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1. Introduction

Let X be a real Banach space with dual X∗, let K ⊂ X be a nonempty subset, and let f :
K ×K → R = (−∞,+∞) be a given bifunction. By the equilibrium problem introduced
by Blum and Oettli in [1], we can formulate the following equilibrium problem of finding
an x̂ ∈ K such that

f (x̂, y)≥ 0, ∀y ∈ K , (1.1)

where f (x,x)= 0 for all x ∈ K .
The following is a list of special cases of problem (1.1).
(1) If f (x, y)= 〈N(x,x),η(y,x)〉+ b(x, y)− b(x,x) for all x, y ∈ K , where N : K ×K →

X∗, η : K ×K → X , and b : K ×K →R, then the problem of finding an x̂ ∈ K such that

〈

N(x̂, x̂),η(y, x̂)
〉

+ b(x̂, y)− b(x̂, x̂)≥ 0, ∀y ∈ K , (1.2)
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is a special case of problem (1.1). This problem is known as the generalized mixed
variational-like inequality. Problem (1.2) was considered by Huang and Deng [2] in the
Hilbert space setting with set-valued mappings.

(2) If X = X∗ = H is a Hilbert space, N(x, y) = Tx−Ay, and b(x, y) =m(y) for all
x, y ∈ K , where T ,A,m : K → X∗, then problem (1.2) reduces to the following mixed
variational-like inequality problem, which is to find an x̂ ∈ K such that

〈

T(x̂)−A(x̂),η(y, x̂)
〉

+m(y)−m(x̂)≥ 0, ∀y ∈ K. (1.3)

This problem was introduced and studied by Ansari and Yao [3] and Ding [4].

Remark 1.1. Through appropriate choices of the mappings f , N , η, and b, it can be easily
shown that problem (1.1) covers many known problems as special cases. For example, see
[1–8] and the references therein.

It is well known that many interesting and complicated problems in nonlinear analy-
sis, such as nonlinear programming, optimization, Nash equilibria, saddle points, fixed
points, variational inequalities, and complementarity problems (see [1, 9–12] and the
references therein), can all be cast as equilibrium problems in the form of problem (1.1).

There are several papers available in the literature which are devoted to the develop-
ment of iterative procedures for solving some of these equilibrium problems in finite as
well as infinite-dimensional spaces. For example, some proximal point algorithms were
developed based on the Bregman functions, see [13–18]. For other related works, we refer
to [10, 12] and the references therein.

In [8], Iusem and Sosa presented some iterative algorithms for solving equilibrium
problems in finite-dimensional spaces. They have also established the convergence of the
algorithms In [19], Chen and Wu introduced an auxiliary problem for the equilibrium
problem (1.1). They then showed that the approximate solutions generated by the auxil-
iary problem converge to the exact solution of the equilibrium problem (1.1) in Hilbert
space.

In this paper, a new class of auxiliary problems for the equilibrium problem (1.1)
in Banach space is introduced. We show the existence of approximate solutions of the
auxiliary problems for the equilibrium problem, and establish the strong convergence
of the approximate solutions to an exact solution of the equilibrium problem. Then, we
develop an iterative scheme for solving problems (1.2) and (1.3). Our results extend and
improve the corresponding results reported in [3, 4, 19].

2. Preliminaries

Throughout this paper, let X be a real Banach space and X∗ its dual, let 〈·,·〉 be the dual
pair between X and X∗, and let K be a nonempty convex subset of X .

In the sequel, we give some preliminary concepts and lemmas.
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Definition 2.1 (see [20, 21]). Let η : K ×K → X . A differentiable function h : K →R on a
convex set K is said to be

(i) η-convex if

h(y)−h(x)≥ 〈h′(x),η(y,x)
〉

, ∀x, y ∈ K , (2.1)

where h′(x) denotes the Fréchet derivative of h at x;
(ii) μ-η-strongly convex if there exists a constant μ > 0 such that

h(y)−h(x)− 〈h′(x),η(y,x)
〉≥ μ

2
‖x− y‖2, ∀x, y ∈ K. (2.2)

Remark 2.2. If η(x, y)= x− y for all x, y ∈ K , then (i)-(ii) of Definition 2.1 reduce to the
definitions of convexity and strong convexity, respectively.

Remark 2.3. h′ is strongly monotone with the constant σ > 0 if h is strongly convex with
a constant σ/2. In fact, by the strong convexity of h, we have

〈

h′(x)−h′(y),x− y
〉= 〈h′(x),x− y

〉− 〈h′(y),x− y
〉

= h(y)−h(x)− 〈h′(x), y− x
〉

+h(x)−h(y)− 〈h′(y),x− y
〉

≥ σ

2
‖x− y‖2 +

σ

2
‖x− y‖2 = σ‖x− y‖2.

