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1. Introduction

Von Foerster and Volterra-Lotka equations arise in biology, medicine, and chemistry,
[1–5]. The independent variables xj and an unknown function u stand for certain fea-
tures and densities, respectively. It follows from this natural interpretation that xj ≥ 0
and u ≥ 0. We are interested in the first model, which is essentially nonlocal, because it
also contains the total size of population

∫
u(t,x)dx.

Existence results for certain von Foerster type problems has been established by means
of the Banach contraction principle, the Schauder fixed point theorem, or iterative meth-
ods, see [6–10]. Just because of nonlocal terms, these methods demand very thorough
calculations and a proper choice of subspaces of continuous and integrable functions.
Sometimes, it may cost some simplifications of the real model. On the other hand, there
is a very consistent theory of first-order partial differential-functional equation in [11–
13], based on properties of bicharacteristics and on the above-mentioned fixed-point
techniques with respect to the uniform norms.

In the present paper, we find natural conditions which guarantee L∞ ∩L1-convergence
of iterative methods. Note that an associate result on fast convergent quasilinearization
methods has been published in [14].
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Formulation of the differential problem. Let τ = (τ1, . . . ,τn) ∈ Rn
+, τ0 > 0, where R+ :=

[0,+∞). Define

B = [− τ0,0
]× [−τ,τ], where [−τ,τ]= [− τ1,τ1

]× ··· × [− τn,τn
]

E0 =
[− τ0,0

]×Rn, E = [0,a]×Rn, a > 0.
(1.1)

For each function w defined on [−τ0,a], we have the Hale functional wt (see [15]), which
is the function defined on [−τ0,0] by

wt(s)=w(t+ s),
(
s∈ [− τ0,0

])
. (1.2)

For each function u defined on E0 ∪ E, we similarly write a Hale-type functional u(t,x),
defined on B by

u(t,x)(s, y)= u(t+ s,x+ y) for (s, y)∈ B (1.3)

(see [11]). Let Ω0 = E×C([−τ0,0],R+) and Ω= E×C(B,R+)×C([−τ0,0],R+). Take v:
E0→R+ and

cj : Ω0 −→R, λ : Ω−→R ( j = 1, . . . ,n). (1.4)

Consider the differential-functional equation

∂u

∂t
+

n∑

j=1

cj
(
t,x,z[u]t

) ∂u

∂xj
= u(t,x)λ

(
t,x,u(t,x),z[u]t

)
, (1.5)

where

z[u](t) :=
∫

Rn
u(t, y)dy, t ∈ [− τ0,a

]
, (1.6)

with the initial conditions

u(t,x)= v(t,x), (t,x)∈ E0, x = (x1, . . . ,xn
)∈Rn. (1.7)

We are looking for Caratheodory solutions to (1.5) and (1.7), see [6, 7, 16]. The functional
dependence includes a possible delayed and integral dependence of the Volterra type.
The Hale functional z[u]t takes into consideration the whole population within the time
interval [t− τ0, t], whereas the Hale-type functional u(t,x) shows the dependence on the
density u locally in a neighborhood of (t,x). The functional dependence demands some
initial data on a thick initial set E0, which means that a complicated ecological niche must
be observed for some time and (perhaps) in some space in order to predict its further
evolution.

Example 1.1. The functional dependence in (1.5), represented by the Hale operators, gen-
eralizes von Foerster equations with delays, deviations, and integrals, such as the equation
with delays:

∂u

∂t
+

n∑

j=1

c j
(
t,x,z[u]

(
β(t)

)) ∂u

∂xj
= uλ(t,x,u

(
α(t,x)

)
,z[u]

(
β(t)

))
, (1.8)
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where α(t,x)= (α0(t,x), . . . ,αn(t,x)), α0(t,x)≤ t and β(t),β(t)≤ t, and the equation with
integrals:

∂u

∂t
+

n∑

j=1

c j

(
t,x,

∫ t

t−τ0

z[u](s)ds
)
∂u

∂xj
= uλ

(
t,x,

∫

[x,x+τ]
u(t, y)dy,

∫ t

t/3
z[u](s)ds

)
,

(1.9)

where c j : E×R+→R and λ : E×R+×R+→R.

