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Yano’s extrapolation theorem dated back to 1951 establishes boundedness properties of a
subadditive operator T acting continuously in Lp for p close to 1 and/or taking L∞ into
Lp as p→ 1+ and/or p→∞ with norms blowing up at speed (p− 1)−α and/or pβ, α,β >
0. Here we give answers in terms of Zygmund, Lorentz-Zygmund and small Lebesgue
spaces to what happens if ‖T f ‖p ≤ c(p− r)−α‖ f ‖p as p→ r+ (1 < r <∞). The study has
been motivated by current investigations of convolution maximal functions in stochastic
analysis, where the problem occurs for r = 2. We also touch the problem of comparison
of results in various scales of spaces.

Copyright © 2006 Claudia Capone et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Preliminaries

Throughout the paper Ω ⊂ RN will be measurable and with Lebesgue measure |Ω| = 1.
The latter is purely technical, any |Ω| <∞ can be considered. If f is a (real) measurable
function onΩ, we will use the standard symbol f ∗ for its nonincreasing rearrangement—
see, for example, [2, 10]. The usual Lebesgue space of functions integrable with the pth
power will be denoted by Lp = Lp(Ω); we will use the averaging norm

‖ f ‖p =
(

1
|Ω|

∫
Ω

∣∣ f (x)
∣∣pdx

)1/p

(1.1)

(since we assume that |Ω| = 1 the fraction will be omitted throughout the paper, of
course).

The symbol ∼ will denote equivalence between functions or expressions containing
functions, that is, f ∼ g (and/or A∼ B) if c1 f (x)≤ g(x)≤ c2 f (x) a.e. in Ω (and/or c1A≤
B ≤ c2A), where c1 and c2 are independent of functions and variables involved. Should no
misunderstanding occur we will sometimes denote various constants in formulas by the
same symbol.
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2 On extrapolation blowups in the Lp scale

If X and Y are quasinormed linear spaces, then we write X ⊂ Y for the ordinary inclu-
sion and X↩Y for the imbedding. (By the word imbedding we always mean continuous
imbedding.) Throughout the paper we will tacitly use the well-known fact that if X and Y
are Banach Function Spaces, then the inclusion X ⊂ Y implies the imbedding X↩Y (cf.,
e.g., [1]). This particularly applies to all the spaces in the following—they are all Banach
Function Spaces.

Some special Orlicz spaces will be needed in the sequel. A Young function will be an
even function Φ :R1 → [0,∞), convex on [0,∞), Φ(0)= 0, Φ(∞)=∞. The monographs
[12–14] can be listed among basic references for the theory of Orlicz spaces.

The Zygmund space Lp(logL)β = Lp(logL)β(Ω), 1 ≤ p <∞, β > 0, is the Orlicz space
generated by the Young function Φ(t)∼ tp(log t)β for large t (as |Ω| <∞ only values of Φ
near infinity matter). In Lp(logL)β we will consider the norm (

∫ 1
0 f ∗(t)p[log(1/t)]βdt)1/p,

equivalent to the usual Luxemburg norm, where f ∗ is the nonincreasing rearrangement
of f (see, e.g., [2]). More generally, if α ∈ R1, 1 ≤ p, q <∞, then the Lorentz-Zygmund
space Lp,q;α is equipped with the quasinorm (

∫ 1
0 [t1/p f ∗(t)[log(1/t)]α]q(1/t)dt)1/q (see

[1]). With this notation we have Lp(logL)β = Lp,p;β/p. Recall (see [1, Theorem 9.3]) that
Lp,q;α ⊂ Lp,r;β provided either (i) q ≤ r and α≥ β or (ii) q > r and α+ 1/q > β+ 1/r.