(2.3)

Definition 2.4. Let η : K ×K → X be a single-valued mapping. For all x, y ∈ E, the map-
ping N : K ×K → X∗ is said to be

(i) ρ-η-coercive with respect to the first argument if there exists a ρ > 0 such that

〈

N(x,·)−N(y,·),η(x, y)
〉≥ ρ

∥

∥N(x,·)−N(y,·)∥∥2
, ∀x, y ∈ K ; (2.4)

(ii) σ-η-strongly monotone with respect to the second argument if there exists a con-
stant σ > 0 such that

〈

N(·,x)−N(·, y),η(x, y)
〉≥ σ‖x− y‖2, ∀x, y ∈ K ; (2.5)

(iii) σ-Lipschitz continuous with respect to the second argument if there exists a con-
stant σ > 0 such that

∥

∥N(·,x)−N(·, y)
∥

∥≤ σ
∥

∥x− y
∥

∥, ∀x, y ∈ K. (2.6)

Definition 2.5. Let η : K ×K → X . The mapping T : K → X∗ is said to be
(i) α-η-coercive if there exists an α > 0 such that

〈

T(x)−T(y),η(x, y)
〉≥ α

∥

∥T(x)−T(y)
∥

∥

2
, ∀x, y ∈ K ; (2.7)

(ii) β-η-strongly monotone if there exists a β > 0 such that

〈

T(x)−T(y),η(x, y)
〉≥ β

∥

∥x− y
∥

∥

2
, ∀x, y ∈ K ; (2.8)
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(iii) η-monotone if

〈

T(x)−T(y),η(x, y)
〉≥ 0, ∀x, y ∈ K ; (2.9)

(iv) δ-η-relaxed monotone if there exists a δ > 0 such that

〈

T(x)−T(y),η(x, y)
〉≤−δ‖x− y‖2, ∀x, y ∈ K ; (2.10)

(v) ε-Lipschitz continuous if there exists an ε > 0 such that

∥

∥T(x)−T(y)
∥

∥≤ ε‖x− y‖, ∀x, y ∈ K. (2.11)

Remark 2.6. If η(x, y) = x− y for all x, y ∈ K , then (i)–(iv) of Definition 2.5 reduce to
the definitions of coerciveness, strong monotonicity, monotonicity, relaxed monotonic-
ity, respectively. Obviously, the η-coerciveness implies η-monotonicity.

Definition 2.7. The mapping η : K ×K → X is said to be τ-Lipschitz continuous if there
exists a τ > 0 such that

∥

∥η(x, y)
∥

∥≤ τ‖x− y‖, ∀x, y ∈ K. (2.12)

Remark 2.8. It is easy to see that T is α-η-coercive if T is β-η-strongly monotone and
α/β-Lipschitz continuous. On the other hand if T is α-η-coercive and η is τ-Lipschitz
continuous, then T is τ/α-Lipschitz continuous.

Definition 2.9 (see [22]). A mapping F : K → R is called sequentially continuous at x0 if
for any sequence {xn} ⊂ K such that ‖xn − x0‖ → 0, then F(xn)→ F(x0). F is said to be
sequentially continuous on K if it is sequentially continuous at each x0 ∈ K .

Definition 2.10. Let E be a nonempty subset of a real topological vector space X . A set-
valued function Φ : E→ 2X is said to be a KKM mapping if for any nonempty finite set
A⊂ E,

co(A)⊂
⋃

x∈A
Φ(x), (2.13)

where co(A) denotes the convex hull of A.

Lemma 2.11 (see [23]). Let K be a nonempty convex subset of a real Hausdorff topological
vector space X , and let Φ : K → 2X be a KKM mapping. Suppose that Φ(x) is closed in X for
every x ∈ K , and that there is a point x0 ∈ K such that Φ(x0) is compact. Then,

⋂

x∈K
Φ(x) �= ∅. (2.14)

Lemma 2.12. Let A : K → X∗ be sequentially continuous from the weak topology to the
strong topology. Suppose that for a fixed y ∈ K , x �→ η(y,x) is a sequentially continuous
mapping from the weak topology to the weak topology. Define f (x)= 〈A(x),η(y,x)〉. Then,
f (x) is a sequentially continuous mapping from the weak topology to the strong topology.
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Proof. If xn → x0 with the weak topology, then A(xn)→ A(x0), and for any fixed y ∈ K ,
η(y,xn)→ η(y,x0) with the weak topology. Clearly,

∣

∣ f
(

xn
)− f

(

x0
)∣

∣= ∣∣〈A(xn
)