The paper is organized as follows:
(i) first, we give key properties of bicharacteristics η and write the solution u of

problem (1.5), (1.7) along bicharacteristics for a given function z, which belongs
to a priori defined class under natural assumptions on the data;

(ii) considering solutions u along these bicharacteristics η, we get integral fixed-point
equations z =�[z], realized as follows: z→η[z]→u[z]→�[z];

(iii) we define an iterative method of the form

zk −→ ηk −→ uk −→ zk+1 =�
[
zk
]

(1.10)

and show its convergence under uniqueness conditions with some uniform Per-
ron comparison functions.

Our convergence result implies the existence and uniqueness. We stress that this exis-
tence statement essentially differs from Schauder fixed-point theory: one can find classes
of problems, where one of these methods yields the existence, whereas the other one does
not.

2. Bicharacteristics

First, for a given function z ∈ C([−τ0,a],R+), consider the bicharacteristic equations for
problem (1.5), (1.7):

η′(s)= c(s,η(s),zs
)
, η(t)= x. (2.1)

Denote by η = η[z](·; t,x)= (η1[z](·; t,x), . . . ,ηn[z](·; t,x)) the bicharacteristic curve pas-
sing through (t,x) ∈ E, that is, the solution to problem (2.1). Next, we consider the fol-
lowing equation

d

ds
u
(
s,η[z](s; t,x)

)= u(s,η[z](s; t,x)
)
λ
(
s,η[z](s; t,x),u(s,η[z](s;t,x)),zs

)
, (2.2)

with the initial condition

u
(
0,η[z](0; t,x)

)= v(0,η[z](0; t,x)
)
. (2.3)

For any given function z ∈ C([−τ0,a],R+), a solution of (2.2) along bicharacteristics (2.1)
is a solution of (1.5). The initial conditions (1.7) and (2.3) correspond to each other.
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Assume the following.
(V0) v ∈ CB(E0,R+) (nonnegative, bounded, and continuous function).
(V1) z[v]∈ C([−τ0,0],R+), where

z[v](t)=
∫

Rn
v(t,x)dx. (2.4)

(V2) The function v satisfies the Lipschitz condition

∣
∣v(t,x)− v(t,x)

∣
∣≤ Lv‖x− x‖ on E0 (2.5)

with some constant Lv > 0.
(C0) cj : Ω0→R are continuous in (t,x,q) and

∥
∥c(t,x,q)− c(t,x,q)

∥
∥≤ Lc‖x− x‖+L∗c ‖q− q‖. (2.6)

A continuous function σ : [0,a]×R+→R+ is said to be a Perron comparison function if
σ(t,0)≡ 0 and the differential problem y′ = σ(t, y), y(0)= 0 has the only zero solution.
We call it uniform if σ , multiplied by any positive constant, is also a Perron comparison
function. We call it monotone if σ is nondecreasing in the second variable.

(Λ0) λ : Ω→R is continuous in (t,x,w,q) and

∣
∣λ(t,x,w,q)− λ(t,x,w,q)

∣
∣≤Mλσ

(
t,‖x− x‖+‖w−w‖+‖q− q‖), (2.7)

where σ : [0,a]×R+→R+ is a monotone uniform Perron comparison function.
(Λ1) There exists a function Lλ ∈ L1([0,a],R+) such that

λ(t,x,w,q)≤ Lλ(t) (2.8)

for (t,x)∈ E,w ∈ C(B,R+), q ∈ C([−τ0,0],R+).
Denote

W(t,x,w,q)= λ(t,x,w,q) + tr∂xc(t,x,q) (2.9)

for (t,x) ∈ E,w ∈ C(B,R+), q ∈ C([−τ0,0],R+), where tr∂xc stands for the trace of the
matrix ∂xc = [∂xk c j] j,k=1,...,n.

