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1. Introduction

It is well known that dual method and penalty function method are popular methods
in solving nonlinear optimization problems. Many constrained optimization problems
can be formulated as an unconstrained optimization problem by dual method or penalty
function method. Recently, a general class of nonconvex constrained optimization prob-
lem has been reformulated as unconstrained optimization problem via augmented La-
grangian [1].

In [1], Rockafellar and Wets introduced an augmented Lagrangian for minimizing
an extended real-valued function. Based on the augmented Lagrangian, a strong dual-
ity result without any convexity requirement in the primal problem was obtained under
mild conditions. A necessary and sufficient condition for the exact penalization based
on the augment Lagrangian function was given [1]. Chen et al. [2] and Huang and Yang
[3] used augmented Lagrangian functions to construct the set-valued dual functions and
corresponding dual problems and obtained weak and strong duality results of multiob-
jective optimization problem. More recently a generalized augmented Lagrangian was
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introduced in [4] by Huang and Yang. They relaxed the convexity on the augmented func-
tion, and many papers in the literature are devoted to investigate augmented Lagrangian
problems. Necessary and sufficient optimality conditions, duality theory, saddle point
theory as well as exact penalization results between the original constrained optimization
problems and its unconstrained augmented Lagrangian problems have been established
under mild conditions (see, e.g., [5–9]). It is worth noting that most of these results are
established on the basis of assumption that the set of optimal solutions of the primal
constrained optimization problems is not empty.

However, many mathematical programming problems do not have an optimal solu-
tion, moreover sometimes we do not need to find an exact optimal solution due to the fact
that it is often very hard to find an exact optimal solution even if it does exist. As a mater
of fact, many numerical methods only yield approximate optimal solutions, thus we have
to resort to approximate solution of nonlinear programming (see [10–14]). In [10] Liu
used exact penalty function to transform a multiobjective programming problem with
inequality constraints into an unconstrained problem and derived the Kuhn-Tucker con-
ditions for ε-Pareto optimality of primal problem. In [14] Huang and Yang investigated
relationship between approximate optimal values of nonlinear Lagrangian problem and
that of primal problem. As we known, Ekeland’s variational principle and penalty func-
tion methods are effective tools to study approximate solutions of constrained optimiza-
tion problems and the augmented Lagrangian functions have some similar properties of
penalty functions. Thus it is possible to apply them in the study of approximate solutions
of constrained optimization problems.

In this paper, based on the results in [4, 10, 14], we investigate the possibility of ob-
taining the various versions of approximate solutions to a constrained optimization prob-
lem by solving an unconstrained programming problem formulated by using a general-
ized augmented Lagrangian function. As an application, an approximate KKT optimality
condition is obtained for a kind of approximate solutions to the generalized augmented
Lagrangian problem. We prove that the approximate stationary points of the generalized
augmented Lagrangian problem converge to that of the original problems. Our results
generalized Huang and Yang’s corresponding results in [4, 6, 9] into approximate case
which is more practical from computational viewpoint.

The paper is organized as follows. In Section 2, we present some concepts, basic as-
sumptions, and preliminary results. In Section 3, we obtain an approximate KKT opti-
mality condition of generalized augmented Lagrangian problem and prove that the ap-
proximate stationary points of the generalized augmented Lagrangian problem converge
to that of the original problem.

2. Preliminaries

In this section, we present some definitions and Ekeland’s variational principle. Consider
the following constrained optimization problem:

inf f (x) s.t. x ∈ X ,

gj(x)= 0, j = 1, . . . ,m,
(P)
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where X ⊂Rn is a nonempty and closed set, f : X →R, gj : X →R, f and gj are continu-
ously differentiable functions. Let S= {x ∈ X , gj(x)= 0, j = 1, . . . ,m}, it is clear that S is
the set of feasible solutions. For any ε > 0, we denote by Sε the set of ε feasible solution,
that is,

Sε =
{
x ∈ X : gj(x)= ε, j = 1, . . . ,m

}
, (2.1)

and by MP the optimal value of problem (P).
Let u∈R, we define a function F :Rn×R→R:

F(x,u)=
⎧
⎨

⎩
f (x), if gj(x)≤ u,

+∞, otherwise.
(2.2)

So we have a perturbed problem

inf F(x,u) s.t. x ∈Rn. (P*′)

Define the optimal value function by p(u)= infx∈Rn F(x,u), obviously p(0) is the optimal
value of problem (P).