,η
(

y,xn
)〉− 〈A(x0

)

,η
(

y,x0
)〉∣

∣

= ∣∣〈A(xn
)−A

(

x0
)

,η
(

y,xn
)〉− 〈A(x0

)

,η
(

y,xn
)−η

(

y,x0
)〉∣

∣

≤ ∥∥A(xn
)−A

(

x0
)∥

∥ ·∥∥η(y,xn
)∥

∥+
∣

∣

〈

A
(

x0
)

,η
(

y,xn
)−η

(

y,x0
)〉∣

∣.
(2.15)

By the boundedness property of the weak convergence sequence, we see that ‖η(y,xn)‖ is
bounded. Thus, it follows that | f (xn)− f (x0)| → 0. This completes the proof. �

Lemma 2.13 (see [24]). Let K be a nonempty convex subset of a topological vector space.
Suppose that φ : K ×K → (−∞,+∞] is a mapping such that the following conditions are
satisfied.

(1) For each y ∈ K , x �→ φ(y,x) is semicontinuous on every compact subset of K .
(2) If x =∑n

i=1 λi yi, where {y1, y2, . . . , yn}is any nonempty finite set in K , while λi ≥ 0,
i= 1,2, . . . ,n, such that

∑n
i=1 λi = 1, then min1≤n≤n φ(yi,x)≤ 0.

(3) There exist a nonempty compact convex subset K0 of K and a nonempty compact
subset D0 of K such that for each x ∈ K\D0, there exists a y ∈ co(K0 ∪{x}) such
that φ(y,x) > 0.

Then, there exists an x0 ∈ K such that φ(y,x0)≤ 0 for all y ∈ K .

3. Main results

In this section, we first deal with the approximate solvability of problem (1.1). Let X be a
reflexive Banach space and X∗ its dual, and let K be a nonempty convex subset of X . We
introduce an auxiliary function ϕ : K →R which is differentiable. Then, we construct the
auxiliary problem for problem (1.1) as follows.

For any given xn ∈ K , find an xn+1 ∈ K such that

ρ f
(

xn, y
)− ρ f

(

xn,xn+1
)

+
〈

ϕ′
(

xn+1
)−ϕ′

(

xn
)

, y− xn+1
〉≥ 0, ∀y ∈ K , (3.1)

where 〈·,·〉 denotes the dual pair between X and X∗, ρ > 0 is a constant, and ϕ′(x) is the
Fréchet derivative of ϕ at x.

We note that xn is a solution of problem (1.1) when xn+1 = xn.

Remark 3.1. If ρ= 1, then the auxiliary problem for problem (3.1) reduces to the auxiliary
problem studied by Chen and Wu [19].

Similarly, we can construct the auxiliary problems (3.2) and (3.3) for problems (1.2)
and (1.3), respectively.

(1) If f (x, y) = 〈N(x,x),η(y,x)〉 + b(x, y)− b(x,x) for all x, y ∈ K , where N : K ×
K → X∗, η : K ×K → X , and b : K ×K →R, then for any given xn, problem (3.1)
is equivalent to finding an xn+1 such that

〈

ϕ′
(

xn+1
)

, y− xn+1
〉≥ 〈ϕ′(xn

)

, y− xn+1
〉− ρ

〈

N
(

xn,xn
)

,η
(

y,xn+1
)〉

+ ρb
(

xn,xn+1
)− ρb

(

xn, y
)

, ∀y ∈ K.
(3.2)
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(2) If X , T , A, m are the same as in problem (1.3), then for a given iterate xn, problem
(3.2) reduces to the following problem of finding an xn+1 such that

〈

ρ
(

T
(

xn
)−A

(

xn
))

+ϕ′
(

xn+1
)−ϕ′

(

xn
)

,η
(

y,xn+1
)〉

+ ρ
[

m(y)−m
(

xn+1
)]≥ 0, ∀y ∈ K.

(3.3)

Now, we are in a position to state and prove the main results of the paper.

Theorem 3.2. LetX be a reflexive Banach space with dual spaceX∗ and letK be a nonempty
convex subset of X . Suppose that f : K ×K →R is a bifunction and ϕ : K → R is a differen-
tiable function. Furthermore, for all x, y,z ∈ K , assume that the following conditions are
satisfied.

(i) y �→ f (x, y) is affine and weakly lower semicontinuous.
(ii) ϕ′ is μ-strongly monotone and sequentially continuous from the weak topology to the

strong topology.
(iii) There exist a compact set C ⊂ K and a vector y0 ∈ K such that for any ρ > 0,

ρ f
(

xn,x
)− ρ f

(

xn, y0
)

>
〈

ϕ′(x)−ϕ′
(

xn
)

, y0− x
〉

, ∀x ∈ K\C. (3.4)

Then, auxiliary problem (3.1) admits a unique solution xn+1 ∈ K . In addition, suppose that
the following condition is also satisfied.