(W0) There exists MW ∈R+ such that

∣
∣W(t,x,w,q)−W(t,x,w,q)

∣
∣≤MW σ

(
t,‖x− x‖+‖w−w‖+‖q− q‖), (2.10)

where σ : [0,a]×R+→R+ is a monotone uniform Perron comparison function.
(W1) There exists a function LW ∈ L1([0,a],R+) such that

W(t,x,w,q)≤ LW (t) (2.11)

for (t,x)∈ E, w ∈ C(B,R+), q ∈ C([−τ0,0],R+).
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Lemma 2.1. If the conditions (V0) and (Λ1) are satisfied, then any solution u of (2.2) has
the estimate

0≤ u(t,x)≤ ∥∥v(0,·)∥∥∞exp
(∫ t

0
Lλ(s)ds

)
on E. (2.12)

2.1. The fixed-point equation. Let

Z(t)= max
−τ0≤s≤0

∥
∥v(s,·)∥∥1exp

(∫ t

0
LW (s)ds

)
, (2.13)

where we put LW (s)= 0 for s∈ [−τ0,0], and

�= {z ∈ C([− τ0,a
]
,R+

)
: z(t)≤ Z(t)

}
. (2.14)

Consider the operator � : �→� given by the formula

�[z](t)=
∫

Rn
u[z](t,x) dx for t ≥ 0, (2.15)

where u = u[z] ∈ C1(E,R+) is the solution of (2.2) and (2.3) with the initial condition
u[z](t,x)= v(t,x) on E0. The function u= u[z] has the following representation on E:

u[z](t,x)= v(0,η(0)
)
exp
(∫ t

0
λ
(
s,η(s),u(s,η(s)),zs

)
ds
)

, (2.16)

where η(s)= η[z](s; t,x). By Lemma 2.1, we write (2.15) in the following way:

�[z](t)=
∫

Rn
v
(
0,η(0)

)
exp
(∫ t

0
λ
(
s,η(s),u(s,η(s)),zs

)
ds
)
dx (2.17)

for t ≥ 0. The bicharacteristics admit the following group property:

y = η[z](0; t,x)⇐⇒ η[z](s; t,x)= η[z](s;0, y), (2.18)

that is, any bicharacteristic curve passing through the points (0, y) and (t,x) has the same
value at s∈ [0,a].

If we change the variables y = η[z](0; t,x), then by the Liouville theorem, the Jacobian
J = det[∂c/∂x] is given by the formula

J(0; t,x)= exp
(
−
∫ t

0
tr∂xc

(
s,η[z](s;0, y),zs

)
ds
)
. (2.19)

Hence (2.17) can be written in the form

�[z](t)=
∫

Rn
v(0, y)exp

(∫ t

0
W
(
s,η(s),u(s,η(s)),zs

)
ds
)
dy, (2.20)

where η(s)= η[z](s;0, y).
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Lemma 2.2. If the conditions (V0), (V1), and (W1) are satisfied, then

0≤�[z](t)≤ Z(t) < +∞ for t ∈ [0,a], (2.21)

where Z is given by (2.13).

Proof. This assertion follows from (2.20) and Assumptions (V0), (V1), and (W1). �

The respective fixed-point equation for bicharacteristics η= η[z] has the form

η(s; t,x)= x−
∫ t

s
c
(
ζ ,η(ζ ; t,x),zζ

)
dζ. (2.22)

Lemma 2.3. If Assumption (C0) is satisfied and z,z ∈�, then

∥
∥η[z](s; t,x)−η[z](s; t,x)

∥
∥≤

∫ t

s
L∗c
∥
∥zζ − zζ

∥
∥eLc(ζ−s)dζ. (2.23)

3. The iterative method

Define the iterative method by z(k+1) =�[z(k)] with an arbitrary function z(0) ∈�, where
the class � is defined by (2.14). We prove its uniform convergence under natural assump-
tions on the given functions. The algorithm splits into three stages:

(1) finding bicharacteristics η(k) = η[z(k)], given by (2.22);
(2) finding u(k) = u[z(k)] as a solution of (2.16);
(3) calculating z(k+1) =�[z(k)] by means of (2.17) or (2.20). In this way, there are

given the integ ral equations

η(k)(s; t,x)= x−
∫ t

s
c
(
ζ ,η(k)(ζ ; t,x),z(k)

ζ

)
dζ ,

u(k)(t,x)= v(0,η(k)(0; t,x)
)
exp
(∫ t

0
λ
(
Q(k)(s)

)
ds
)

,

z(k+1)(t)=
∫

Rn
v(0, y)exp

(∫ t

0
W
(
R(k)(s)

)
ds
)
dy,

(3.1)

where

Q(k)(s)=
(
s,η(k)(s; t,x),u(k)

(s,η(k)(s;t,x)),z
(k)
s

)
,

R(k)(s)=
(
s,η(k)(s;0, y),u(k)

(s,η(k)(s;0,y)),z
(k)
s

)
.

