_{x} \tag{3.6}
\end{equation*}
$$

whence with regard for (1.3) we find that

$$
\begin{array}{rl}
\int_{\partial D_{\tau} \backslash S_{0}} & u(x, \tau) u(x, \tau) d x \\
\quad & \leq 2 \int_{\partial D_{\tau} \backslash S_{0}} u\left(x, \tau_{x}\right) u\left(x, \tau_{x}\right) d x+2\left|\tau-\tau_{x}\right| \int_{\partial D_{\tau} \backslash S_{0}} d x \int_{\tau_{x}}^{\tau} u_{t}(x, t) u_{t}(x, t) d t \tag{3.7}\\
& \leq c_{8} \int_{S_{0} \cap\{t \leq \tau\}} u u d s+c_{9} \int_{0}^{\tau} w(t) d t=c_{8}| | f_{0} \|_{L_{2}\left(S_{0} \cap\{t \leq \tau\}\right)}^{2}+c_{9} \int_{0}^{\tau} w(t) d t .
\end{array}
$$

Introduce the notation

$$
\begin{equation*}
w_{0}(\tau)=\int_{\partial D_{\tau} \backslash S_{0}}\left(u u+u_{t} u_{t}+\sum_{i, j=1}^{n} A_{i j} u_{x_{i}} u_{x_{j}}\right) d x . \tag{3.8}
\end{equation*}
$$

Summing up the inequalities (3.5) and (3.7), we arrive at

$$
\begin{equation*}
w_{0}(\tau) \leq c_{10}\left[\int_{0}^{\tau} w_{0}(t) d t+\left\|f_{0}\right\|_{W_{2}^{1}\left(S_{0} \cap\{t \leq \tau\}\right)}^{2}+\sum_{i=1}^{k_{1}+k_{2}}\left\|f_{i}\right\|_{L_{2}\left(S_{i} \cap\{t \leq \tau\}\right)}^{2}+\|F\|_{L_{2}\left(D_{\tau}\right)}^{2}\right] \tag{3.9}
\end{equation*}
$$

from which by Gronwall's lemma we find that

$$
\begin{equation*}
w_{0}(\tau) \leq c_{11}\left(\left\|f_{0}\right\|_{W_{2}^{1}\left(S_{0} \cap\{t \leq \tau\}\right)}^{2}+\sum_{i=1}^{k_{1}+k_{2}}\left\|f_{i}\right\|_{L_{2}\left(S_{i} \cap\{t \leq \tau\}\right)}^{2}+\|F\|_{L_{2}\left(D_{\tau}\right)}^{2}\right) . \tag{3.10}
\end{equation*}
$$

Integrating both parts of the inequality (3.10) with respect to τ, we can easily get the following a priori estimate for the solution $u \in W_{2}^{2}\left(D_{\tau_{0}}\right)$ of the problem (1.1), (1.3), (1.4):

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{\tau_{0}}\right)} \leq c\left(\left\|f_{0}\right\|_{W_{2}^{1}\left(S_{0}\right)}+\sum_{i=1}^{k_{1}+k_{2}}\left\|f_{i}\right\|_{L_{2}\left(S_{i}\right)}+\|F\|_{L_{2}\left(D_{\tau_{0}}\right)}\right) \tag{3.11}
\end{equation*}
$$

with a positive constant c independent of u.
Here we introduce the notion of a strong generalized solution of the problem (1.1), (1.3), (1.4) of the class W_{2}^{1}.

Definition 3.1. Let $f_{0} \in W_{2}^{1}\left(S_{0}\right), f_{i} \in L_{2}\left(S_{i}\right), i=1, \ldots, k_{1}+k_{2}$, and $F \in L_{2}\left(D_{\tau_{0}}\right)$. The vector function $u=\left(u_{1}, \ldots, u_{m}\right)$ is said to be a strong generalized solution of the problem (1.1), (1.3), (1.4) of the class W_{2}^{1} if $u \in W_{2}^{1}\left(D_{\tau_{0}}\right)$ and there exists a sequence of vector functions $\left\{u_{k}\right\}_{k=1}^{\infty}$ from the space $W_{2}^{2}\left(D_{\tau_{0}}\right)$ such that

$$
\begin{gather*}
\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{W_{2}^{1}\left(D_{\tau}\right)}=0, \quad \lim _{k \rightarrow \infty}\left\|u_{k} \mid s_{0}-f_{0}\right\|_{W_{2}^{1}\left(S_{0}\right)}=0, \\
\lim _{k \rightarrow \infty}\left\|\left.\Gamma^{i} \frac{\partial u_{k}}{\partial t}\right|_{S_{i}}-f_{i}\right\|_{L_{2}\left(S_{i}\right)}=0, \quad i=1, \ldots, k_{1}+k_{2}, \tag{3.12}\\
\lim _{k \rightarrow \infty}\left\|L u_{k}-F\right\|_{L_{2}\left(D_{\tau_{0}}\right)}=0 .
\end{gather*}
$$

Below we will prove the existence of a strong generalized solution of the problem (1.1), (1.3), (1.4) of the class W_{2}^{1} in case the conic hypersurface S_{0} is of temporary type, that is, when the characteristic matrix of the system (1.1) is negative definite on $S_{0} \backslash 0$. The latter can be written as follows:

$$
\begin{equation*}
\left(\left[E \alpha_{n+1}^{2}-\sum_{i, j=1}^{n} A_{i j} \alpha_{i} \alpha_{j}\right] \eta, \eta\right)<0 \quad \forall \eta \in \mathbb{R}^{n} \backslash\{(0, \ldots, 0)\}, \tag{3.13}
\end{equation*}
$$

where the vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}\right)$ is the outer unit normal to the cone S_{0} at the points different from its vertex 0 .

In the case of the inequality (3.13), by virtue of (2.12), (2.13), (2.14), (2.15), and (2.16) and by our choice of matrices $\Gamma^{i}, i=1, \ldots, k_{1}+k_{2}$, the numbers in (1.4) $\varkappa_{i}=0$, $i=1, \ldots, k_{1}+k_{2}$, that is, the boundary conditions (1.4) in the problem (1.1), (1.3), (1.4) are missing, and the a priori estimate (3.11) of the solution $u \in W_{2}^{2}\left(D_{\tau}\right)$ of the problem (1.1), (1.3) takes the form

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{T_{0}}\right)} \leq c\left(\left\|f_{0}\right\|_{W_{2}^{1}\left(S_{0}\right)}+\|F\|_{L_{2}\left(D_{T_{0}}\right)}\right) . \tag{3.14}
\end{equation*}
$$

Note that in [11] we have elucidated the geometric meaning of the condition (3.13), and for the solution $u \in W_{2}^{2}\left(D_{\tau}\right)$ of the problem (1.1), (1.3) in that case we have obtained the a priori estimate (3.14), although in the above-mentioned work we have not proved the existence of a strong generalized solution of the problem (1.1), (1.3) of the class W_{2}^{1} whose uniqueness follows directly from the estimate (3.14).

4. Proof of the existence of a strong generalized solution of the problem (1.1), (1.3) of the class W_{2}^{1}

Let us consider the problem on the solvability of the above-mentioned problem, when the conic hypersurface S_{0} is of temporal type. For the sake of simplicity we restrict ourselves to the case where the boundary condition (1.3) is homogeneous, that is,

$$
\begin{equation*}
\left.u\right|_{S_{0}}=0 . \tag{4.1}
\end{equation*}
$$

After the change of variables

$$
\begin{equation*}
y=\frac{x}{t}, \quad z=t \quad \text { or } \quad x=z y, \quad t=z \tag{4.2}
\end{equation*}
$$

with respect to the unknown vector function $v(y, z)=u(z y, z)$, the system (1.1) takes the form

$$
\begin{equation*}
L_{1} v=v_{z z}-\frac{1}{z^{2}} \sum_{i, j=1}^{n} \widetilde{A}_{i j} v_{y_{i} y_{j}}-\frac{2}{z} \sum_{i=1}^{n} y_{i} v_{z y_{i}}+\frac{1}{z} \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}}+\widetilde{C} v=\widetilde{F} \tag{4.3}
\end{equation*}
$$

Here

$$
\begin{equation*}
\tilde{A}_{i j}=E y_{i} y_{j}+A_{i j}, \quad \widetilde{B}_{i}=B_{i}(z y, z), \quad \widetilde{C}=C(z y, z), \quad \widetilde{F}=F(z y, z) \tag{4.4}
\end{equation*}
$$