Our last main tool are the small Lebesgue spaces (sL)p,λ = (sL)p,λ(Ω). Their formal
definition is rather complicated, however, quite natural in the light of work on duality
properties of grand Lebesgue spaces and extrapolation of Lebesgue spaces. We will say
that a function f belongs to (sL)p,λ (p > 1, λ > 0) if

‖ f ‖(sL)p,λ = inf
f=∑ f j

(∑
j

inf
0<ε<p′−1

ε−λ/(p
′−ε)∥∥ f j∥∥(p′−ε)′

)
<∞, (1.2)

where (p′ − ε)′ denotes the index conjugate to (p′ − ε), that is,

(p′ − ε)′ = p′ − ε

p′ − ε− 1
= p− ε(p− 1)

1− ε(p− 1)
. (1.3)

Observe that in the definition of the norm in (1.2) one can consider 0 < ε < ε0 for any
0 < ε0 < p′ − 1 to arrive at the same space (up to an equivalence of norms), see [9].

The small Lebesgue spaces have been introduced in [6]. (Observe that the notation
here is different—corresponding to L(p′,λ in the preceding papers.) They are Banach func-
tion spaces; for this we refer to [3].

The small Lebesgue spaces turn out to be a natural counterpart of the grand Lebesgue
spaces defined by Iwaniec and Sbordone in [11]. Observe that both scales of spaces have
found important applications in Analysis, particularly in differential equations in the last
years (see [3]).

For reader’s convenience we state several claims that will be used in the sequel.

Proposition 1.1 [3]. Let 1 < p <∞ and θ > 0. Then
⋃
β>1

Lp(logL)βθ/(p
′−1) ⊂ (sL)p,θ ⊂ Lp(logL)θ/(p

′−1) (1.4)

with continuous imbeddings. Moreover, both inclusions in (1.4) are proper.
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Observe that in terms of Lorentz-Zygmund spaces the relations (1.4) read Lp,p;βθ/p′ ⊂
(sL)p,θ ⊂ Lp,p;θ/p′ .

With help of Stirling’s formula it is not difficult to establish the following estimate for
the norms in L1(logL)γ (see, e.g., [8] for details).

Proposition 1.2. Let γ > 0. Then

‖g‖L1(logL)γ ≤ c(q′)γ‖g‖q, q −→ 1+ (1.5)

with c > 0 independent of g and q.

An easy consequence is the following assertion.

Proposition 1.3. Let γ > 0 and 1≤ r <∞. Then

‖g‖Lr (logL)γ ≤ c
(

p

p− r

)γ/r
‖g‖p, p −→ r+ (1.6)

with c > 0 independent of g and p.

Proof. Let p > r and q = p/r. We have

‖g‖Lr (logL)γ ≤ c
∥∥|g|r∥∥1/r

L1(logL)γ ≤ c(q′)γ/r
∥∥|g|r∥∥1/r

q = c
(

q

q− 1

)γ/r(∫
Ω

∣∣g(x)
∣∣rqdx

)1/(rq)

= c
(

rq

rq− r

)γ/r
‖g‖rq = c

(
p

p− r

)γ/r
‖g‖p.

(1.7)
�

We will also need an estimate similar to that in Proposition 1.2 for the small Lebesgue
spaces.

Lemma 1.4. Let r > 1, λ > 0. Then

‖g‖(sL)r,λ ≤
[

p− 1
(r′ − 1)(p− r)

]λ(p−1)/p

‖g‖p, p > r. (1.8)

Proof. Consider trivial decomposition of g of the form

(
g1,g2, . . . ,gj , . . .

)= (0,0, . . . ,0,g,0, . . .). (1.9)

Then

∑
j

inf
0<ε<r′−1

ε−λ/(r
′−ε)∥∥gj∥∥(r′−ε)′ = inf

0<ε<r′−1
ε−λ/(r

′−ε)‖g‖(r′−ε)′ . (1.10)
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We have r′ − ε < r′ hence (r′ − ε)′ > r. Put p = (r′ − ε)′. Then ε = r′ − p′ < r′ − 1. This
yields

[
(r′ − 1)(p− r)

p− 1

]−λ/[r′−(r′−1)(p−r)/(p−1)]

=
[

(r′ − 1)(p− r)
p− 1

]−λ(p−1)/p

=
[

p− 1
(r′ − 1)(p− r)

]λ(p−1)/p

.