Definition 2.1 [1]. (i) A function g : Rn → R∪{−∞,+∞} is called level-bounded if, for
any α ∈ R, the set {x ∈ Rn;g(x)≤ α} is bounded. (ii) A function h : Rn ×Rm → R∪
{−∞,+∞} with values h(x,u) is called level-bounded in x locally uniformly in u if, for
each u ∈ Rm and α ∈ R, there exists a neighborhood Vu of u along with a bounded set
D ⊂Rn such that {x ∈Rn : h(x,v)≤ α} ⊂D for all v ∈Vu.

Definition 2.2 [4]. A function σ :Rm→R+∪{+∞} is called a generalized augmented func-
tion if it is proper, lower semicontinuous (lsc), level-bounded onRm, argminy σ(y)= {0},
and σ(0)= 0.

Define the dualizing parameterization function:

f p(x,u)= f (x) + δRm−
(
G(x) +u

)
+ δX(x), x ∈Rn, u∈Rm, (2.3)

where G(x)= {g1(x), . . . ,gm(x)}, δD is the indicator function of the set D, that is,

δD(z)=
⎧
⎨

⎩
0, if z ∈D,

+∞, otherwise.
(2.4)

So a class of generalized augmented Lagrangians of (P) with dualizing parameterization
function f p(x,u) defined by (2.3) can be expressed as

lp(x, y,r)= inf
{
f p(x,u)−〈y,u〉+ rσ(u) : u∈Rm

}
, x ∈Rn, y ∈Rm, r ≥ 0. (2.5)

When σ(u)= [
∑m

j=1 |uj|]α (α > 0), the above abstract-generalized augmented Lagrangian
can be formulated as the following generalized augmented Lagrangian:

lp(x, y,r)= f (x) +
m∑

j=1

yjg j(x) +

[ m∑

j=1

∣
∣gj(x)

∣
∣
]α

. (2.6)
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In this paper, we will focus on the problems about the above generalized augmented La-
grangian.

The generalized augmented Lagrangian problem (Q) corresponding to lp is defined as

ψp(y,r)= inf
{
lp(x, y,r); x ∈Rn

}
y ∈Rm, r ≥ 0. (2.7)

The following various definitions of approximate solutions are taken from Loridan
[11].

Definition 2.3. Let ε > 0, the point x∗ ∈ S is said to be an ε-solution of (P) if

f
(
x∗
)≤ f (x) + ε ∀x ∈ S. (2.8)

Definition 2.4. Let ε > 0, the point x∗ ∈ S is said to be an ε-quasi solution of (P) if

f
(
x∗
)≤ f (x) + ε

∥
∥x− x∗∥∥ ∀x ∈ S. (2.9)

Definition 2.5. Let ε > 0, the point x∗ ∈ S is said to be a regular ε-solution of (P) if it is
both an ε solution and an ε-quasi solution of (P).

Definition 2.6. Let ε > 0, the point x∗ ∈ Sε is said to be an almost ε-solution of (P) if

f
(
x∗
)≤ f (x) + ε ∀x ∈ S. (2.10)

Definition 2.7. The point x∗ ∈ S is said to be an almost regular ε-solution of (P) if it is
both an almost ε-solution and a regular ε-solution of (P).