By G we denote an n-dimensional domain which is the intersection of the conic domain $D: t>|x| g(x /|x|)$ and the hyperplane $t=1$ in which the variable x is replaced by y. Obviously, $\partial G=\left\{y \in \mathbb{R}^{n}: 1=|y| g(y /|y|)\right\}$. Under the transformation $(x, t) \rightarrow(y, z)$ in accordance with (4.2), the domain D_{τ} transforms into the cylindrical domain $\Omega_{\tau}=$ $G \times(0, \tau)=\left\{(y, z) \in \mathbb{R}^{n+1}: y \in G, z \in(0, \tau)\right\}$ in the space of the variables y, z. Denote by $\Gamma_{\tau}=\partial G \times[0, \tau]$ the lateral surface of the cylinder Ω_{τ}. The boundary condition (4.1) with respect to the vector function v takes the form

$$
\begin{equation*}
\left.v\right|_{\Gamma_{\tau_{0}}}=0 \tag{4.5}
\end{equation*}
$$

We divide the exposition of the proof of existence a strong generalized solution of problem (1.1), (1.3) of the class W_{2}^{1} into several items.
$\left(1^{0}\right)$ In this item we will derive an a priori estimate for the solution $v=\left(v_{1}, \ldots, v_{m}\right)$ of the problem (4.3), (4.5) from the space $W_{2}^{2}\left(\Omega_{\tau_{0}}\right)$, which is equal to zero in the domain Ω_{δ}.

Let v be a solution of the problem (4.3), (4.5) from the space $W_{2}^{2}\left(\Omega_{\tau_{0}}\right)$, such that for some positive δ

$$
\begin{equation*}
\left.v\right|_{\Omega_{\delta}}=0, \quad 0<\delta<\tau \tag{4.6}
\end{equation*}
$$

Under the assumption that $(0, \ldots, 0) \in G$ and diam G is sufficiently small, by virtue of (1.2) and (4.4), for any m-dimensional real vectors $\eta_{i}, i=1, \ldots, n$, the inequality

$$
\begin{equation*}
\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) \eta_{i} \eta_{j} \geq \tilde{c}_{0} \sum_{i=1}^{n}\left|\eta_{i}\right|^{2}, \quad \tilde{c}_{0}=\text { const }>0, \forall y \in G, \tag{4.7}
\end{equation*}
$$

is valid.
If $v=\left(\nu_{1}, \ldots, \nu_{n}, \nu_{n+1}\right)$ is the unit vector of the outer normal to the boundary $\partial \Omega_{\tau_{0}}$ of the cylinder $\Omega_{\tau_{0}}$ at the points (y, z), where it exists, then taking into account (4.6) we can easily see that

$$
\begin{equation*}
\left.v_{n+1}\right|_{\Gamma_{\tau_{0}}}=0,\left.\quad v_{i}\right|_{\partial \Omega_{\tau_{0}} \cap\left\{z=\tau_{0}\right\}}=0, \quad i=1, \ldots, n,\left.\quad v_{z}\right|_{\Gamma_{\tau_{0}}}=0 . \tag{4.8}
\end{equation*}
$$

Suppose $G_{\tau}=\Omega_{\tau_{0}} \cap\{z=\tau\}$.
Multiplying both parts of the system (4.3) scalarly by the vector $2 v_{z}$ and integrating the obtained expression with respect to $\Omega_{\tau}, \delta<\tau \leq \tau_{0}$, with regard for (4.4), (4.5), (4.6), and (4.8) we obtain

$$
\begin{align*}
2 \int_{\Omega_{\tau}} & \left(\widetilde{F}-\frac{1}{z} \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}}-\widetilde{C} v\right) v_{z} d y d z \\
= & \int_{\Omega_{\tau}}\left[2 v_{z z} v_{z}-\frac{2}{z^{2}} \sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{y_{i} y_{j}} v_{z}-\frac{4}{z} \sum_{i=1}^{n} y_{i} v_{z y_{i}} v_{z}\right] d y d z \\
= & \int_{\Omega_{\tau}}\left[\frac{\partial\left(v_{z} v_{z}\right)}{\partial z}+\frac{2}{z^{2}} \sum_{i, j=1}^{n} \widetilde{A}_{i j}(y) v_{y_{i}} v_{z y_{j}}+\frac{2}{z^{2}} \sum_{i, j=1}^{n} \frac{\tilde{A}_{i j}(y)}{\partial y_{j}} v_{y_{i}} v_{z}-\frac{2}{z} \sum_{i=1}^{n} y_{i} \frac{\partial\left(v_{z} v_{z}\right)}{\partial y_{i}}\right] d y d z \\
= & \int_{\Omega_{\tau}}\left[\frac{\partial\left(v_{z} v_{z}\right)}{\partial z}+\frac{1}{z^{2}} \frac{\partial}{\partial z}\left(\sum_{i, j=1}^{n} \widetilde{A}_{i j}(y) v_{y_{i}} v_{y_{j}}\right)+\frac{2}{z^{2}} \sum_{i, j=1}^{n} E y_{i} v_{y_{i}} v_{z}+\frac{2}{z} \sum_{i=1}^{n} \frac{\partial y_{i}}{\partial y_{i}} v_{z} v_{z}\right] d y d z \\
= & \int_{G_{\tau}}\left[v_{z} v_{z}+\frac{1}{\tau^{2}} \sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{y_{i}} v_{y_{j}}\right] d y \\
& +\int_{\Omega_{\tau} \backslash \Omega_{\delta}}\left[\frac{2}{z^{3}} \sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{y_{i}} v_{y_{j}}+\frac{2}{z^{2}} \sum_{i, j=1}^{n} E y_{i} v_{y_{i}} v_{z}+\frac{2 n}{z} v_{z} v_{z}\right] d y d z . \tag{4.9}
\end{align*}
$$

Since the domains of variation of the variables y_{i} in G are bounded, that is, $\sup _{G}\left|y_{i}\right| \leq$ $d, i=1, \ldots, n$, by virtue of (4.4) and (4.7) for some $\widetilde{c}_{1}=$ const >0 the inequality

$$
\begin{equation*}
\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) \eta_{i} \eta_{j} \leq{\widetilde{c_{1}}}_{i=1}^{n}\left|\eta_{i}\right|^{2} \quad \forall \eta_{i} \in \mathbb{R}^{n}, \forall y \in G \tag{4.10}
\end{equation*}
$$

holds.
Denoting

$$
\begin{align*}
& \widetilde{w}(\tau)=\int_{G_{\tau}}\left[v_{z} v_{z}+\sum_{i=1}^{n} v_{y_{i}} v_{y_{i}}\right] d y, \tag{4.11}\\
& \tilde{w}_{0}(\tau)=\int_{G_{\tau}}\left[v v+v_{z} v_{z}+\sum_{i=1}^{n} v_{y_{i}} v_{y_{i}}\right] d y,
\end{align*}
$$

due to (4.7), (4.9), and (4.10) we have

$$
\begin{align*}
& \min \left(1, \frac{\widetilde{c}_{0}}{\tau^{2}}\right) \widetilde{w}(\tau) \\
& \leq \int_{\Omega_{\tau} \backslash \Omega_{\delta}}\left[\frac{2 \widetilde{c_{1}}}{z^{3}} \sum_{i=1}^{n} v_{y_{i}} v_{y_{i}}+\frac{d n}{z^{2}} \sum_{i=1}^{n}\left(v_{y_{i}} v_{y_{i}}+v_{z} v_{z}\right)+\frac{2 n}{z} v_{z} v_{z}\right] d y d z \\
&+\int_{\Omega_{\tau} \backslash \Omega_{\delta}}\left[\widetilde{F} \widetilde{F}+v_{z} v_{z}+\frac{1}{z} \sum_{i=1}^{n}\left\|\widetilde{B}_{i}\right\|_{L_{\infty}}\left(v_{y_{i}} v_{y_{i}}+v_{z} v_{z}\right)+\|\widetilde{C}\|_{L_{\infty}}\left(v v+v_{z} v_{z}\right)\right] d y d z \\
& \leq\left(\frac{2 \widetilde{c}_{1}}{\delta^{3}}+\frac{d n}{\delta^{2}}+\frac{1}{\delta} \max _{1 \leq i \leq n}\left\|\widetilde{B}_{i}\right\|_{L_{\infty}}\right) \int_{\Omega_{\tau} \backslash \Omega_{\delta}}\left(\sum_{i=1}^{n} v_{y_{i}} v_{y_{i}}\right) d y d z \\
&+\left(\frac{d n^{2}}{\delta^{2}}+\frac{2 n}{\delta}+1+\|\widetilde{C}\|_{L_{\infty}}\right) \int_{\Omega_{\tau} \backslash \Omega_{\delta}} v_{z} v_{z} d y d z \\
&+\|\widetilde{C}\|_{L_{\infty}} \int_{\Omega_{\tau} \backslash \Omega_{\delta}} v v d y d z+\int_{\Omega_{\tau} \backslash \Omega_{\delta}} \widetilde{F} \widetilde{F} d y d z \\
& \leq c_{2}(\delta) \int_{\Omega_{\tau}}\left[v v+v_{z z}+\sum_{i=1}^{n} v_{y_{i}} v_{y_{i}}\right] d y d z+\int_{\Omega_{\tau}} \widetilde{F} \widetilde{F} d y d z \\
&= c_{2}(\delta) \int_{0}^{\tau} \widetilde{w}_{0}(\sigma) d \sigma+\int_{\Omega_{\tau}} \widetilde{F} \widetilde{F} d y d z \tag{4.12}
\end{align*}
$$