(1.11)

�

2. Statement of main results

If T : Lp → Lp for 1 < p < p0, p0 ∈ (1,∞) some fixed number, α > 0, and if T is subadditive
and such that

‖T f ‖p ≤ c

(p− 1)α
‖ f ‖p as p −→ 1+, (2.1)

then the celebrated Yano’s theorem [16] gives the consequence

‖T f ‖1 ≤ c‖ f ‖L1(logL)α , f ∈ L1(logL)α, (2.2)

with c independent of f . The blowup of the norms in (2.1) is often met in Analysis when
studying properties of various integral operators. It includes the problem of what is going
on in the Marcinkiewicz interpolation theorem if the resulting power tends to the left end
point of the interpolation interval. Let us point out that (2.2) holds true if the underlying
set Ω has a finite Lebesgue measure; it is more complicated to consider operators, for
example, in the whole of RN .

There are, however, subadditive operators for which the blowup of norms occurs if
p → 2+. In [5] Da Prato and Zabczyk investigated the stochastic convolution maximal
function and established an inequality of type (2.1) where p− 2 appears instead of p− 1.
In [15], the authors investigate behaviour of this maximal function near L2 and they
restrict themselves for p ≥ 2 + δ with some positive δ. Rather surprisingly Yano’s theorem
does not permit a straightforward “shift” of the situation from p→ 1+ to p→ 2+. A major
problem is the subadditivity, which fails for T(g2) with g ∈ Lp, p > 2. Even though one
can decompose g2 into a sum of g2

j , where gj ∈ L(2 j )′ , j = 1, . . . ((2 j)′ = 2 j /(2 j − 1)), have
disjoint support (cf. [8]), the latter property need not be inherited by the functions T(g2

j ).
In [8] a generalization of Yano’s theorem was established for operators T : Lp → Lr(p),

where r : [1, p0)→ [1,∞), p ≤ r(1)p ≤ r(p) for every p ∈ [1, p0] and p→ 1+. Here we will
give an answer to the extrapolation problem for p→ r+ (1 < r <∞) in terms of three “lim-
iting” spaces: Zygmund, small Lebesgue, and Lorentz-Zygmund spaces. A special case of
this situation for p → 2+ and the blowup (p− 2)−1 has been considered by Carro and
Martı́n [4] by means of the abstract extrapolation theory. In the last section we will con-
sider the problem of comparison of these various results. In our knowledge a complete
picture is not available at the moment. We illustrate the situation with several examples.

Our approach in this paper does not require any special background, in particular,
the abstract extrapolation method, which has been used for the small Lebesgue spaces,



Claudia Capone et al. 5

for example, in [7]. The basic idea follows the classical Titschmarsch proof of the L logL
theorem (e.g., in [17]), namely, to estimate the quasinorms in terms of suitable decom-
positions, permitting a satisfactory analysis of the rather delicate situation near the left
end point of the extrapolation interval.

First we will tackle the problem of what is going on if we try to estimate the Zygmund
norm of T f .

Theorem 2.1. Let 1 < r < p0 <∞ and let T be a subadditive and homogeneous operator
such that

‖T f ‖p ≤ c

(p− r)α
‖ f ‖p, r < p < p0, (2.3)

with some α > 0. Then, for any γ > 0,

‖T f ‖Lr (logL)γ ≤ c inf
f=∑ f j

∑
j

inf
0<ε<ε0

ε−δ/(r
′−ε)∥∥ f j∥∥(r′−ε)′ , (2.4)

where δ = r′(α+ γ/r) and c is independent of f , that is,

‖T f ‖Lr (logL)γ ≤ c‖ f ‖(sL)r,δ , f ∈ (sL)r,δ. (2.5)

Observe that γ is positive in the above theorem. To get the limiting estimate in Lr
we will need the small Lebesgue spaces. We get actually estimates in a scale with Lr as
the “left end point” in next two theorems. Indeed, going along the lines of the proof of
Theorem 2.2 in the next section one can easily check that the proof works also for λ= 0
(the estimate (2.7) below). At the same time it is not difficult to see that (sL)r,0 = Lr .

Theorem 2.2. Let 1 < r < p0 <∞ and let T be a subadditive operator satisfying (2.3) and
λ > 0. Then

‖T f ‖(sL)r,λ ≤ c inf
f=∑ f j

∑
j

inf
0<ε<ε0

ε−μ/(r
′−ε)∥∥ f j∥∥(r′−ε)′ , (2.6)

with μ= r′α+ λ and c independent of f , that is,

‖T f ‖(sL)r,λ ≤ c‖ f ‖(sL)r,μ , f ∈ (sL)r,μ. (2.7)

The “left end point” variant of this is the following theorem.