Proposition 2.8 (Ekeland’s variational principle) [13]. Let f : Rn → R be proper
lower semicontinous function which is bounded below. Then for any ε > 0, there exists x∗ ∈ S
such that

f
(
x∗
)≤ f (x) + ε, ∀x ∈ S,

f
(
x∗
)
< f (x) + ε

∥
∥x− x∗∥∥, ∀x ∈ S\{x∗}. (2.11)

3. Main results

In this section, we will discuss some approximate optimality conditions of constrained
optimization problem, obtain necessary condition for an approximate solution of gen-
eralized augmented Lagrangian problem (Q), and prove that the approximate stationary
points of (Q) converges to that of the primal problem (P). We say that the linear indepen-
dence constrained qualification (LICQ in short) for (P) holds at x if {∇gj(x) : j ∈ J1(x)}
is linearly independent. Suppose that x ∈ Rn is a local optimal solution to (P) and the
(LICQ) for (P) holds at x. Then the first-order necessary optimality condition is that
there exists μj ≥ 0, j = 1, . . . ,m, such that

∇ f (x) +
m∑

j=1

μj∇gj(x)= 0. (3.1)
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Proposition 3.1. Suppose xε ∈ Rn is a ε-quasi solution for (P) and the (LICQ) for (P)
holds at xε ∈ Rn. Then first-order approximate necessary conditions hold that there exists
real numbers μj(ε)≥ 0, j = 1, . . . ,m, such that

∣
∣
∣
∣
∣∇ f

(
xε
)

+
m∑

j=1

μj(ε)∇gj
(
xε
)
∣
∣
∣
∣
∣≤ ε. (3.2)

Proof. From the definition of ε-quasi solution, we have that there exists xε ∈ S such that

f
(
xε
)≤ f (x) + ε

∥
∥x− xε

∥
∥ ∀x ∈ S. (3.3)

We conclude that xε is a local optimal solution of the following constrained optimization
problem (P*):

inf
{
f (x) + ε

∥
∥x− xε

∥
∥} s.t. x ∈ S. (P*)

For the objective function, { f (x) + ε‖x− xε‖} is only locally Lipschitz. Thus we apply
Proposition 2.8 and obtain the KKT necessary condition of (P*):

∇ f
(
xε
)

+ ξε+
m∑

j=1

μj(ε)∇gj
(
xε
)= 0 ξ ∈ [−1,1]. (3.4)

It follows that

∣
∣
∣
∣
∣∇ f

(
xε
)

+
m∑

j=1

μj(ε)∇gj(xε)
∣
∣
∣
∣
∣≤ ε. (3.5)

�

It is easy to see that the generalized augmented Lagrangian function is a nonsmooth
function, moreover it is not locally Lipschitz when 0 < α < 1. Thus it is necessary that we
divide the generalized augmented Lagrangian problems into the following two parts:

α > 1, 0 < α < 1. (3.6)

First let us consider the case (1), the generalized augmented Lagrangian function is a
nonsmooth function, thus we have the following conclusion.
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Proposition 3.2. For any ε > 0, suppose xε ∈Rn is a ε-quasi solution of generalized aug-
mented Lagrangian problem (Q), then

∣
∣
∣
∣
∣
∣
∇ f

(
xε
)

+
m∑

j=1

∇gj
(
xε
)
⎧
⎨

⎩yj + θrα

[ m∑

j=1

∣
∣gj
(
xε
)∣∣
]α−1

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
≤ ε, (3.7)

where θ ∈ [−1,1].