(iv) There exist constants a≤ 0, b > 0, and c ∈R such that

f
(

xn,xn+1
)− f

(

xn,z
)− f

(

z,xn+1
)≥ a

∥

∥xn− xn+1
∥

∥

2
+ b
∥

∥xn− z
∥

∥

2
+ c
∥

∥xn− xn+1
∥

∥ ·∥∥xn− z
∥

∥

(3.5)

for all z ∈ K and n= 0,1,2, . . . .
If the original problem (1.1) has a solution and

μ+ 2aρ≥ 0, 0 < ρ <
2bμ

c2− 4ab
, (3.6)

then the sequence {xn} generated by (3.1) converges to a solution of equilibrium prob-
lem (1.1).

Proof. Let

S(y)= {x ∈ K | ρ f (xn, y
)− ρ f

(

xn,x
)

+
〈

ϕ′(x)−ϕ′
(

xn
)

, y− x
〉≥ 0

}

. (3.7)

If
⋂

y∈K S(y) �= ∅, then there exists a solution to (3.1).

Since y ∈ S(y) for all y ∈ K , S(y) �= ∅, it follows from (iii) that for any x ∈ K\C,

ρ f
(

xn, y0
)− ρ f

(

xn,x
)

+
〈

ϕ′(x)−ϕ′
(

xn
)

, y0− x
〉

< 0. (3.8)

That is, x �∈ S(y0). Thus, S(y0) ⊂ K ∩C. Since C is compact, there exists a y0 ∈ K such
that S(y0) is also compact.

For any finite subset {t1, t2, . . . , tr} ⊂ K , let co{t1, . . . , tr} be its convex hull. If
t ∈ co({ti}ri=1), then t=∑r

i=1 λiti with λi ≥ 0, i=1,2, . . . ,r, and
∑r

i=1 λi=1. If t �∈⋃r
i=1 S(ti),
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then t �∈ S(ti) for all i= 1,2, . . . ,r. Hence,

ρ f
(

xn, ti
)− ρ f

(

xn, t
)

+
〈

ϕ′(t)−ϕ′
(

xn
)

, ti− t
〉

< 0, (3.9)

and so

r
∑

i=1

[

λiρ f
(

xn, ti
)− λiρ f

(

xn, t
)

+ λi
〈

ϕ′(t)−ϕ′
(

xn
)

, ti− t
〉]

< 0. (3.10)

Since t =∑r
i=1 λiti, it follows from (i) that

f
(

xn, t
)=

r
∑

i=1

λi f
(

xn, ti
)

< f
(

xn, t
)

, (3.11)

which is a contradiction. Therefore,

co
{

t1, t2, . . . , tr
}⊂

r
⋃

i=1

S
(

ti
)⊂

r
⋃

i=1

S
(

ti
)

. (3.12)

By Lemma 2.11,
⋂

y∈K S(y) �= ∅.

Set x ∈⋂y∈K S(y). Then, x ∈ S(y) for all y ∈ K and there exists a sequence {uk} ⊂ S(y)
such that uk → x. It follows that

ρ f
(

xn, y
)− ρ f

(

xn,uk
)

+
〈

ϕ′
(

uk
)−ϕ′

(

xn
)

, y−uk
〉≥ 0. (3.13)

Since y �→ f (x, y) is weakly lower semicontinuous and ϕ′ is sequentially continuous from
the weak topology to the strong topology, as k→∞, we have

ρ f
(

xn, y
)− ρ f

(

xn,x
)

+
〈

ϕ′(x)−ϕ′
(

xn
)

, y− x
〉≥ 0, (3.14)

which implies that x ∈ S(y) for all y ∈ K . Therefore,
⋂

y∈K S(y) �= ∅.
Now, we will prove that the solution of (3.1) is unique. In fact, if there exist x1,x2 ∈

⋂

y∈K S(y)⊂ K with x1 �= x2, then

ρ f
(

xn, y
)− ρ f

(

xn,x1
)

+
〈

ϕ′
(

x1
)−ϕ′

(

xn
)

, y− x1
〉≥ 0, ∀y ∈ K , (3.15)

ρ f
(

xn, y
)− ρ f

(

xn,x2
)

+
〈

ϕ′
(

x2
)−ϕ′

(

xn
)

, y− x2
〉≥ 0, ∀y ∈ K. (3.16)