where $c_{2}(\delta)=$ const $>0, \delta<\tau \leq \tau_{0}$, while $\left\|\widetilde{B}_{i}\right\|_{L_{\infty}}$ and $\|\widetilde{C}\|_{L_{\infty}}$ are the upper bounds of norms of the matrices \widetilde{B}_{i} and \widetilde{C} in the domain $\Omega_{\tau_{0}}$.

By (4.6) we have

$$
\begin{equation*}
v(y, \tau)=\int_{0}^{\tau} v_{z}(y, \sigma) d \sigma, \tag{4.13}
\end{equation*}
$$

whence

$$
\begin{align*}
\int_{G_{\tau}} v(y, \tau) v(y, \tau) d y & \leq \int_{G}\left[\int_{0}^{\tau}\left|v_{z}(y, \sigma)\right| d \sigma\right]^{2} d y \\
& \leq \int_{G}\left[\left(\int_{0}^{\tau} 1^{2} d \sigma\right)^{1 / 2}\left(\int_{0}^{\tau}\left|v_{z}(y, \sigma)\right|^{2} d \sigma\right)^{1 / 2}\right]^{2} d y \tag{4.14}\\
& \leq \tau \int_{G} \int_{0}^{\tau} v_{z}^{2}(y, \sigma) d \sigma d y=\tau \int_{\Omega_{\tau}} v_{z}^{2} d y d z
\end{align*}
$$

Taking into account (4.14), from (4.12), we have

$$
\begin{equation*}
\widetilde{w}_{0}(\tau) \leq c_{3}(\delta) \int_{0}^{\tau} \widetilde{w}_{0}(\sigma) d \sigma+c_{4}(\delta) \int_{\Omega_{\tau}} \widetilde{F} \widetilde{F} d y d z \tag{4.15}
\end{equation*}
$$

where $c_{i}(\delta)=$ const $>0, i=3,4$. This, on the basis of Gronwall's lemma, enables one to conclude that

$$
\begin{equation*}
\widetilde{w}_{0}(\tau) \leq c(\delta) \int_{\Omega_{\tau}} \widetilde{F} \widetilde{F} d y d z, \quad 0<\tau \leq \tau_{0} \tag{4.16}
\end{equation*}
$$

with the constant $c(\delta)>0$.
In its turn, from (4.16) it follows that

$$
\begin{equation*}
\|v\|_{W_{2}^{1}\left(\Omega_{\tau_{0}}\right)} \leq \widetilde{c}(\delta)\|\widetilde{F}\|_{L_{2}\left(\Omega_{\tau_{0}}\right)}, \quad \widetilde{c}(\delta)=\text { const }>0 \tag{4.17}
\end{equation*}
$$

Remark 4.1. To construct a solution v of the problem (4.3), (4.5) from the space $W_{2}^{2}\left(\Omega_{\tau_{0}}\right)$ for

$$
\begin{equation*}
\left.\widetilde{F}\right|_{\Omega_{\delta}}=0, \quad 0<\delta<\tau_{0} \tag{4.18}
\end{equation*}
$$

satisfying automatically according to (4.16) and (4.18) the condition (4.6), we take advantage of Galerkin's method (see [17, pages 213-220]). Note that unlike the equations and systems of hyperbolic type considered in [17], in the system (4.3) we have terms involving mixed derivatives $v_{z y_{i}}$.
$\left(2^{0}\right)$ First we present the proof of the existence of a weak generalized solution of the problem (4.3), (4.5), (4.6) of the class W_{2}^{1}. Let $\left\{\varphi_{k}(y)\right\}_{k=1}^{\infty}$ be an orthogonal basis in the separable Hilbert space $\left[\stackrel{\circ}{W}_{2}^{1}(G)\right]^{m}$. As elements of the basis $\left\{\varphi_{k}(y)\right\}_{k=1}^{\infty}$ in the space $\left[\dot{W}_{2}^{1}(G)\right]^{m}$ we can take the proper vector functions of the Laplace operator: $\Delta \varphi_{k}=\lambda_{k} \varphi_{k}$, $\left.\varphi_{k}\right|_{\partial G}=0$ (see $[17$, pages 110,248$]$). Note that in the space $\left[\dot{W}_{2}^{1}(G)\right]^{m}$ we can, as an equivalent norm, take

$$
\begin{gather*}
\|v\|_{\dot{W_{2}^{1}(G)}}^{2}=\int_{G}\left(\sum_{i=1}^{n} v_{y_{i}} v_{y_{i}}\right) d y \tag{4.19}\\
v=\left(v_{1}, \ldots, v_{m}\right), \quad v_{i} \in \stackrel{\circ}{W}_{2}^{1}(G), \quad i=1, \ldots, m
\end{gather*}
$$

An approximate solution $v^{N}(y, z)$ of the problem (4.3), (4.5) will be sought in the form of the sum

$$
\begin{equation*}
v^{N}(y, z)=\sum_{k=1}^{N} C_{k}^{N}(z) \varphi_{k}(y) \tag{4.20}
\end{equation*}
$$

in which the coefficients $C_{k}^{N}(z)$ are defined from the following relations:

$$
\begin{gather*}
\left(\frac{\partial^{2} v^{N}}{\partial z^{2}}, \varphi_{\ell}\right)_{L_{2}(G)}+\frac{1}{z^{2}} \int_{G}\left\{\sum_{i, j=1}^{n}\left[\tilde{A}_{i j}(y) v_{y_{i}}^{N} \varphi_{\ell y_{j}}+\frac{\partial \widetilde{A}_{i j}}{\partial y_{j}} v_{y_{i}}^{N} \varphi_{\ell}\right]\right\} d y \\
+\frac{2}{z} \int_{G}\left\{\sum_{i=1}^{n}\left[y_{i} v_{z}^{N} \varphi_{\ell y_{i}}+v_{z}^{N} \varphi_{\ell}\right]\right\} d y+\int_{G}\left[\frac{1}{z} \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}}^{N} \varphi_{\ell}+\widetilde{C} v^{N} \varphi_{\ell}\right] d y \tag{4.21}\\
=\left(\widetilde{F}, \varphi_{\ell}\right)_{L_{2}(G)}, \quad \delta \leq z \leq \tau_{0}, \ell=1, \ldots, N, \\
\left.\frac{d}{d z} C_{k}^{N}(z)\right|_{z=\delta}=0,\left.\quad C_{k}^{N}(z)\right|_{z=\delta}=0, k=1, \ldots, N \tag{4.22}\\
C_{k}^{N}(z)=0, \quad 0 \leq z<\delta, k=1, \ldots, N . \tag{4.23}
\end{gather*}
$$

The equalities (4.21) make a system of linear ordinary differential equations of second order with respect to z and to unknown functions $C_{k}^{N}, k=1, \ldots, N$, with constant matrix elements, which in their turn are the coefficients of the derivatives of second order $d^{2} C_{k}^{N}(z) / d z^{2}$, and with the different from zero determinant, since by itself it represents Gram's determinant with respect to the scalar product in $L_{2}(G)$ of the linearly independent system of vector functions $\varphi_{1}(y), \ldots, \varphi_{N}(y)$. The coefficients of every equation of that system are bounded measurable functions, and the right-hand sides $g_{\ell}(z)=\left(\tilde{F}, \varphi_{\ell}\right)_{L_{2}(G)} \in$ $L_{1}\left(\left(0, \tau_{0}\right)\right)$.