(3.2)

Theorem 3.1. If z(0) ∈� and Assumptions (V0)–(V2), (C0), (Λ0), (Λ1), (W0), and (W1)
are satisfied, and there are K ∈R+, θ ∈ (0,1] such that

σ(t,r)≤ Ktθ−1pr1−1/p for p ≥ 2, (3.3)

then the iterative method z(k+1) =�[z(k)] is well defined in � and uniformly converges to
the unique fixed point z =�[z] on a sufficiently small [0,a] (locally).
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Remark 3.2. The technical condition (3.3) is fulfilled in the Lipschitz case (σ(t,r) = Lr)
as well as the simplest nonlinear Perron comparison functions such as σ(t,r)= Lr ln(1 +
1/r). Its formulation also includes weak singularities, that is, σ(t,r)= t−1/2Lr and σ(t,r)=
t−1/2Lr ln(1 + 1/r) .

Proof of Theorem 3.1. Denote

Δz(k) = z(k+1)− z(k), Δη(k) = η(k+1)−η(k), Δu(k) = u(k+1)−u(k). (3.4)

Then we have the estimates

∥
∥Δη(k)(s; t,x)

∥
∥≤

∫ t

s
L∗c
∥
∥
∥Δz(k)

ζ

∥
∥
∥eLc(ζ−s)dζ ,

∣
∣Δu(k)(t,x)

∣
∣≤ Lv

∥
∥Δη(k)(0; t,x)

∥
∥exp

(∫ t

0
Lλ(s)ds

)

+‖v‖∞ exp
(∫ t

0
Lλ(s)ds

)∫ t

0
Mλσ

(
s,P(k)(s; t,x)

)
ds,

∣
∣Δz(k+1)(t)

∣
∣≤ Z(t)

∫ t

0
MWσ

(
s,P(k)(s; t,x)

)
ds,

(3.5)

where P(k)(s; t,x)= ‖Δη(k)(s; t,x)‖+‖Δu(k)‖s +‖Δz(k)‖s. Denote L̂λ =
∫ a

0 Lλ(s)ds and

Ψ(k)(s, t)= ψ(k)(s) +ψ(k)(s) +
∫ t

s
L∗c e

Lcaψ(k)(ζ)dζ. (3.6)

Consider the comparison equations

ψ(k)(t)= Lv
∫ t

0
L∗c e

Lca+L̂λψ(k)(s)ds+‖v‖∞eL̂λ
∫ t

0
Mλσ

(
s,Ψ(k)(s, t)

)
ds,

ψ(k+1)(t)= Z(t)
∫ t

0
MWσ

(
s,Ψ(k)(s, t)

)
ds

(3.7)

with ψ(0)(t)= Z(t) and

ψ(0)(t)= ‖v‖∞ exp
(∫ t

0
LW (s)ds

)
+Lv

∫ t

0
L∗c e

Lca+L̂λZ(s)ds

+‖v‖∞eL̂λ
∫ t

0
Mλσ

(
s,ψ(0)(s) +Z(s) +

∫ t

s
L∗c e

LcaZ(ζ)dζ
)
ds.

(3.8)

The remaining part of the proof is split into several auxiliary lemmas.
�

Lemma 3.3. Under the assumptions of Theorem 3.1, there is a0 ∈ (0,a] such that
|Δu(k)(t,x)| ≤ ψ(k)(t), |Δz(k)(t)| ≤ ψ(k)(t),

∥
∥Δη(k)(s; t,x)

∥
∥≤

∫ t

s
L∗c e

Lcaψ(k)(ζ)dζ (3.9)

on [0,a0]×Rn
+, and the sequences {ψ(k)} and {ψ(k)} are nondecreasing in k.
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Lemma 3.4. Under the assumptions of Theorem 3.1, the estimate

∫ t

0
σ
(
s,Asl +Btl+1)ds≤ tl+θ−l/p pKθ−1

[
A

θ + l
+
Ba

θ

]1−1/p

(3.10)

holds.