Theorem 2.3. Let 1 < r < p0 <∞ and let T be a subadditive operator satisfying (2.3). Then

‖T f ‖r ≤ c inf
f=∑ f j

∑
j

inf
0<ε<ε0

ε−r
′α/(r′−ε)∥∥ f j∥∥(r′−ε)′ , (2.8)

with c independent of f , that is,

‖T f ‖r ≤ c‖ f ‖(sL)r,r′α , f ∈ (sL)r,r′α. (2.9)

In the next theorem we use the scale of Lorentz-Zygmund spaces.
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Theorem 2.4. Let 1 < r <∞ and let T be a subadditive operator satisfying

‖T f ‖p ≤ c

(p− r)α
‖ f ‖p, p > r, (2.10)

Then

‖T f ‖r ≤ c
∫ 1

0
t1/r f ∗(t)

[
log(1/t)

]α dt
t

, (2.11)

that is,

‖T f ‖r ≤ c‖ f ‖Lr,1;α . (2.12)

The space Lr in the norm on the left-hand side of (2.11) can be viewed as another
“left end point” of another suitable scale of function spaces, namely of the logarithmic
Lebesgue (i.e., Zygmund) spaces Lr(logL)β = Lr,r;β/r , β > 0. The proof of the correspond-
ing estimate repeats the basic idea of the proof of Theorem 2.4. For completeness we state
the claim as a separate theorem and in the next section we describe the appropriate mod-
ification of the proof.

Theorem 2.5. Let 1 < r <∞ and let T be a subadditive operator satisfying (2.3) and α,
β > 0. Then

‖T f ‖Lr (logL)β ≤ c
∫ 1

0
t1/r f ∗(t)

[
log(1/t)

]α+β/r dt

t
, (2.13)

that is,

‖T f ‖Lr (logL)β ≤ c‖ f ‖Lr,1;α+β/r . (2.14)

3. Proofs

Proof of Theorem 2.1. Let p > r and γ > 0. Then by virtue of Proposition 1.3 we have

‖T f ‖Lr (logL)γ ≤ c
(

p

p− r

)γ/r
‖T f ‖p. (3.1)

Hence, if we plug in the assumption (2.3), we have

‖T f ‖Lr (logL)γ ≤
(

c

p− r

)α+γ/r

‖ f ‖p, r < p < p0. (3.2)

Put p− r = ε. Then this becomes

‖T f ‖Lr (logL)γ ≤ c

εα+γ/r ‖ f ‖r+ε, r < p < p0. (3.3)

Let us choose ε̃ such that (r′ − ε̃ )′ = r + ε, that is,

ε= (r′ − ε̃ )′ − r = (r− 1)ε̃
r′ − 1− ε̃

. (3.4)
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Then

‖T f ‖Lr (logL)γ ≤ c
[

(r− 1)ε̃
r′ − 1− ε̃

]−α−γ/r
‖ f ‖(r′−ε̃ )′

≤ c
(

1
r′ − 1− ε̃

)−α−γ/r
(ε̃)−α−γ/r‖ f ‖(r′−ε̃ )′ .

(3.5)

Write again ε instead of ε̃; we have thus

‖T f ‖Lr (logL)γ ≤ c
(

1
r′ − 1− ε

)−α−γ/r
ε−α−γ/r‖ f ‖(r′−ε)′ . (3.6)

But

ε−α−γ/r ≤ cε−r
′(α+γ/r)/(r′−ε) (3.7)

therefore, if f =∑ f j , we have

‖T f ‖Lr (logL)γ ≤
∑
j

∥∥T fj
∥∥
Lr (logL)γ ≤ c

∑
j

inf
0<ε<ε0

ε−r
′(α+γ/r)/(r′−ε)∥∥ f j∥∥(r′−ε)′ , (3.8)

and passing to the infimum over all decompositions we finally obtain

‖T f ‖Lr (logL)γ ≤ c‖ f ‖(sL)r,r′(α+γ/r) . (3.9)
�

Proof of Theorem 2.2. Applying Lemma 1.4 we have (for 1 < r < p < p0)

‖T f ‖(sL)r,λ ≤ c
(
p− 1
p− r

)λ(p−1)/p

‖T f ‖p ≤ c
(
p− 1
p− r

)λ(p−1)/p c

(p− r)α
‖ f ‖p

= c(p− 1)λ(p−1)/p 1
(p− r)α+λ(p−1)/p ‖ f ‖p = c

1
(p− r)α+λ(p−1)/p ‖ f ‖p.