As is known (see [17, page 214]), the system (4.21) has a unique solution which satisfies the initial conditions (4.22), as well as the condition (4.23) by (4.18), where $d^{2} C_{k}^{N}(z) / d z^{2} \in L_{1}\left(\left(0, \tau_{0}\right)\right)$.

Let us now show that for $v=v^{N}$ the estimates (4.16) and (4.17) are valid. Indeed, multiplying each of the inequalities (4.21) by the corresponding $(d / d z) C_{\ell}^{N}(z)$ and summing up with respect to ℓ from 1 to N, we obtain the equality

$$
\begin{align*}
& \left(\frac{\partial^{2} v^{N}}{\partial z^{2}}, \frac{\partial v^{N}}{\partial z}\right)_{L_{2}(G)}+\frac{1}{z^{2}} \int_{G}\left\{\sum_{i, j=1}^{n}\left[\tilde{A}_{i j}(y) v_{y_{i}}^{N} v_{z y_{j}}^{N}+\frac{\partial \tilde{A}_{i j}}{\partial y_{j}} v_{y_{i}}^{N} v_{z}^{N}\right]\right\} d y \\
& \quad+\frac{1}{z} \int_{G}\left\{\sum_{i=1}^{n}\left[y_{i} v_{z}^{N} v_{z y_{i}}^{N}+v_{z}^{N} v_{z}^{N}\right]\right\} d y \tag{4.24}\\
& \quad+\int_{G}\left[\frac{1}{z^{2}} \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}}^{N} v_{z}^{N}+\widetilde{C} v^{N} v_{z}^{N}\right] d y=\left(\widetilde{F}, v_{z}^{N}\right)_{L_{2}(G)}
\end{align*}
$$

which after integration with respect to z from 0 to τ_{0}, with regard for (4.23) and further transformations allow us to derive the inequalities (4.16) and (4.17). Note that by (4.23)
it becomes obvious that

$$
\begin{equation*}
\left.v^{N}\right|_{\Omega_{\delta}}=0, \quad N=1,2, \ldots . \tag{4.25}
\end{equation*}
$$

Thus the estimate

$$
\begin{gather*}
\int_{G_{T_{0}}}\left[v^{N} v^{N}+v_{z}^{N} v_{z}^{N}+\sum_{i=1}^{n} v_{y_{i}}^{N} v_{y_{i}}^{N}\right] d y \leq c_{5}(\delta)\|\widetilde{F}\|_{L_{2}\left(\Omega_{\tau}\right)}^{2}, \quad 0<\tau \leq \tau_{0}, N \geq 1, \tag{4.26}\\
\left\|v^{N}\right\|_{W_{2}^{1}\left(\Omega_{\tau_{0}}\right)} \leq c_{6}(\delta)\|\widetilde{F}\|_{L_{2}\left(\Omega_{\tau_{0}}\right)}, \quad N \geq 1
\end{gather*}
$$

is valid, where the positive constants $c_{5}(\delta)$ and $c_{6}(\delta)$ do not depend on N.
Owing to (4.26) and to weak compactness of the closed ball in the Hilbert space $W_{2}^{1}\left(\Omega_{\tau_{0}}\right)$ we can choose from the sequence $\left\{v^{N}\right\}$ the subsequence (denoted as above), converging weakly in $W_{2}^{1}\left(\Omega_{\tau_{0}}\right)$ to some element $v \in W_{2}^{1}\left(\Omega_{\tau_{0}}\right)$. Note that by virtue of (4.25), the equality (4.6) will be valid for that element v. It should be also noted that since $\left.v^{N}\right|_{\Gamma_{\tau_{0}}}=0, N \geq 1$, by the compactness of taking the trace: $\left.v \rightarrow v\right|_{\Gamma_{\tau_{0}}}$ from the space $W_{2}^{1}\left(\Omega_{\tau_{0}}\right)$ into $L_{2}\left(\Gamma_{\tau_{0}}\right)$, the element v satisfies the homogeneous boundary condition (4.5) (see [17, page 71]).

Let us now show that v is a weak generalized solution of the system (4.3), that is, the identity

$$
\begin{align*}
\int_{\Omega_{\tau_{0}}} & {\left[-v_{z} w_{z}+\frac{1}{z^{2}} \sum_{i, j=1}^{n} v_{y_{i}}\left(\widetilde{A}_{i j} w\right)_{y_{j}}+\frac{2}{z} \sum_{i=1}^{n} v_{z}\left(y_{i} w\right)_{y_{i}}+\frac{1}{z} \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}} w+\widetilde{C} v w\right] d y d z } \tag{4.27}\\
& =\int_{\Omega_{\tau_{0}}} \widetilde{F} w d y d z^{\text {w }}
\end{align*}
$$

holds for any $w \in V$, where V is the closure with respect to the norm of the space $W_{2}^{1}\left(\Omega_{\tau_{0}}\right)$ of vector functions $\omega=\left(\omega_{1}, \ldots, \omega_{m}\right)$ of the class $C^{2}\left(\bar{\Omega}_{\tau_{0}}\right)$, satisfying the following homogeneous boundary conditions:

$$
\begin{equation*}
\left.w\right|_{\Gamma_{\tau_{0}}}=0,\left.\quad w\right|_{z=\tau_{0}}=0 \tag{4.28}
\end{equation*}
$$

Towards this end, we first multiply each of the equalities (4.21) by its own function $d_{\ell}(z) \in C^{2}\left[0, \tau_{0}\right], d_{\ell}\left(\tau_{0}\right)=0$, then sum the obtained equality with respect to ℓ from 1 to N and integrate with respect to z from 0 to τ_{0}. Next, integration by parts in the first term results in the identity

$$
\begin{align*}
\int_{\Omega_{\tau_{0}}} & {\left[-v_{z}^{N} w_{z}+\frac{1}{z^{2}} \sum_{i, j=1}^{n} v_{y_{i}}^{N}\left(\widetilde{A}_{i j} w\right)_{y_{j}}+\frac{2}{z} \sum_{i=1}^{n} v_{z}^{N}\left(y_{i} w\right)_{y_{i}}+\frac{1}{z} \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}}^{N} w+\widetilde{C} v^{N} w\right] d y d z } \\
& =\int_{\Omega_{\tau_{0}}} \widetilde{F} w d y d z \tag{4.29}
\end{align*}
$$

which is valid for any w of the type $\sum_{\ell=1}^{N} d_{\ell}(z) \varphi_{\ell}(y)$. The union of such v is denoted by V_{N}. If we pass in (4.29) to the limit by the above-chosen subsequence for fixed w
of the class V_{N}, then we will arrive at the identity (4.27) for the limiting function $v \in$ $W_{2}^{1}\left(\Omega_{\tau_{0}}\right)$, valid for any $w \in \bigcup_{N=1}^{\infty} V_{N}$. Now we can show that $\bigcup_{N=1}^{\infty} V_{N}$ is dense in V.