Proof. By the Hölder inequality, we have

∫ t

0
σ
(
s,Asl +Btl+1

)
ds

≤ pK
∫ t

0
sθ−1

[
Asl +Btl+1

]1−1/p
ds

≤ pK
{∫ t

0
sθ−1ds

}1/p{∫ t

0
sθ−1

[
Asl +Btl+1

]
ds
}1−1/p

≤ pKθ−1tθ/p
[
Atθ+l

θ + l
+
Btθ+l+1

θ

]1−1/p

.

(3.11)

�

Lemma 3.5. Under the assumptions of Theorem 3.1, the sequences {ψ(k)} and {ψ(k)} tend
uniformly to 0 as k→+∞.

Proof. Denote M = LvL∗c eLca, M∗ = ‖v‖∞eL̂λMλ + Z(a)MW , and ca = L∗c eLca. Then the
equation

ψ̂(t)=M
∫ t

0
ψ̂(s)ds+M∗

∫ t

0
σ
(
s, ψ̂(s) + ca

∫ t

s
ψ̂(ζ)dζ

)
ds (3.12)

describes a comparison function ψ̂ with respect to ψ +ψ, where

ψ(t)= lim
k→∞

ψ(k)(t), ψ(t)= lim
k→∞

ψ(k)(t). (3.13)

One can prove, by induction on k, that ψ̂(t)≤ Ĉktθ/2 and Ĉkaθ/2→0 as k→+∞, provided
that the interval [0,a] is sufficiently small. Take an arbitrary Ĉ0 which estimates ψ̂(t).
Applying Lemma 3.4 with p = 2 to (3.12), we get

ψ̂(t)≤MtĈ0 +M∗tθ2Kθ−1
[
Ĉ0
(
1 + caa

)

θ

]1/2

≤ tθ/2Ĉ1, (3.14)

where

Ĉ1 =Ma1−θ/2Ĉ0 + aθ/22Kθ−1
[
Ĉ0
(
1 + caa

)

θ

]1/2

. (3.15)
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Suppose that the desired estimate holds for some k ≥ 1. Applying Lemma 3.4 with p = 2k
to (3.12), we get

ψ̂(t)≤M t1+kθ/2

1 + kθ/2
Ĉk +M∗t(k+1)θ/22Kθ−1

[
Ĉk

θ + kθ/2
+

caĈk
θ(1 + kθ/2)

]1−1/(2k)

, (3.16)

hence ψ̂(t)≤ t(k+1)θ/2Ĉk+1, where

Ĉk+1 =MĈk
a1−θ/2

1 + kθ/2
+M∗2Kθ−1

[
Ĉk

θ + kθ/2
+

caĈk
θ(1 + kθ/2)

]1−1/(2k)

. (3.17)

The constants Ĉk have an upper estimate of the form AQk, thus ψ̂(t)≡ 0 in a neighbor-
hood of 0 (because ψ̂(t)≤AQktkθ/2). �

Lemma 3.6. Under the assumptions of Theorem 3.1, the sequences {z(k)}, {u(k)}, and {η(k)}
tend uniformly to z,u[z],η[z] such that z =�[z] .

Proof. We intend to find the following estimates:

ψ(k)(t)≤ Cktlk , ψ(k)(t)≤ Cktlk , (3.18)

where the series
∑

kCkt
lk is convergent in a neighborhood of 0. The assertion can be seen

if we replace the comparison equation (3.7) by the inequalities

Ckt
lk ≥ Lv

∫ t

0
L∗c e

Lca+L̂λCks
lkds

+‖v‖∞eL̂λ
∫ t

0
Mλσ

(
s,
(
Ck +Ck

)
slk +L∗c e

LcaCkt
lk+1/

(
lk + 1

))
ds,

Ck+1t
lk+1 ≥ Z(a)

∫ t

0
MWσ

(
s,
(
Ck +Ck

)
slk +L∗c e

LcaCkt
lk+1/

(
lk + 1

))
ds,

(3.19)

with C0tl0 = Z(a) and some

C0 ≥ aLvL∗c eLca+L̂λZ(a) +‖v‖∞eL̂λMλ

∫ a
0 σ
(
s,C0 +Z(a) + aL∗c eLcaZ(a)

)
ds . (3.20)

If we put

l0 = 0, p0 = 2/θ, lk = kθ/2, pk = 4k for k = 1,2, . . . (3.21)

and exploit Lemma 3.4, then Ck,Ck can be defined as follows:

Ckt
lk ≥ LvL∗c eLca+L̂λCkt

lk+1/
(
lk + 1

)

+‖v‖∞eL̂λMλpkKθ
−1tlk+θ/2

[
Ck +Ck
θ + lk

+
aL∗c eLcaCk
θ
(
lk + 1

)
]1−1/pk

,

Ck+1t
lk+1 ≥ Z(a)MWpkKθ

−1tlk+θ/2
[
Ck +Ck
θ + lk

+
aL∗c eLcaCk
θ
(
lk + 1

)
]1−1/pk

.