(3.10)

Put p− r = ε. Then we can rewrite the last estimate as

‖T f ‖(sL)r,λ ≤
c

εα+λ(r−1+ε)/(r+ε)
‖ f ‖r+ε (3.11)

so that (with ε̃ as in the proof of Theorem 2.1)

‖T f ‖(sL)r,λ ≤ c(ε̃)−α−λ[r−1+(r−1)ε̃/(r′−1−ε̃)]/[r+(r−1)ε̃/(r′−1−ε̃)]‖ f ‖(r′−ε̃)′ . (3.12)

Writing ε again we have

‖T f ‖(sL)r,λ ≤ cε−(r′α+λ)/(r′−ε)‖ f ‖(r′−ε)′ . (3.13)

Now we put μ = r′α+ λ. Considering any decomposition f =∑ f j we proceed similarly
as in the proof of the previous theorem to get our claim. �
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Proof of Theorem 2.4. Let pk = r(1 + 1/k) > r, k = 1,2, . . ., and define f ∗k (t) = f ∗(t) for
t ∈ Ik = (e−k,e−k+1). Since f ∗ and f are equimeasurable, in particular, |{ f ∗(t)
= f ∗(e−k)}| = |{| f (x)| = f ∗(e−k)}|, we can choose fk so that f =∑ fk a.e. and ( fk)∗ =
f ∗k a.e. By subadditivity, Hölder’s inequality, and the blowup assumption,

‖T f ‖r ≤
∞∑
k=1

∥∥T fk
∥∥
pk
≤

∞∑
k=1

1(
pk − r

)α ∥∥ fk∥∥pk . (3.14)

Discretising the right-hand side we get

‖T f ‖r ≤ c
∞∑
k=1

kα
(∫ e−k(e−1)

0

[
f ∗
(
e−k + s

)]pkds
)1/pk

≤ c
∞∑
k=1

kαe−k f ∗
(
e−k
)
ek−k/pk ∼ c

∞∑
k=1

∫
Ik
kαek/p

′
k f ∗

(
e−k
)
ds

(3.15)

and since ek/p
′
k ∼ ek/r

′
,

‖T f ‖r ≤ c
∞∑
k=1

∫
Ik

[
log(1/t)

]α
t−1/r′ f ∗(t)dt = c

∫ 1

0
t1/r[ log(1/t)

]α
f ∗(t)

dt

t
= c‖ f ‖Lr,1;α .

(3.16)
�

It remains to prove Theorem 2.5. Since it goes along the same lines as that of Theorem
2.4 we will proceed briefly.

Sketch of the proof of Theorem 2.5. Let decompose f as before. By Hölder’s inequality,

(∫ 1

0
(T f )∗(t)r

[
log(1/t)

]β
dt

)1/r

≤
∞∑
k=1

(∫ 1

0

(
T fk

)∗
(t)r(k+1)/kdt

)(1/r)(k/(k+1))(∫ 1

0
[log(1/t)]β(k+1)dt

)1/[r(k+1)]

.

(3.17)

According to Stirling’s formula for the Gamma function (we omit details of the easy in-
tegration),

(∫ 1

0

[
log(1/t)

]β(k+1)
dt

)1/[r(k+1)]

∼ [β(k+ 1)Γ
(
β(k+ 1)

)]1/[r(k+1)]

∼ [(β(k+ 1)
)β(k+1)−1/2

e−β(k+1)]1/[r(k+1)]

∼ kβ/r

(3.18)

as k→∞. Hence the Lr(logL)β norm of T f is estimated by

∞∑
k=1

kβ/r
(∫ 1

0

(
T fk

)∗
(t)pkdt

)1/pk

(3.19)
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and we see that there is just the extra term kβ/r in comparison with (3.16), resulting in
additional [log(1/t)]β/r in the final estimate. �

4. Miscellanea

For the sake of simplicity, particularly because of special examples of functions when
comparing various spaces, we restrict ourselves to the case r = 2 here.