Indeed, let $w \in C^{2}\left(\bar{\Omega}_{\tau_{0}}\right)$ and let the equalities (4.28) be fulfilled. Then there exists an extension w_{0} of the vector function w to the greater cylinder $\Omega_{*}=\left\{(y, z) \in \mathbb{R}^{n+1}\right.$: $\left.y \in G, z \in\left(-\tau_{0}, \tau_{0}\right)\right\}$ of the class $C^{2}\left(\bar{\Omega}_{*}\right)$, such that $\left.w_{0}\right|_{\partial \Omega_{*}}=0,\left.w_{0}\right|_{\Omega_{\tau_{0}}}=w$ (see [8, page 591]). Consequently, $w_{0} \in W^{\circ}{ }_{2}^{1}\left(\Omega_{*}\right)$, and since the system of functions

$$
\begin{equation*}
\left\{\varphi_{\ell}(y) \sin \frac{\pi k\left(z+\tau_{0}\right)}{2 \tau_{0}}\right\}_{k, \ell=1}^{\infty} \tag{4.30}
\end{equation*}
$$

is fundamental in the space $W^{\circ}{ }_{2}^{1}\left(\Omega_{*}\right)$ (see [20, pages 112,165$]$), for any $\varepsilon>0$ there exists a linear combination $\sum_{i=1}^{k} \alpha_{i} \tilde{w}_{i}$ of vector functions from the system (4.30) such that

$$
\begin{equation*}
\left\|w_{0}-\sum_{i=1}^{k} \alpha_{i} \tilde{w}_{i}\right\|_{W_{2}^{1}\left(\Omega_{*}\right)}<\varepsilon \tag{4.31}
\end{equation*}
$$

because $\|\tilde{\mathcal{W}}\|_{W_{2}^{1}\left(\Omega_{*}\right)}=\|\tilde{w}\|_{W_{2}^{1}\left(\Omega_{*}\right)}$. By virtue of (4.28) and the fact that $\left.w_{0}\right|_{\Omega_{\tau_{0}}}=w$, we have

$$
\begin{equation*}
\left\|w-\sum_{i=1}^{k} \alpha_{i} \tilde{w}_{i}\right\|_{V}=\left\|w-\sum_{i=1}^{k} \alpha_{i} \tilde{w}_{i}\right\|_{W_{2}^{1}\left(\Omega_{\tau_{0}}\right)} \leq\left\|w_{0}-\sum_{i=1}^{n} \alpha_{i} \tilde{w}_{i}\right\|_{W_{2}^{1}\left(\Omega_{*}\right)}<\varepsilon . \tag{4.32}
\end{equation*}
$$

But $\sum_{i=1}^{k} \alpha_{i} \tilde{w}_{i} \in \bigcup_{N=1}^{\infty} V_{N}$. Therefore from (4.32) and the fact that the set $\left\{w \in C^{2}\left(\bar{\Omega}_{\tau_{0}}\right)\right.$: $\left.\left.w\right|_{\Gamma_{0}}=0,\left.w\right|_{z=\tau_{0}}=0\right\}$ is dense in the space V, we find that $\bigcup_{N=1}^{\infty} V_{N}$ is dense in V. Since $v \in W_{2}^{1}\left(\Omega_{\tau_{0}}\right)$, this in its turn implies that the identity (4.27), which is valid for any $w \in$ $\bigcup_{N=1}^{\infty} V_{N}$, will be valid for any $w \in V$ as well. Thus the limiting vector function $v=v(y, z)$ is a weak generalized solution of (4.3) satisfying the equalities (4.5) and (4.6).
$\left(3^{0}\right)$ Let us show that if the following additional conditions

$$
\begin{gather*}
\partial G \in C^{2} ; \quad B_{i x_{j}}, B_{i t}, C_{x_{j}}, C_{t} \in L_{\infty}\left(D_{\tau_{0}}\right), \quad i, j=1, \ldots, n, \tag{4.33}\\
F \in W_{2}^{1}\left(D_{\tau_{0}}\right),\left.\quad F\right|_{D_{\delta}}=0 \tag{4.34}
\end{gather*}
$$

are fulfilled, then the above-obtained limiting function v is a solution of the problem (4.3), (4.5), (4.6) from the space $W_{2}^{2}\left(\Omega_{\tau_{0}}\right)$, where $L_{\infty}\left(D_{\tau_{0}}\right)$ is the space of measurable bounded on $D_{\tau_{0}}$ functions.

We multiply by $\left(d^{2} / d z^{2}\right) C_{\ell}^{N}(z)$ the expression obtained after differentiation of the equality (4.21) with respect to z and then sum with respect to ℓ from 1 to N. As a result
we obtain

$$
\begin{align*}
& \left(v_{z z z}^{N}, v_{z z}^{N}\right)_{L_{2}(G)}-\frac{2}{z^{3}} \int_{G}\left\{\sum_{i, j=1}^{n}\left[\tilde{A}_{i j}(y) v_{y_{i}}^{N} v_{z z y_{j}}^{N}+\frac{\partial \tilde{A}_{i j}}{\partial y_{j}} v_{y_{i}}^{N} v_{z z}^{N}\right]\right\} d y \\
& \quad+\frac{1}{z^{2}} \int_{G}\left\{\sum_{i, j=1}^{n}\left[\tilde{A}_{i j}(y) v_{z y_{i}}^{N} v_{z z y_{j}}^{N}+\frac{\partial \widetilde{A}_{i j}}{\partial y_{j}} v_{z y_{i}}^{N} v_{z z}^{N}\right]\right\} d y \\
& \quad-\frac{2}{z^{2}} \int_{G}\left\{\sum_{i=1}^{n}\left[y_{i} v_{z}^{N} v_{z z y_{j}}^{N}+v_{z}^{N} v_{z z}^{N}\right]\right\} d y+\frac{2}{z} \int_{G}\left\{\sum_{i=1}^{n}\left[y_{i} v_{z z}^{N} v_{z z y_{i}}^{N}+v_{z z}^{N} v_{z z}^{N}\right]\right\} d y \\
& \quad+\int_{G}\left[-\frac{1}{z^{2}} \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}}^{N} v_{z z}^{N}+\frac{1}{z} \sum_{i=1}^{n} \frac{\partial \widetilde{B}_{i}}{\partial z} v_{y_{i}}^{N} v_{z z}^{N}+\frac{1}{z} \sum_{i=1}^{n} \widetilde{B}_{i} v_{z y_{i}}^{N} v_{z z}^{N}+\frac{\partial \widetilde{C}}{\partial z} v^{N} v_{z z}^{N}+\widetilde{C} v_{z}^{N} v_{z z}^{N}\right] d y \\
& = \tag{4.35}\\
& =\left(\widetilde{F}_{z}, v_{z z}^{N}\right)_{L_{2}(G)} .
\end{align*}
$$

It can be easily verified that

$$
\begin{align*}
&\left(v_{z z z}^{N}, v_{z z}^{N}\right)_{L_{2}(G)}=\frac{1}{2} \frac{d}{d z}\left(v_{z z}^{N} v_{z z}^{N}\right)_{L_{2}(G)}, \tag{4.36}\\
&-\frac{2}{z^{3}} \int_{G} {\left[\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{y_{i}}^{N} v_{z z y_{j}}^{N}\right] d y } \\
&= \frac{d}{d z}\left\{-\frac{2}{z^{3}} \int_{G}\left[\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{y_{i}}^{N} v_{z y_{j}}^{N}\right] d y\right\}-\frac{6}{z^{4}} \int_{G}\left[\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{y_{i}}^{N} v_{z y_{j}}^{N}\right] d y \tag{4.37}\\
&+\frac{2}{z^{3}} \int_{G}\left[\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{z y_{i}}^{N} v_{z y_{j}}^{N}\right] d y, \\
& \begin{aligned}
\frac{1}{z^{2}} \int_{G} & {\left[\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{z y_{i}}^{N} v_{z z y_{j}}^{N}\right] d y } \\
= & \frac{1}{2} \frac{d}{d z}\left\{\frac{1}{z^{2}} \int_{G}\left[\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{z y_{i}}^{N} v_{z y_{j}}^{N}\right] d y\right\}+\frac{1}{z^{3}} \int_{G}\left[\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{z y_{i}}^{N} v_{z y_{j}}^{N}\right] d y, \\
-\frac{2}{z^{2}} \int_{G} & {\left[\sum_{i=1}^{n} y_{i} v_{z}^{N} v_{z z y_{i}}^{N}\right] d y } \\
= & \frac{d}{d z}\left\{-\frac{2}{z^{2}} \int_{G}\left[\sum_{i=1}^{n} y_{i} v_{z}^{N} v_{z y_{i}}^{N}\right] d y\right\}-\frac{4}{z^{3}} \iint_{G}\left[\sum_{i=1}^{n} y_{i} v_{z}^{N} v_{z y_{i}}^{N}\right] d y \\
& +\frac{2}{z^{2}} \int_{G}\left[\sum_{i=1}^{n} y_{i} v_{z z}^{N} v_{z y_{i}}^{N}\right] d y, \\
\frac{2}{z} \int_{G} & {\left[\sum_{i=1}^{n} y_{i} v_{z z}^{N} v_{z z y_{i}}^{N}\right] d y } \\
= & \frac{2}{z} \int_{G}\left[\sum_{i=1}^{n}\left\{\frac{1}{2} \frac{\partial}{\partial y_{i}}\left(y_{i} v_{z z}^{N} v_{z z}^{N}\right)-\frac{1}{2}\left(v_{z z}^{N} v_{z z}^{N}\right)\right\}\right] d y \\
= & \frac{2}{z} \int_{\partial G}\left[\sum_{i=1}^{n} \frac{1}{2} y_{i} v_{z z}^{N} v_{z z}^{N}\right] v_{i} d s-\frac{n}{z} \int_{G} v_{z z}^{N} v_{z z}^{N} d y=-\frac{n}{z} \int_{G} v_{z z}^{N} v_{z z}^{N} d y
\end{aligned}
\end{align*}
$$

where $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ is the unit vector of the outer normal to ∂G. In deriving (4.40), we have taken into account that by the construction $\left.v_{z z}^{N}\right|_{\partial G}=0$.