(3.22)
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These inequalities reduce to the system of algebraic equations

Ck = LvL∗c eLca+L̂λCka/
(
lk + 1

)

+‖v‖∞eL̂λMλpkKθ
−1aθ/2

[
Ck +Ck
θ + lk

+
aL∗c eLcaCk
θ
(
lk + 1

)
]1−1/pk

,

Ck+1 = Z(a)MW pkKθ
−1
[
Ck +Ck
θ + lk

+
aL∗c eLcaCk
θ
(
lk + 1

)
]1−1/pk

.

(3.23)

A simple separation of variables yields

Ck = LvL∗c eLca+L̂λCka/
(
lk + 1

)
+Ck+1

‖v‖∞eL̂λMλ

Z(a)MW
,

Ck+1 = Z(a)MW pkKθ
−1
[
Ck+1

‖v‖∞eL̂λMλ

Z(a)MW
(
θ + lk

)

+
Ck
(
1 +LvL∗c eLca+L̂λCka/

(
lk + 1

))

θ + lk
+
aL∗c eLcaCk
θ
(
lk + 1

)
]1−1/pk

.

(3.24)

From the last equation, it follows that one can find positive constants A,Q such that
AQk ≥ Ck. Thus the series

∑
kCkt

lk is convergent on a sufficiently small interval [0,a],
hence the series ψ(0) +ψ(2) + ··· uniformly converges, and z(k) has a limit, which is con-
tinuous. �

Corollary 3.7. If Assumptions (V0)–(V2), (C0), (Λ0), (Λ1), (W0), and (W1) are sat-
isfied, then there exists the unique solution of problem (1.5)–(1.7), locally with respect to
t.

4. The iterative method: global convergence

In this section, we prove the global convergence of our iterative method, that is, on the
whole interval [0,a]. We deal with the problem of global convergence of the iterative
method in two ways. The first case is based on the method used in the previous section
under strengthened assumptions (Λ0) and (W0). Namely, we replace nonlinear Perron
comparison functions by the Lipschitz condition with a function L ∈ L1([0,a],R+) or
with a positive Lipschitz constant L. We also discuss another case which leads to global
convergence results, that is, the monotone iterations with respect to the function z(k), u(k).
This approach demands some monotonicity of the functions λ and W.

4.1. The Lipschitz case. Suppose that Assumptions (V0)–(V2), (C0), (Λ1), and (W1),
formulated in Section 2, are valid. We modify some assumptions on the functions λ and
W as follows:

(Λ̃0) λ : Ω→R is continuous in (t,x,w,q) and there exists a function L∈ L1([0,a],R+)
such that

∣
∣λ(t,x,w,q)− λ(t,x,w,q)

∣
∣≤ L(t)

(‖x− x‖+‖w−w‖+‖q− q‖); (4.1)
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(W̃0) W : Ω→R and there exists a function L∈ L1([0,a],R+) such that

∣
∣W(t,x,w,q)−W(t,x,w,q)

∣
∣≤ L(t)

(‖x− x‖+‖w−w‖+‖q− q‖). (4.2)

Using the same notation as in the proof of Theorem 3.1, we have the estimates

∥
∥Δη(k)(s; t,x)

∥
∥≤

∫ t

s
L∗c
∥
∥
∥Δz(k)

ζ

∥
∥
∥eLc(ζ−s)dζ ,

∣
∣Δu(k)(t,x)

∣
∣≤ Lv

∥
∥Δη(k)(0; t,x)

∥
∥exp

(∫ t

0
Lλ(s)ds

)

+‖v‖∞ exp
(∫ t

0
Lλ(s)ds

)∫ t

0
L(s)P(k)(s; t,x)ds,

∣
∣Δz(k+1)(t)