Setting y = x2 in (3.15) and y = x1 in (3.16), we get

ρ f
(

xn,x2
)− ρ f

(

xn,x1
)

+
〈

ϕ′
(

x1
)−ϕ′

(

xn
)

,x2− x1
〉≥ 0, (3.17)

ρ f
(

xn,x1
)− ρ f

(

xn,x2
)

+
〈

ϕ′
(

x2
)−ϕ′

(

xn
)

,x1− x2〉 ≥ 0. (3.18)

Adding (3.17) to (3.18), we obtain

〈

ϕ′
(

x1
)

,x2− x1
〉

+
〈

ϕ′
(

x2
)

,x1− x2
〉≥ 0. (3.19)
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Since ϕ is strictly convex with constant μ > 0, it holds that

ϕ
(

x2
)−ϕ

(

x1
)− μ

2

∥

∥x2− x1
∥

∥

2
+ϕ
(

x1
)−ϕ

(

x2
)− μ

2

∥

∥x2− x1
∥

∥

2 ≥ 0, (3.20)

that is,

−μ∥∥x2− x1
∥

∥

2 ≥ 0. (3.21)

This contradicts with μ > 0 and x1 �= x2. Hence, problem (3.1) admits a unique solution,
which is denoted by xn+1.

Let x̂ be a solution of the original problem (1.1). For each y ∈ K , we define a function
Θ : K → R by

Θ(y)= ϕ(x̂)−ϕ(y)− 〈ϕ′(y), x̂− y
〉

. (3.22)

It follows from the strict convexity of ϕ that

Θ(y)≥ μ

2
‖x̂− y‖2 ≥ 0, (3.23)

Θ
(

xn
)−Θ(xn+1

)= ϕ(x̂)−ϕ(xn
)−〈ϕ′(xn

)

, x̂−xn
〉−ϕ(x̂)+ϕ

(

xn+1
)

+
〈

ϕ′
(

xn+1
)

, x̂−xn+1
〉

= ϕ
(

xn+1
)−ϕ

(

xn
)− 〈ϕ′(xn

)

, x̂− xn
〉

+
〈

ϕ′
(

xn+1
)

, x̂− xn+1
〉

= [ϕ(xn+1
)−ϕ(xn

)−〈ϕ′(xn
)

,xn+1−xn
〉]

+
〈

ϕ′
(

xn+1
)−ϕ′(xn

)

, x̂−xn+1
〉

≥ μ

2

∥

∥xn+1− xn
∥

∥

2
+
〈

ϕ′
(

xn+1
)−ϕ′

(

xn
)

, x̂− xn+1
〉

.

(3.24)

Setting y = x̂ in (3.1), we have

ρ f
(

xn, x̂
)− ρ f

(

xn,xn+1
)

+
〈

ϕ′
(

xn+1
)−ϕ′

(

xn
)

, x̂− xn+1
〉≥ 0, (3.25)

that is,

〈

ϕ′
(

xn+1
)−ϕ′

(

xn
)

, x̂− xn+1
〉≥ ρ f

(

xn,xn+1
)− ρ f

(

xn, x̂
)

. (3.26)

Let y = xn+1 in (1.1). Then, f (x̂,xn+1)≥ 0, and so

ρ f
(

x̂,xn+1
)≥ 0. (3.27)

By (3.24)–(3.27), we have

Θ
(

xn
)−Θ

(

xn+1
)≥ μ

2

∥

∥xn+1− xn
∥

∥

2
+ ρ f

(

xn,xn+1
)− ρ f

(

xn, x̂
)− ρ f

(

x̂,xn+1
)

= μ

2

∥

∥xn+1− xn
∥

∥

2
+ ρQ,

(3.28)

where Q = f (xn,xn+1)− f (xn, x̂)− f (x̂,xn+1). From assumption (iv), there exist constants
a≤ 0, b > 0 and c ∈R, such that

Q ≥ a
∥

∥xn− xn+1
∥

∥

2
+ b
∥

∥xn− x̂
∥

∥

2
+ c
∥

∥xn− x̂
∥

∥ ·∥∥xn+1− xn
∥

∥. (3.29)
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Combining (3.28) and (3.29), we have

Θ
(

xn
)−Θ

(

xn+1
)

≥
(

μ

2
+ aρ

)

∥

∥xn+1− xn
∥

∥

2
+ bρ

∥

∥xn− x̂
∥

∥

2
+ cρ

∥

∥xn− x̂
∥

∥ ·∥∥xn+1− xn
∥

∥

=
(

μ

2
+ aρ

){

∥

∥xn+1− xn
∥

∥+
cρ

μ+ 2aρ

∥

∥xn− x̂
∥

∥

}2

+
(

bρ− (cρ)2

2(μ+ 2aρ)

)

∥

∥xn− x̂
∥

∥

2

≥
(

bρ− (cρ)2

2(μ+ 2aρ)

)

∥

∥xn− x̂
∥

∥

2
.