Substituting (4.36), (4.37), (4.38), (4.39), and (4.40) into (4.35), integrating the latter with respect to z from 0 to τ and taking into account that $\left.v^{N}\right|_{\Omega_{\delta}}=0, \delta<\tau$ by (4.25), we have

$$
\begin{align*}
& \frac{1}{2}\left(v_{z z}^{N}, v_{z z}^{N}\right)_{L_{2}\left(G_{\tau}\right)} \\
& \quad-\frac{2}{\tau^{3}} \int_{G_{\tau}}\left[\sum_{i, j=1}^{n} \widetilde{A}_{i j}(y) v_{y_{i}}^{N} v_{z y_{j}}^{N}\right] d y-6 \int_{\Omega_{\tau} \backslash \Omega_{\delta}} \frac{1}{z^{4}}\left[\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{y_{i}}^{N} v_{z y_{j}}^{N}\right] d y d z \\
& \quad+2 \int_{\Omega_{\tau} \backslash \Omega_{\delta}} \frac{1}{z^{3}}\left[\sum_{i, j=1}^{n} \widetilde{A}_{i j}(y) v_{z y_{i}}^{N} v_{z y_{j}}^{N}\right] d y d z \\
& \quad-2 \int_{\Omega_{\tau} \backslash \Omega_{\delta}} \frac{1}{z^{3}}\left[\sum_{i, j=1}^{n} \frac{\partial \tilde{A}_{i j}}{\partial y_{j}} v_{y_{i}}^{N} v_{z z}^{N}\right] d y d z+\frac{1}{2 \tau^{2}} \int_{G_{\tau}}\left[\sum_{i, j=1}^{n} \widetilde{A}_{i j}(y) v_{z y_{i}}^{N} v_{z y_{j}}^{N}\right] d y \\
& \quad+\int_{\Omega_{\tau} \backslash \Omega_{\delta}} \frac{1}{z^{3}}\left[\sum_{i, j=1}^{n} \tilde{A}_{i j}(y) v_{z y_{i}}^{N} v_{z y_{j}}^{N}\right] d y d z+\int_{\Omega_{\tau} \backslash \Omega_{\delta}} \frac{1}{z^{2}}\left[\sum_{i, j=1}^{n} \frac{\partial \tilde{A}_{i j}}{\partial y_{j}} v_{z y_{i}}^{N} v_{z z}^{N}\right] d y d z \\
& \quad-\frac{2}{\tau^{2}} \int_{G_{\tau}}\left[\sum_{i=1}^{n} y_{i} v_{z}^{N} v_{z y_{i}}^{N}\right] d y-4 \int_{\Omega_{\tau} \backslash \Omega_{\delta}} \frac{1}{z^{3}}\left[\sum_{i=1}^{n} y_{i} v_{z}^{N} v_{z y_{i}}^{N}\right] d y d z \\
& \quad+2 \int_{\Omega_{\tau} \backslash \Omega_{\delta}} \frac{1}{z^{2}}\left[\sum_{i=1}^{n} y_{i} v_{z z}^{N} v_{z y_{i}}^{N}\right] d y d z-2 \int_{\Omega_{\tau} \backslash \Omega_{\delta}} \frac{n}{z^{2}} v_{z}^{N} v_{z z}^{N} d y d z \\
& \quad-n \int_{\Omega_{\tau} \backslash \Omega_{\delta}} \frac{1}{z} v_{z z}^{N} v_{z z}^{N} d y d z+2 \int_{\Omega_{\tau} \backslash \Omega_{\delta}} \frac{n}{z} v_{z z}^{N} v_{z z}^{N} d y d z \\
& \quad+\int_{\Omega_{\tau} \backslash \Omega_{\delta}}\left[-\frac{1}{z^{2}} \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}}^{N} v_{z z}^{N}+\frac{1}{z} \sum_{i=1}^{n} \frac{\partial \widetilde{B}_{i}}{\partial z} v_{y_{i}}^{N} v_{z z}^{N}+\frac{1}{z} \sum_{i=1}^{n} \widetilde{B}_{i} v_{z y_{i}}^{N} v_{z z}^{N}+\frac{\partial \widetilde{C}}{\partial z} v^{N} v_{z z}^{N}+\widetilde{C}^{n} v_{z}^{N} v_{z z}^{N}\right] d y d z \\
& =\left(\widetilde{F}_{z}, v_{z z}^{N}\right)_{L_{2}\left(\Omega_{\tau}\right)} \tag{4.41}
\end{align*}
$$

Owing to the well-known inequalities

$$
\begin{gather*}
\left|\int_{G_{\tau}} \varphi(y) \psi(y) d y\right| \leq\left(\int_{G_{\tau}} \varphi^{2} d y\right)^{1 / 2}\left(\int_{G_{\tau}} \psi^{2} d y\right)^{1 / 2} \tag{4.42}\\
|a b| \leq \varepsilon|a|^{2}+\frac{1}{4 \varepsilon}|b|^{2}, \quad \varepsilon=\text { const }>0
\end{gather*}
$$

the two summands

$$
\begin{equation*}
I_{1}=-\frac{2}{\tau^{3}} \int_{G_{\tau}}\left[\sum_{i, j=1}^{n} \widetilde{A}_{i j}(y) v_{y_{i}}^{N} v_{z y_{j}}^{N}\right] d y, \quad I_{2}=-\frac{2}{\tau^{2}} \int_{G_{\tau}}\left[\sum_{i=1}^{n} y_{i} v_{z}^{N} v_{z y_{i}}^{N}\right] d y \tag{4.43}
\end{equation*}
$$

from the left-hand side of (4.41) admit the following estimates:

$$
\begin{align*}
& \left|I_{1}\right| \leq \varepsilon \frac{\widetilde{c}_{6}}{\tau^{3}} \int_{G_{\tau}} v_{z y_{j}}^{N} v_{z y_{j}}^{N} d y+\frac{c_{7}(\varepsilon)}{\tau^{3}} \int_{G_{\tau}} v_{y_{i}}^{N} v_{y_{i}}^{N} d y, \\
& \left|I_{2}\right| \leq \varepsilon \frac{\widetilde{c}_{8}}{\tau^{2}} \int_{G_{\tau}} v_{z y_{i}}^{N} v_{z y_{i}}^{N} d y+\frac{c_{9}(\varepsilon)}{\tau^{2}} \int_{G_{\tau}} v_{z}^{N} v_{z}^{N} d y, \tag{4.44}
\end{align*}
$$

in which the positive constants \widetilde{c}_{6} and \widetilde{c}_{8} depend only on the coefficients $A_{i j}$ of the system (1.1) and on the finite domain G, while $c_{7}, c_{9}=$ const >0 depend only on ε.