Remark 4.1. Since

(sL)2,λ L2(logL)λ, λ > 0, (4.1)

(see [3, (1.2)]) Theorem 2.1 follows from Theorem 2.2. Nevertheless, we preferred to give
an independent proof of Theorem 2.1 since it throws some more light on the problems
considered.

A simple direct proof of (4.1) for λ= 1 can be given, different from that from [3]. We
will give it for completeness.

Let f ∈ (sL)2,1 and let f =∑ j f j be any decomposition. According to Proposition 1.3
we have (one can write ε1/2 instead of ε1/(2−ε) for sufficiently small ε)

‖ f ‖L2(logL)1 ≤
∑
j

∥∥ f j∥∥L2(logL)1 ≤ c
∑
j

inf
ε
ε−1/2

∥∥ f j∥∥2+ε. (4.2)

Suppose that ‖ f ‖(sL)2,1 < 1. Then there exists a decomposition f =∑ f̃ j such that (for
small ε > 0)

∑
j

inf
ε
ε−1/2

∥∥ f̃ j∥∥2+ε < 1. (4.3)

Hence inf ε ε−1/2‖ f̃ j‖2+ε < 1 for all j and we can consider only such decompositions f =∑
f̃ j such that (4.3) holds. Moreover, for every j we can find εj such that

ε−1/2
j

∥∥ f̃ j∥∥2+εj
< 1 (4.4)

and when taking the inf ε in the (sL)2,1 norm one can consider only such ε’s for which
(4.4) is true. Thus for each j let Ej consists of those ε ∈ (0,1/2) for which (4.4) holds.
Then

∑
j

inf
ε∈Ej

ε−1/2
∥∥ f̃ j∥∥2+ε ∼ ‖ f ‖(sL)2,1 (4.5)

and we are done.

Remark 4.2. It will be of interest to compare various estimates we arrived at. We will give
various examples and prove several imbeddings. As observed earlier at the moment there
is no complete imbedding picture available for all the spaces involved. Two papers should
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be mentioned in this connection: first the recent paper [7], where the norm in (sL)p,1 is
shown to be equivalent to the norm in a sort of limiting interpolation space, namely, to

∫ 1

0

[
log(e/t)

]−1/p
(∫ t

0

[
f ∗(s)

]p
ds

)1/p
dt

t
. (4.6)

The second reference of interest is the above mentioned estimate by Carro and Martı́n in
[4]. They consider the special case r = 2 and α= 1 in (2.3) and show that the L2 norm of
T f can be estimated by a sort of an averaging norm given by

∫ 1

0

(∫ t

0
f ∗(s)2ds

)1/2
dt

t
. (4.7)

For the moment let us denote the space of all f with the finite norm (4.7) by AV2. It is
easy to see that if (4.7) is finite, then f ∈ L2,1;0. Indeed, by monotonicity of f ∗,

∫ 1

0
t1/2 f ∗(t)

dt

t
≤
∫ 1

0

(∫ t

0
f ∗(s)2ds

)1/2
dt

t
. (4.8)

In Theorem 2.4 (for r = 2) we have L2,1;1 as the limiting domain for T . Clearly also the
latter space is smaller than L2,1;0.

Further, it is easy to show that

(sL)2,2 (sL)2,1 . (4.9)

Using the characterization of (sL)2,1 from [7], namely,

∫ 1

0

[
log(e/t)

]−1/2
(∫ t

0
f ∗(s)2ds

)1/2
dt

t
<∞, (4.10)

and comparing it with the AV2 norm from (4.7), we see that

AV2 (sL)2,1. (4.11)

Plainly, this inclusion is proper. Hence both spaces AV2 and (sL)2,2 are subspaces of (sL)2,1.
By virtue of (1.4) we have (sL)2,1 ⊂ L2,2;1/2 and according to imbedding properties of
Lorentz-Zygmund spaces we have L2,1;1 ⊂ L2,2;1/2 (see Section 1).