∣
∣≤ Z(a)

∫ t

0
L(s)P(k)(s; t,x)ds,

(4.3)

where P(k)(s; t,x)= ‖Δη(k)(s; t,x)‖+‖Δu(k)‖s +‖Δz(k)‖s.
Denote L̂λ =

∫ a
0 Lλ(s)ds and

Ψ(k)(s, t)= ψ(k)(s) +ψ(k)(s) +
∫ t

s
L∗c e

Lcaψ(k)(ζ)dζ. (4.4)

Similarly, as in the previous section, consider the comparison equations

ψ(k)(t)= Lv
∫ t

0
L∗c e

Lca+L̂λψ(k)(s)ds+‖v‖∞eL̂λ
∫ t

0
L(s)Ψ(k)(s, t)ds,

ψ(k+1)(t)= Z(a)
∫ t

0
L(s)Ψ(k)(s, t)ds

(4.5)

with ψ(0)(t)= Z(a) and

ψ(0)(t)= ‖v‖∞ exp
(∫ t

0
LW (s)ds

)
+LvL∗c e

Lca+L̂λZ(a)t

+‖v‖∞eL̂λ
∫ t

0
L(s)

(
ψ(0)(s) +Z(a) + (t− s)L∗c eLcaZ(a)

)
ds.

(4.6)

Lemma 4.1. Under the assumptions (V0)–(V2), (C0), (Λ̃0), (W̃0), (Λ1), and (W1) the
following estimates hold: |Δu(k)(t,x)| ≤ ψ(k)(t), |Δz(k)(t)| ≤ ψ(k)(t),

∥
∥Δη(k)(s; t,x)

∥
∥≤

∫ t

s
L∗c e

Lcaψ(k)(ζ)dζ (4.7)

on [0,a]×Rn
+, and the sequences {ψ(k)} and {ψ(k)} are nondecreasing in k.

Lemma 4.2. Under the assumptions of Lemma 4.1, the sequences {ψ(k)} and {ψ(k)} tend
uniformly to 0 as k→+∞.
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Proof. Denote M = LvL∗c eLca+L̂λ , M∗ = ‖v‖∞eL̂λ ,ca = L∗c eLca, and L̂ = ∫ a0 L(s)ds. From
(4.5), we have the estimates

ψ(k)(t)≤ Γ(a)
∫ t

0
M∗L(s)ψ(k)(s)ds,

ψ(k+1)(t)≤ Z(a)
∫ t

0
Δ(s)ψ(k)(s)ds,

(4.8)

where Γ(t)= exp(
∫ t

0(M +M∗L(s))ds) and Δ(t)= L̂Γ(a)M∗L(t) +L(t) + caL̂.A simple cal-
culation shows that

ψ(k)(t)≤
Z(a)k+1

(∫ t
0 Δ(s)ds

)k

k!
, t ∈ [0,a]. (4.9)

Hence the sequences {ψ(k)} and {ψ(k)} tend uniformly to 0 as k→+∞. �

Theorem 4.3. Under the assumptions of Lemma 4.1, the sequences {z(k)}, {u(k)}, and
{η(k)} tend uniformly to z, u[z], η[z] such that z =�[z].

Proof. The assertion follows from Lemma 4.2. �

Remark 4.4. The assertion of Theorem 4.3 holds if the integrable function L(·) in As-
sumptions (Λ̃0) and (W̃0) is constant: L(t)= L. The increments z(k+1)− z(k), u(k+1)−u(k)

tend to zero very fast since they are estimated by the sequences from Lemma 4.2.

4.2. Monotone iterations. In the sequel, assume that c j : E→R is given by the formula
c j(t,x) = cj(t,x,0) for j = 1, . . . ,n, which means that it does not depend on z. Consider
the differential-functional equation

∂u

∂t
+

n∑

j=1

c j(t,x)
∂u

∂xj
= u(t,x)λ

(
t,x,u(t,x),z[u]t

)
, (4.10)

with the function z given by (1.6) and with the initial condition (1.7). Similarly, as in
Section 3, define the iterative method by means of integral equations

η(s; t,x)= x−
∫ t

s
c
(
ζ ,η(ζ ; t,x)

)
dζ , (4.11)

u(k)(t,x)= v(0,η(0; t,x)
)

exp
(∫ t

0
λ
(
Q(k)(s)

)
ds
)

, (4.12)

z(k+1)(t)=
∫

Rn
v(0, y)exp

(∫ t

0
W
(
R(k)(s)

)
ds
)
dy, (4.13)

where

Q(k)(s)=
(
s,η(s; t,x),u(k)

(s,η(s;t,x)),z
(k)
s

)
,

R(k)(s)=
(
s,η(s;0, y),u(k)

(s,η(s;0,y)),z
(k)
s

)
.