By (4.44) and (4.25), for a sufficiently small positive $\varepsilon=\varepsilon(\delta)$, reasoning just in the same way as for the inequality (4.16) and using the estimate (4.16), from (4.41) we get

$$
\begin{equation*}
\widetilde{w}_{0}(\tau) \leq c_{10}(\delta) \int_{\Omega_{\tau}}\left(\widetilde{F} \widetilde{F}+\widetilde{F}_{z} \widetilde{F}_{z}\right) d y d z, \quad c_{10}(\delta)=\text { const }>0 \tag{4.45}
\end{equation*}
$$

where $\tilde{w}_{0}(\tau)=\int_{G_{\tau}}\left[v_{z z}^{N} v_{z z}^{N}+\sum_{i=1}^{n} v_{z y_{i}}^{N} v_{z y_{i}}^{N}\right] d y$, which in its turn results in

$$
\begin{equation*}
\left\|v_{z z}^{N}\right\|_{L_{2}\left(\Omega_{\left.\tau_{0}\right)}\right)}+\sum_{i=1}^{n}\left\|v_{z y_{i}}^{N}\right\|_{L_{2}\left(\Omega_{\left.\tau_{0}\right)}\right)} \leq c_{11}(\delta)\left[\|\tilde{F}\|_{L_{2}\left(\Omega_{\left.\tau_{0}\right)}\right)}+\left\|\widetilde{F}_{z}\right\|_{L_{2}\left(\Omega_{\tau_{0}}\right)}\right] \tag{4.46}
\end{equation*}
$$

where $c_{11}(\delta)=$ const >0.
By the estimates (4.26) and (4.46), some subsequence $\left\{v^{N_{k}}\right\}$ converges weakly in L_{2} together with the first-order derivatives $v_{z}^{N_{k}}, v_{y_{i}}^{N_{k}}, i=1, \ldots, n$, and the derivatives $v_{z z}^{N_{k}}, v_{z y_{i}}^{N_{k}}$, $i=1, \ldots, n$, to the above-constructed solution v and, respectively, to $v_{z}, v_{y_{i}}, v_{z z}, v_{z y_{i}}, i=$ $1, \ldots, n$. It should be noted that for v the inequality

$$
\begin{equation*}
\left\|v_{z z}\right\|_{L_{2}\left(\Omega_{\tau_{0}}\right)}+\sum_{i=1}^{n}\left\|v_{z y_{i}}\right\|_{L_{2}\left(\Omega_{\tau_{0}}\right)} \leq c_{12}(\delta)\left[\|\widetilde{F}\|_{L_{2}\left(\Omega_{\tau_{0}}\right)}+\left\|\widetilde{F}_{z}\right\|_{L_{2}\left(\Omega_{\tau_{0}}\right)}\right] \tag{4.47}
\end{equation*}
$$

where $c_{12}(\delta)=$ const >0, is valid.
By (4.17) and (4.47), the vector function v will belong to the space $W_{2}^{2}\left(\Omega_{\tau_{0}}\right)$, if we show that v has generalized derivatives $v_{y_{i} y_{j}}$ from $L_{2}\left(\Omega_{\tau_{0}}\right), i, j=1, \ldots, n$.

Denote by \tilde{V} the space of all vector functions $w=\left(w_{1}, \ldots, w_{m}\right) \in L_{2}\left(\Omega_{\tau_{0}}\right)$ having generalized derivatives $w_{y_{i} y_{j}}, i, j=1, \ldots, n$, from $L_{2}\left(\Omega_{\tau_{0}}\right)$ and satisfying the homogeneous boundary condition (4.5), that is, $\left.w\right|_{\Gamma_{0}}=0$.

Just in the same way as we obtained (4.27) from (4.21), it follows from (4.21) that the above-constructed vector function v satisfies the integral identity

$$
\begin{align*}
\int_{\Omega_{\tau_{0}}} & {\left[v_{z z} w+\frac{1}{z^{2}} \sum_{i, j=1}^{n} v_{y_{i}}\left(\widetilde{A}_{i j} w\right)_{y_{j}}-\frac{2}{z} \sum_{i=1}^{n} v_{z y_{i}} y_{i} w+\frac{1}{z} \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}} w+\widetilde{C} v w\right] d y d z } \tag{4.48}\\
& =\int_{\Omega_{\tau_{0}}} \widetilde{F} w d y d z \quad \forall w \in \widetilde{V}
\end{align*}
$$

If in (4.48) we take as $w \in \tilde{V}$ the vector function $w(y, z)=\psi(z) \Psi(y)$, where the scalar function $\psi(t)$ and the vector function $\Psi(y)$ are arbitrary elements respectively from $L_{2}\left(\left(0, \tau_{0}\right)\right)$ and $\dot{W}_{2}^{1}(G)$, then the equality (4.48) by Fubini's theorem can be rewritten in the form

$$
\begin{align*}
& \int_{0}^{\tau_{0}} \psi(z)\left\{\int_{G_{z}}\left[v_{z z} \Psi+\frac{1}{z^{2}} \sum_{i, j=1}^{n} v_{y_{i}}\left(\widetilde{A}_{i j} \Psi\right)_{y_{j}}-\frac{2}{z} \sum_{i=1}^{n} v_{z y_{i}} y_{i} \Psi+\frac{1}{z} \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}} \Psi+\widetilde{C} v \Psi\right] d y\right\} d z \\
& \quad=\int_{0}^{\tau_{0}} \psi(z)\left[\int_{G_{z}} \widetilde{F} \Psi d y\right] d z \tag{4.49}
\end{align*}
$$

which, due to arbitrariness in choice of $\psi(z) \in L_{2}\left(\left(0, \tau_{0}\right)\right)$, for almost all $z \in\left(0, \tau_{0}\right)$ yields

$$
\begin{align*}
\int_{G_{z}} & {\left[\sum_{i, j=1}^{n} v_{y_{i}}\left(\widetilde{A}_{i j} \Psi\right)_{y_{j}}+z \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}} \Psi+z^{2} \widetilde{C} v \Psi\right] d y } \tag{4.50}\\
& =\int_{G_{z}}\left(-z^{2} v_{z z}+2 z \sum_{i=1}^{n} v_{z y_{i}} y_{i}+z^{2} \widetilde{F}\right) \Psi d y \quad \forall \Psi \in \stackrel{\circ}{W}_{2}^{1}(G) .
\end{align*}
$$

Since for such $z \in\left(0, \tau_{0}\right)$ the vector function

$$
\begin{equation*}
\widehat{F}=\left[-z^{2} v_{z z}+2 z \sum_{i=1}^{n} v_{z y_{i}} y_{i}+z^{2} \widetilde{F}\right] \in L_{2}(G) \tag{4.51}
\end{equation*}
$$

the identity (4.50) implies that the vector function $v=\left(v_{1}, \ldots, v_{m}\right)$ is the generalized solution from the space ${ }_{W}^{1}{ }_{2}^{1}(G)$ for the following elliptic system of equations:

$$
\begin{equation*}
-\sum_{i, j=1}^{n} \widetilde{A}_{i j} v_{y_{i} y_{j}}+z \sum_{i=1}^{n} \widetilde{B}_{i} v_{y_{i}}+z^{2} \widetilde{C} v=\widehat{F} \tag{4.52}
\end{equation*}
$$

According to (4.7), the system (4.52) is strongly elliptic. Therefore under the assumption that $\partial G \in C^{2}$, that is, the appearing in the definition of conic domain D function $g \in C^{2}$, in the system (1.1) the coefficients $B_{i}, C \in C^{1}\left(\bar{D}_{\tau_{0}}\right)$ and thus in the system (4.52) the coefficients $\widetilde{B}_{i}, \widetilde{C} \in C^{1}\left(\bar{\Omega}_{\tau_{0}}\right)$, the generalized solution v of the system (4.52) from the space $\dot{W}_{2}^{1}(G)$ belongs also to the space $W_{2}^{2}(G)$ for such $z \in\left(0, \tau_{0}\right)$ (see [19, page 109]), and

$$
\begin{align*}
\|v\|_{W_{2}^{2}\left(G_{z}\right)} & \leq c_{13}\|\hat{F}\|_{L_{2}\left(G_{z}\right)} \\
& \leq c_{14}\left[\left\|v_{z z}\right\|_{L_{2}\left(G_{z}\right)}+\sum_{i=1}^{n}\left\|v_{z y_{i}}\right\|_{L_{2}\left(G_{z}\right)}+\|\widetilde{F}\|_{L_{2}\left(G_{z}\right)}\right], \quad c_{13}, c_{14}=\text { const }>0 . \tag{4.53}
\end{align*}
$$

Thus for such $z \in\left(0, \tau_{0}\right)$ the vector function v has generalized derivatives $v_{y_{i} y_{j}}, i, j=$ $1, \ldots, n$, from $L_{2}\left(G_{z}\right)$, and by (4.47) and (4.53) we have $\widetilde{g}_{i j}(z)=\left\|v_{y_{i} y_{j}}\right\|_{L_{2}\left(G_{\tau}\right)} \in L_{2}\left(\left(0, \tau_{0}\right)\right)$. Hence it remains to notice that the function $\hat{g}(y, z) \in L_{2}\left(\Omega_{\tau_{0}}\right)$ has the generalized derivative $\hat{g}_{y_{i}}(y, z) \in L_{2}\left(\Omega_{\tau_{0}}\right), 1 \leq i \leq n$, if and only if for almost all $z \in\left(0, \tau_{0}\right)$ the function \hat{g} has the generalized derivative $\hat{g}_{y_{i}} \in L_{2}\left(G_{z}\right)$ and $\hat{\varphi}_{i}(z)=\left\|\hat{g}_{y_{i}}\right\|_{L_{2}\left(G_{z}\right)} \in L_{2}\left(\left(0, \tau_{0}\right)\right)$.