The following examples show that even L2,1;1 \AV2 �= ∅ and that (sL)2,2 \AV2 �= ∅.

Example 4.3. There is a function that belongs to L2,1;1 (⊂ L2(logL)2) and such that, at the
same time,

∫ 1

0

1
t

(∫ t

0
f ∗(s)2ds

)1/2

dt =∞. (4.12)
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To this end choose any f such that

1
t

(∫ t

0
f ∗(s)2ds

)1/2

= 1
t

1[
log
(
e2/t

)][
loglog

(
e2/t

)] . (4.13)

Then (4.12) holds and

∫ t

0
f ∗(s)2ds= 1[

log
(
e2/t

)]2[
loglog

(
e2/t

)]2 . (4.14)

After differentiation we get

f ∗(t)2 ∼ 1[
log
(
e2/t

)]3 ·
1
t
· 1[

loglog
(
e2/t

)]2 +
1[

log
(
e2/t

)]3 ·
1
t
· 1[

loglog
(
e2/t

)]3 .

(4.15)

Then plainly

∫ 1

0
f ∗(t)2

(
log

e2

t

)2

dt <∞. (4.16)

A direct calculation shows that the function f such that

f ∗(t)2 = 1
t

1[
loge2/t

]3
1[

logloge2/t
]3 (4.17)

belongs to L2,1;1 and the above construction shows that its AV2 norm is infinite.

Remark 4.4. Observe that by integration by parts,

∫ 1

0

(∫ t

0
f ∗(s)2ds

)1/2
dt

t
=
[
− log(1/t)

(∫ t

0
f ∗(s)2ds

)1/2]1

0

+
1
2

∫ 1

0

f ∗(t)2(log(1/t))2

log(1/t)
(∫ t

0 f ∗(s)2ds
)1/2 dt.

(4.18)

Further,

∫ 1

0

(∫ t

0
f ∗(s)2ds

)1/2
dt

t
∼

∞∑
k=1

( ∞∑
m=k

e−m f ∗(e−m)2

)1/2

≥ c

( ∞∑
m=1

( m∑
k=1

e−m/2 f ∗(e−m)

)2)1/2

≥ c

( ∞∑
m=1

m4e−m f ∗(e−m)2

)1/2

.

(4.19)
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Hence f ∗(e−m)2 ≤ cemm−4 and

(∫ e−m

0
f ∗(s)2ds

)1/2

≤
( ∞∑

j=m

∫ e− j

e− j−1
f ∗(s)2ds

)1/2

≤ c

( ∞∑
j=m

e− j f ∗
(
e− j
)2
)1/2

≤ c

( ∞∑
j=m

e− j e j j−4

)1/2

∼
(∫∞

m

dt

t4

)1/2

∼m−3/2.

(4.20)

From this

(∫ t

0
f ∗(s)2ds

)1/2

≤ c
(

log(1/t)
)−3/2

(4.21)

and therefore

lim
t−→0

(
log(1/t)

)(∫ t

0
f ∗(s)2ds

)1/2

= 0. (4.22)

Plugging this into (4.18) we get

‖ f ‖AV2 ≤ c
∫ 1

0

f ∗(t)2
(

log(1/t)2
)

(
log(1/t)

)(∫ t
0 f ∗(s)2ds

)1/2 dt. (4.23)

On the other hand,

∫ 1

0

f ∗(t)2
(

log(1/t)
)2

(
log(1/t)

)(∫ t
0 f ∗(s)2ds

)1/2 dt

≤ c
∫ 1

0

(log(1/t))2
(∫ t

0 f ∗(s)2ds
)1/2

log(1/t)
dt

≤ c
∫ 1

0

1
t

(∫ t

0
f ∗(s)2ds

)1/2

t log(1/t)dt ≤ c‖ f ‖AV2 .

(4.24)

Inequalities (4.23) and (4.24) show that if f ∈ AV2, then

∫ 1

0

f ∗(t)2
(

log(1/t)
)2

log(1/t)
(∫ t

0 f ∗(s)2ds
)1/2 dt <∞ (4.25)

and the expression on the left is equivalent to the norm in AV2. This also gives some
idea about the integrability properties of functions in L2(logL)2 in comparison of those
in AV2.