(4.14)
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Since the functions c j , j = 1, . . . ,n, do not depend on z, bicharacteristics at each stage of
iterations remain the same. The iterations start with the functions z(t) = 0, t ∈ [0,a] or
z(t)= Z(t), t ∈ [0,a], where Z is given by (2.13). Both cases demand some monotonicity
of the functions λ and W. We modify some assumptions on the functions c, λ, and W as
follows:

(C0) c j : E→R are continuous in (t,x) and

∥
∥c(t,x)− c(t,x)

∥
∥≤ σc

(
t,‖x− x‖), (4.15)

where σc is a Perron comparison function;
(Λ0) λ : Ω→R is continuous in (t,x,w,q), quasimonotone with respect to the last two

variables and

∣
∣λ(t,x,w,q)− λ(t,x,w,q)

∣
∣≤ σ(t,‖x− x‖+‖w−w‖+‖q− q‖), (4.16)

where σ : [0,a]×R+→R+ is a Perron comparison function.
Denote

W(t,x,w,q)= λ(t,x,w,q) + tr∂xc(t,x). (4.17)

Remark 4.5. The monotonicity of the function W with respect to the last two variables
follows from the monotonicity of the function λ.

Theorem 4.6. If assumptions (V0), (V1), (C0), (Λ0), (Λ1), and (W1) are satisfied and
z(0)(t) = 0 (t ∈ [0,a]), then the sequences {z(k)} and {u(k)} are nondecreasing and tend to
z,u[z] such that z =�[z].

Proof. For a given function z(0), by (4.12), we find the function u(0), which is the solution
of (1.5). The functions z(1), u(1) are computed by (4.11)–(4.13). Clearly, z(0)(t)≤ z(1)(t),
t ∈ [0,a], and the functions u(k), k ≥ 0, are solutions of (1.5) for a given function z =
z(k) ∈�. From the monotonicity of λwith respect to the last variable, we have inequalities

∂tu
(k)(t,x)−F[u(k),z(k)](t,x)≤ ∂tu(k+1)(t,x)−F[u(k+1),z(k+1)](t,x) (4.18)

on E, where F is Niemycki operator corresponding to (4.10), that is,

F[u,z](t,x)= u(t,x)λ
(
t,x,u(t,x),z[u]t

)−
n∑

j=1

c j(t,x)
∂u

∂xj
(t,x). (4.19)

The initial condition for the functions u(k) (k = 0,1, . . .) is given by (1.7). The theorem
on functional differential inequalities yields u(k) ≤ u(k+1) on E (see [11, pp. 142–145, The-
orems 5.5 and 5.10]). The monotonicity of the sequence {z(k)} follows from (4.13), the
monotonicity of λ, and Remark 4.5. �

Now, we discus the case when the iteration starts with the function z(0) = Z(t), t ∈
[0,a], where Z is given by (2.13). Under the respective monotonicity assumptions on λ
and W , we prove that the sequences {u(k)} and {z(k)} are nonincreasing and tend to the
unique solution of problem (1.5)–(1.7). The only difficulty is to choose an integrable
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function u(0) which estimates all the solutions obtained in the iterative process. We state
it as follows.

Theorem 4.7. If assumptions (V0), (V1), (C0), (Λ0), (Λ1), and (W1) are satisfied, z(0)(t)
= Z(t) and u(0)(t,x)= v(0,η(0; t,x))exp(

∫ t
0 Lλ(s)ds), then {z(k)} and {u(k)} are nonincreas-

ing and tend to z,u[z] such that z =�[z].

References
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[16] H. Leszczyński and P. Zwierkowski, “Existence of solutions to generalized von Foerster equations

with functional dependence,” Annales Polonici Mathematici, vol. 83, no. 3, pp. 201–210, 2004.
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