Getting back from y, z to the initial variables x, t, we see that by the equalities (4.2) the vector function $u(x, t)=v(x / t, t)$ is a solution of the system (1.1) from the space $W_{2}^{2}\left(D_{\tau_{0}}\right)$, satisfying the homogeneous boundary condition (4.1) and by virtue of (4.34) we have $\left.u\right|_{D_{\delta}}=0$.

Thus we have proved the following.
Lemma 4.2. Let $g \in C^{2}, B_{i}, C \in C^{1}\left(\bar{D}_{\tau_{0}}\right), i=1, \ldots, n, F \in W_{2}^{1}\left(D_{\tau_{0}}\right),\left.F\right|_{D_{\delta}}=0,0<\delta<\tau_{0}$, and let the condition (4.7) be fulfilled. Then the problem (1.1), (4.1) has a unique solution from the space $W_{2}^{2}\left(D_{\tau_{0}}\right)$, and $\left.u\right|_{D_{\delta}}=0$.

In the case where $F \in L_{2}\left(D_{\tau_{0}}\right)$, since the space of infinitely differentiable finite functions $C_{0}^{\infty}(D)$ is dense in $L_{2}\left(D_{\tau_{0}}\right)$, there exists a sequence of vector functions $F_{k} \in C_{0}^{\infty}\left(D_{\tau_{0}}\right)$ such that $F_{k} \rightarrow F$ in $L_{2}\left(D_{\tau_{0}}\right)$. Since $F_{k} \in C_{0}^{\infty}\left(D_{\tau_{0}}\right)$, we have $F_{k} \in W_{2}^{1}\left(D_{\tau_{0}}\right)$, and for sufficiently small positive $\delta_{k}, \delta_{k}<\tau_{0}$, we have $\left.F_{k}\right|_{D_{\delta_{k}}}=0$.

Therefore by Lemma 4.2, there exists the unique solution $u_{k} \in W_{2}^{2}\left(D_{\tau_{0}}\right)$ of the problem (1.1), (4.1). By (4.1), from the inequality (3.14) we find that

$$
\begin{equation*}
\left\|u_{k}-u_{p}\right\|_{W_{2}^{1}\left(D_{\tau_{0}}\right)} \leq c\left\|F_{k}-F_{p}\right\|_{L_{2}\left(D_{\tau_{0}}\right)}, \tag{4.54}
\end{equation*}
$$

from which it follows that the sequence $\left\{u_{k}\right\}_{k=1}^{\infty}$ is fundamental in $W_{2}^{1}\left(D_{\tau_{0}}\right)$, since $F_{k} \rightarrow F$ in $L_{2}\left(D_{\tau_{0}}\right)$. Due to the fact that the space $W_{2}^{1}\left(D_{\tau_{0}}\right)$ is complete, there exists a vector function $u \in W_{2}^{1}\left(D_{\tau_{0}}\right)$ such that $u_{k} \rightarrow u$ in $W_{2}^{1}\left(D_{\tau_{0}}\right)$ and $L u_{k}=F_{k} \rightarrow F$ in $L_{2}\left(D_{\tau_{0}}\right)$. Consequently, u is a strong generalized solution of the problem (1.1), (4.1) of the class W_{2}^{1} for which by (3.14) we have the estimate

$$
\begin{equation*}
\|u\|_{W_{2}^{1}\left(D_{\tau_{0}}\right)} \leq c\|F\|_{L_{2}\left(D_{\tau_{0}}\right)} . \tag{4.55}
\end{equation*}
$$

Thus the following theorem is valid.
Theorem 4.3. Let $g \in C^{2}, B_{i}, C \in C^{1}\left(\bar{D}_{\tau_{0}}\right), i=1, \ldots, n$, and let the condition (4.7) be fulfilled. Then for any $F \in L_{2}\left(D_{\tau_{0}}\right)$ there exists a unique strong generalized solution of the problem (1.1), (4.1) of the class W_{2}^{1} for which the estimate (4.55) is valid.

Acknowledgment

The present work is supported by the INTAS Grant no. 00136.

References

[1] A. B. Bazarbekov, An analogue of the Darboux problem for the two-dimensional wave equation. I, Differentsial'nye Uravneniya 28 (1992), no. 12, 2075-2085 (Russian), translated in Differential Equations 28 (1992), no. 12, 1721-1729 (1993).
[2] A. V. Bitsadze, Mixed type equations on three-dimensional domains, Dokl. Akad. Nauk SSSR 143 (1962), no. 5, 1017-1019 (Russian).
\qquad , On the question of formulating the characteristic problem for second order hyperbolic systems, Dokl. Akad. Nauk SSSR 223 (1975), no. 6, 1289-1292 (Russian).
[4] _, The influence of the minor terms on the correctness of the formulation of characteristic problems for hyperbolic systems of second order, Dokl. Akad. Nauk SSSR 225 (1975), no. 1, 31-34 (Russian).
[5] _ Some Classes of Partial Differential Equations, "Nauka", Moscow, 1981.
[6] F. Cagnac, Problème de Cauchy sur un conoïde caractéristique, Ann. Mat. Pura Appl. (4) 104 (1975), 355-393 (French).
[7] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. II: Partial Differential Equations, Interscience Publishers, a division of John Wiley \& Sons, New York, 1962.
[8] G. M. Fikhtengol'ts, The Course of Differential and Integral Calculus, I, "Nauka", Moscow, 1969.
[9] J. Hadamard, Lectures on Cauchy's Problem in Partial Differential Equations, Yale University Press, New Haven, 1933.
[10] P. Horn and C. Johnson, Matrix Analysis, Mir, Moscow, 1989.
[11] S. Kharibegashvili, A problem of Goursat type for a class of hyperbolic systems, Differentsial'nye Uravneniya 17 (1981), no. 1, 157-164, 199 (Russian).
[12] A multidimensional problem of Goursat type for second-order strictly hyperbolic systems, Soobshch. Akad. Nauk Gruzin. SSR 117 (1985), no. 1, 37-40 (Russian).
[13] , Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems, Mem. Differential Equations Math. Phys. 4 (1995), 1-127.
[14] -_ On a spatial problem of Darboux type for a second-order hyperbolic equation, Georgian Math. J. 2 (1995), no. 3, 299-311.
[15] On the solvability of a spatial problem of Darboux type for the wave equation, Georgian Math. J. 2 (1995), no. 4, 385-394.
[16] On a Darboux type multidimensional problem for second-order hyperbolic systems, Georgian Math. J. 3 (1996), no. 4, 363-378.
[17] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, "Nauka", Moscow, 1973.
[18] L.-E. Lundberg, The Klein-Gordon equation with light-cone data, Comm. Math. Phys. 62 (1978), no. 2, 107-118.
[19] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.
[20] S. G. Mikhlin, The Course of Mathematical Physics, "Nauka", Moscow, 1968.
[21] P. A. Mishnaevskii and A. G. Ramm, A uniqueness theorem for a problem of Goursat-Darboux type, Dokl. Akad. Nauk SSSR 321 (1991), no. 1, 19-22 (Russian), translated in Soviet Math. Dokl. 44 (1992), no. 3, 656-659.
[22] A. M. Nakhushev, Multidimensional analogy of the Darboux problem for hyperbolic equations, Dokl. Akad. Nauk SSSR 194 (1970), no. 1, 31-34 (Russian).
[23] J. M. Rassias, New uniqueness theorems, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 1112, 569-571 (1981).
[24] M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1949), 1223 (French).
[25] S. L. Sobolev, Some new problems of the theory of partial differential equations of hyperbolic type, Mat. Sb. 11(53) (1942), no. 3, 155-200 (Russian).
S. Kharibegashvili: A. Razmadze Mathematical Institute, Department of Mathematics and Physics, Georgian Academy of Sciences, 0193 Tbilisi, Georgia

E-mail address: khar@rmi.acnet.ge