(3.30)

It follows from (3.6) and (3.30) that

Θ
(

xn
)−Θ

(

xn+1
)≥ 0. (3.31)

From (3.31), we know that {Θ(xn)} is a decreasing sequence with infimum, so it con-
verges to some number. Hence, limn→∞[Θ(xn)−Θ(xn+1)]= 0. It follows from (3.30) that
limn→∞ xn = x̂. This completes the proof. �

Remark 3.3. Suppose that x �→ f (x, y) is additive (i.e., f (x + y,u)= f (x,u) + f (y,u) for
all x, y,u∈ K), that y �→ f (x, y) is also additive, and that there exists a constant ν > 0 such
that f (x, y)≥ ν‖x‖ · ‖y‖. Then, by the fact that f (z,z)= 0 for all z ∈ K , we have

f
(

xn,xn+1
)− f

(

xn,z
)− f

(

z,xn+1
)

= f
(

xn− z,xn+1
)− f

(

xn− z,z
)= f

(

xn− z,xn+1− z
)

= f
(

xn− z,xn+1− xn
)

+ f
(

xn− z,xn− z
)≥ ν

∥

∥xn− z
∥

∥

2
+ ν
∥

∥xn− z
∥

∥ ·∥∥xn+1− xn
∥

∥

= 0 ·∥∥xn+1− xn
∥

∥

2
+ ν
∥

∥xn− z
∥

∥

2
+ ν
∥

∥xn− z
∥

∥ ·∥∥xn+1− xn
∥

∥.
(3.32)

Let a = 0, b = c = ν. Then, the assumption (iv) of Theorem 3.2 holds. Therefore, our
results extend, improve, and unify the corresponding results obtained by Chen and Wu
in [19].

Theorem 3.4. Let K and X be the same as in Theorem 3.2. Let N : K ×K → X∗ and η :
K ×K → X be two mappings, and let b : K ×K → R and ϕ : K → R be two functions. Suppose
that the following conditions are satistified.

(i) N(·,·) is α-η-coercive with respect to the first argument and is ξ-η-strongly mono-
tone and β-Lipschitz continuous with respect to the second argument, y �→ 〈N(x,x),
η(y,x)〉 is concave, and N is sequentially continuous from the weak topology to the
strong topology with respect to the first argument and the second argument.

(ii) η(x, y)= η(x,z) + η(z, y) for all x, y,z ∈ K , η is λ-Lipschitz continuous and for any
given y ∈ K , x �→ η(y,x) is sequentially continuous from the weak topology to the
weak topology.

(iii) b(·,·) is linear with respect to the first argument and convex lower semicontin-
uous with respect to the second argument, there exists a constant 0 < γ < β such
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that b(x, y) ≤ γ‖x‖‖y‖ for all x, y ∈ K , and b(x, y)− b(x,z) ≤ b(x, y − z) for all
x, y,z ∈ K .

(iv) ϕ is μ-strongly convex and its Fréchet derivative ϕ′ is sequentially continuous from
the weak topology to the strong topology.

Then, there exists a unique solution xn+1 ∈ K for auxiliary problem (3.2). In addition, if the
original problem (1.2) has a solution and

μ− λ2ρ

2α
≥ 0, 0 < ρ <

2μα(ξ − γ)
α(βλ+ γ)2 + (ξ − γ)λ2

, ξ > γ > 0, (3.33)

then the sequence {xn} generated by (3.2) converges to a solution of generalized mixed vari-
ational-like inequality problem (1.2).

Proof. Since η(x, y)= η(x,z) +η(z, y) for all x, y,z ∈ K , it is easy to see that

η(x,x)= 0, η(x, y) +η(y,x)= 0, ∀x, y ∈ K. (3.34)

Let f (x, y) = 〈N(x,x),η(y,x)〉+ b(x, y)− b(x,x) for all x, y ∈ K . Then, the following
results follow.