Of interest is of course the question whether (sL)2,2 \ AV2 �= ∅. The next example
shows that this is indeed the case.
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Example 4.5. Here we give an example of a function that belongs to (sL)2,2 and such that

∫ 1

0

1
t

(∫ t

0
f ∗(s)2ds

)1/2

dt =∞. (4.26)

Let

εk = 1
k1/2−η , bk = 1

k1+η logk
, for some η ∈ (0,1/2). (4.27)

It is easy to see that

inf
f=∑ f j

∑
j

inf
0<ε<1

ε−1
∥∥ f j∥∥2+ε (4.28)

is an equivalent norm in (sL)2,2. Let us split (0,1) into mutually disjoint intervals I j =
(e− j , e− j+1), j = 1,2, . . . . If {εj} ⊂ (0,1) is any sequence converging to 0, then

‖ f ‖(sL)2,2 ≤ c
∑
j

ε−1
j

∥∥ f j∥∥2+εj
, (4.29)

where f j = f ∗|I j . Put f ∗(e− j)= e j/2εjbj , j = 1,2, . . ., and define f ∗ on the whole of (0,1]
so that it is continuous in (0,1] and linear on all I j . Since f is decreasing at least in some
neighbourhood of the origin we can consider it as a nonincreasing rearrangement of
some function f on Ω. We have

‖ f ‖(sL)2,2 ≤ c
∑
j

1
εj
e− j/2 f ∗

(
e− j
)≤ c

∑
j

1
εj
e− j/2e j/2εjbj ≤ c

∑
j

b j <∞. (4.30)

On the other hand, since
∫
I j dt/t is constant independent of j we have,

∫ 1

0

1
t

(∫ t

0
f ∗(s)2ds

)1/2

dt ∼
∞∑
j=1

( ∞∑
k= j

e−kekε2
kb

2
k

)1/2

=
∞∑
j=1

( ∞∑
k= j

ε2
kb

2
k

)1/2

=
∞∑
j=1

( ∞∑
k= j

1
k3(logk)2

)1/2

.

(4.31)

But

∞∑
k= j

1
k3(logk)2

∼ 1
j2(log j)2

(4.32)

(compare
∫∞
A dt/t3(log t)2 with 1/A2(logA)2 as A→∞, e.g., using l’Hôpital’s rule) so that

the last series in (4.31) is divergent.

We finish the paper with two more examples, throwing some more light on the spaces
involved.



14 On extrapolation blowups in the Lp scale

Example 4.6. We use the last example to construct a function f such that f ∈ (sL)2,2 and
f /∈ L2,2;1 (hence also f /∈ AV2 since AV2↩L2,2;1 in view of (4.25) and (4.22)). Consider
any f such that

f ∗(t)= 1√
t

1[
log(e/t)

]3/2
log
(

log
(
e2/t

)) , (4.33)

that is,

f ∗(t)∼ ek/2

k3/2 logk
on Ik, (4.34)

then according to Example 4.5 we have f /∈ AV2 and f ∈ (sL)2,2. An easy direct calcula-
tion shows that f /∈ L2,2;1.

Example 4.7. Any function f such that

f ∗(t)= 1√
t
[

log(1/t)
]2 (4.35)

belongs to AV2 and hence also to L2,2;1 (simple direct calculations). At the same time it
belongs to (sL)2,2. To see that consider the decomposition f =∑ fk =

∑
f χIk with Ik as in

the proof of Theorem 2.4. In the series

∑
k

inf
ε
ε−1/2

∥∥ fk∥∥2+ε (4.36)

choose ε = 1/k in the kth term. The infimum in (4.36) is then estimated from above by

k1/2

(∫
Ik

dt

t
[

log(1/t)
]2(2+1/k)

)1/(2+1/k)

∼ k1/2

(
e−kek(1+1/2k) 1

k2(2+1/k)

)1/(2+1/k)

∼ 1
k3/2

(4.37)

so that in (4.36) we get a convergent series.
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