(a) Assumptions (ii) and (iii) imply that condition (i) of Theorem 3.2 holds.
(b) From (3.33), (3.34), and assumptions (i)–(iii), we have

f (x, y)− f (x,z)− f (z, y)

= 〈N(z,z)−N(x,z),η(z,x)
〉

+
〈

N(x,z)−N(x,x),η(z,x)
〉

− 〈N(z,z)−N(x,z),η(y,x)
〉− 〈N(x,z)−N(x,x),η(y,x)

〉

− b(x− z,z− x)− b(x− z,x− y)

≥ α
∥

∥N(z,z)−N(x,z)
∥

∥

2
+ ξ
∥

∥z− x
∥

∥

2−∥∥N(z,z)−N(x,z)
∥

∥ ·∥∥η(y,x)
∥

∥

−∥∥N(x,z)−N(x,x)
∥

∥ ·∥∥η(y,x)
∥

∥− γ
∥

∥x− z
∥

∥

2− γ‖x− z‖ · ‖x− y‖
≥ α

∥

∥N(z,z)−N(x,z)
∥

∥

2− λ
∥

∥N(z,z)−N(x,z)
∥

∥ · ‖y− x‖+ ξ‖z− x‖2

−βλ‖z− x‖ · ‖y− x‖− γ‖x− z‖2− γ‖x− z‖ · ‖x− y‖

= α
[

∥

∥N(z,z)−N(x,z)
∥

∥− λ

2α
‖x− y‖

]2

− λ2

4α
‖x− y‖2

+ (ξ − γ)‖z− x‖2− (βλ+ γ)‖x− z‖ · ‖x− y‖
≥ a‖x− y‖2 + b‖x− z‖2 + c‖x− y‖ · ‖x− z‖

(3.35)

for all x, y,z ∈ K , where

a=− λ2

4α
< 0, b= ξ − γ > 0, c =−(βλ+ γ). (3.36)

This implies that assumption (iv) of Theorem 3.2 holds.
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(c) By assumption (iv), it is easy to see that assumption (ii) of Theorem 3.2 holds.
(d) Assumption (iii) of Theorem 3.2 can be obtained by Lemmas 2.12 and 2.13, and

conditions (i) and (iii) (see [2]).
Thus, the conclusions of the theorem follows from the argument similar to that given

for Theorem 3.2. This completes the proof. �

Theorem 3.5. Let K be a nonempty convex subset of a real Hilbert space H . Let m : K →R
be a lower semicontinuous and convex functional, let T , A : K →H be two mappings such
that T is α-η-coercive and A is ξ-η-relaxed monotone and β-Lipschitz continuous. Assume
that

(i) η : K ×K →H is λ-Lipschitz continuous such that
(a) η(x, y)= η(x,z) +η(z, y) for all x, y,z ∈ K ,
(b) η(·,·) is affine in the first variable,
(c) for each fixed y ∈ K , x �→ η(y,x) is sequentially continuous from the weak

topology to the weak topology;
(ii) ϕ : K → R is μ-η-strongly convex and its derivative ϕ′ is sequentially continuous

from the weak topology to the strong topology.
Then, there exists a unique solution xn+1 ∈ K for auxiliary problem (3.3). In addition, if the
original problem (1.3) has a solution and

μ− λ2ρ

2α
≥ 0, 0 < ρ <

2αμξ
λ2
(

ξ +αβ2
) , (3.37)

then the sequence {xn} generated by (3.3) converges to a solution of problem (1.3).

Proof. Let f (x, y)= 〈T(x)−A(x),η(y,x)〉+m(y)−m(x) for all x, y ∈ K . By the proof of
Theorem 3.4, we can take a=−λ2/4α < 0, b = ξ > 0, and c =−βλ∈R in (3.35) and check
that all conditions of Theorem 3.2 hold. This completes the proof. �

Remark 3.6. Our results extend and improve those obtained by Ansari and Yao in [3]
in the following ways: (i) the mixed variational-like inequality (1.3) in a Hilbert space
is extended and generalized to the equilibrium problem (1.1) in a Banach space, (ii) we
do not require that K is bounded, (iii) the condition η(x, y) + η(y,x)= 0 for all x, y ∈ K
is removed, (iv) our method for the proof of the existence of approximate solutions is
very different from theirs. Furthermore, our results also extend Ding’s results in [4] in
the following ways: (i) the mixed variational-like inequality (1.3) in a Hilbert space is
extended and generalized to the equilibrium problem (1.1) in a Banach space, (ii) the
condition η(x, y) + η(y,x) = 0 for all x, y ∈ K is removed, (iii) our convergence criteria
are very different from the ones used by Ding.

From Theorem 3.2, as noted by Zhu and Marcotte in [25], the solution of problem
(3.1) cannot be obtained in closed form. Thus, a tradeoff between the amount of work
spent on solving the auxiliary problem and the accuracy of the corresponding solution
is to be decided. More precisely, we can choose preassigned tolerances, εn, n = 1,2, . . . .
Then, at step n, one can find an approximate solution of the auxiliary problem, that is, a
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point xn+1 ∈ K such that

ρ f
(

xn, y
)− ρ f

(

xn,xn+1
)

+
〈

ϕ′
(

xn+1
)−ϕ′

(

xn
)

, y− xn+1
〉≥ εn, ∀y ∈ K ′, (3.38)

where ρ > 0 is a constant and ϕ′(x) is the Fréchet derivative of ϕ at x. If K is bounded, we
take K ′ = K . Otherwise, we define

K ′ = K ∩ {x : ‖x‖ ≤M
}

, (3.39)

where M is a suitably large constant. We note that such a number always exists because
{‖xn− x̂‖} is bounded.

Theorem 3.7. Suppose that all conditions of Theorem 3.2 are satisfied and that {εn} is a
sequence such that

εn ≥ 0, lim
n→∞εn = 0. (3.40)

Then, the sequence {xn} generated by (3.38) converges to a solution x̂ of equilibrium problem
(1.1).

Proof. From the proof of Theorem 3.2, we have

Θ
(

xn
)−Θ

(

xn+1
)≥ r

{

∥

∥xn+1− xn
∥

∥+
cρ

μ+ 2aρ

∥

∥xn− x̂
∥

∥

}2

+ s
∥

∥xn− x̂
∥

∥

2
+ εn, (3.41)

where r = μ/2 + aρ and s= bρ− (cρ)2/2(μ+ 2aρ). It follows from (3.6), (3.40), and (3.41)
that

Θ
(

xn
)−Θ

(

xn+1
)≥ s

∥

∥xn− x̂
∥

∥

2
+ εn ≥ 0, (3.42)

that is, {Θ(xn)} is strictly (unless xn = x̂) decreasing and is nonnegative by (3.23), and
so it converges to some number. Hence, limn→∞[Θ(xn)−Θ(xn+1)]= 0, and by (3.42), we
have

lim
n→∞

(

s
∥

∥xn− x̂
∥

∥

2
+ εn

)= 0. (3.43)

Therefore,

lim
n→∞s

∥

∥xn− x̂
∥

∥

2

= lim
n→∞

[(

s
∥

∥xn− x̂
∥

∥

2
+ εn

)− εn
]= lim

n→∞
(

s
∥

∥xn− x̂
∥

∥

2
+ εn

)− lim
n→∞εn = 0,

(3.44)

that is, {xn} converges strongly to x̂, a solution of problem (1.1). This completes the
proof. �

Acknowledgments

The work of the first author was supported by the National Natural Science Foundation
of China (10671135) and the Specialized Research Fund for the Doctoral Program of



Nan-Jing Huang et al. 13

Higher Education (20060610005), the work of the second author was supported by the
Scientific Research Fund of Sichuan Provincial Education Department (2006A106), and
the third author was supported by an ARC Grant from the Australian Research Council.
The authors are grateful to the referees for valuable comments and suggestions.

References

[1] E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium prob-
lems,” The Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.

[2] N.-J. Huang and C.-X. Deng, “Auxiliary principle and iterative algorithms for generalized set-
valued strongly nonlinear mixed variational-like inequalities,” Journal of Mathematical Analysis
and Applications, vol. 256, no. 2, pp. 345–359, 2001.

[3] Q. H. Ansari and J. C. Yao, “Iterative schemes for solving mixed variational-like inequalities,”
Journal of Optimization Theory and Applications, vol. 108, no. 3, pp. 527–541, 2001.

[4] X. P. Ding, “Algorithm of solutions for mixed-nonlinear variational-like inequalities in reflexive
Banach space,” Applied Mathematics and Mechanics, vol. 19, no. 6, pp. 489–496, 1998.

[5] X. P. Ding, “Algorithms of solutions for completely generalized mixed implicit quasi-variational
inclusions,” Applied Mathematics and Computation, vol. 148, no. 1, pp. 47–66, 2004.

[6] J. S. Guo and J. C. Yao, “Variational inequalities with nonmonotone operators,” Journal of Opti-
mization Theory and Applications, vol. 80, no. 1, pp. 63–74, 1994.

[7] P. T. Harker and J.-S. Pang, “Finite-dimensional variational inequality and nonlinear comple-
mentarity problems: a survey of theory, algorithms and applications,” Mathematical Program-
ming, vol. 48, no. 2, pp. 161–220, 1990.

[8] A. N. Iusem and W. Sosa, “Iterative algorithms for equilibrium problems,” Optimization, vol. 52,
no. 3, pp. 301–316, 2003.

[9] E. Cavazzuti, M. Pappalardo, and M. Passacantando, “Nash equilibria, variational inequalities,
and dynamical systems,” Journal of Optimization Theory and Applications, vol. 114, no. 3, pp.
491–506, 2002.
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