Proof. Since xε ∈Rn is a ε-quasi solution of generalized augmented Lagrangian problem
(Q), we can see that

f
(
xε)+

m∑

j=1

yjg j
(
xε
)

+

[ m∑

j=1

∣
∣gj
(
xε
)∣∣
]α

≤ f (x) +
m∑

j=1

yjg j(x) +

[ m∑

j=1

∣
∣gj(x)

∣
∣
]α

+ε
∥
∥x− xε

∥
∥,

(3.8)

thus we have that xε is a local optimal solution of the following optimization problem
(P**):

inf

{

f (x) +
m∑

j=1

yjg j(x) +

[ m∑

j=1

∣
∣gj(x)

∣
∣
]α

+ ε
∥
∥x− xε

∥
∥, x ∈Rn

}

. (P**)

Since the objective function of (P**) is only locally Lipschitz. Thus we apply the corollary
of Proposition 2.4.3 in [15] and Example 2.1.2 in [15] and obtain the approximate KKT
necessary condition of (P**):

∣
∣
∣
∣
∣
∣
∇ f

(
xε
)

+
m∑

j=1

∇gj
(
xε
)
⎧
⎨

⎩yj + θrα

[ m∑

j=1

∣
∣gj
(
xε
)∣∣
]α−1

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
≤ ε (3.9)

�

Theorem 3.3 (convergence analysis). Suppose {yk} ∈Rm is bounded, 0 < rk → +∞ as k→
+∞, xkε ∈Rn is generated by some methods for solving the following problem (Qk):

inf
{
lp
(
x, yk,rk

)
; x ∈Rn

}
yk ∈Rm, rk ≥ 0. (3.10)

Assume that there exist n, N ∈ R such that f (xkε) ≥ n, lp(xkε , yk,rk) ≤ N for any k. Then
every limit point x∗ε of {xkε} is feasible to the primal problem (P). Further assume that each xkε
satisfies the approximate first-order necessary optimality condition stated in Proposition 3.2
and the (LICP) of (P) holds at x∗ε . Then x∗ε satisfies the approximate first-order necessary
optimality condition of (P).

Proof. Without loss of generality, we suppose that xkε → x∗ε . Noting that lp(xkε , yk,rk)≤N
for any k, so we can see

f
(
xkε
)

+
m∑

j=1

ykj g j
(
xkε
)

+ rk

[ m∑

j=1

∣
∣gj
(
xkε
)∣∣
]α

≤N. (3.11)
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Moreover, since f (xkε)≥ n and yk ∈Rm is bounded, thus there exist N1 ∈ R such that

rk

[ m∑

j=1

∣
∣gj
(
xkε
)∣∣
]α

≤N1,

[ m∑

j=1

∣
∣gj
(
xkε
)∣∣
]α

≤ N1

rk
.

(3.12)

It is clear that gj(x∗ε )= 0 as rk → +∞. Therefore, x∗ε is a feasible solution to (P). �

Letting νkj = {ykj + θrα[
∑m

j=1 |gj(xkε)|]α−1}, j = 1, . . . ,m, where θ ∈ [−1,1], the inequal-
ity (3.7) can be formulated as

∣
∣
∣
∣
∣∇ f

(
xkε
)

+
m∑

j=1

νkj∇gj
(
xkε
)
∣
∣
∣
∣
∣≤ ε. (3.13)

Now we prove by contradiction that the sequence
∑m

j=1 |νkj | is bounded as k→ +∞. Oth-

erwise without loss of generality, we assume that
∑m

j=1 |νkj | → +∞, then we can see that

lim
k→+∞

νkj
∑m

j=1

∣
∣νkj
∣
∣ = ν∗j , j = 1, . . . ,m. (3.14)

Dividing (3.13) by
∑m

j=1 |νkj | and letting k to the limit, we can derive that

∣
∣
∣
∣
∣

m∑

j=1

ν∗j ∇gj
(
x∗ε
)
∣
∣
∣
∣
∣= 0. (3.15)

This contradicts with the (LICQ) of (P) which holds at x∗ε . Hence
∑m

j=1 |νkj | is bounded
and without loss of generality, we can assume that

νkj −→ ν j , j = 1, . . . ,m. (3.16)

Thus taking limit in (3.14) and applying (3.16), we can obtain the approximate first-order
necessary condition of (P).

Next let’s consider the case 0 < α < 1. It is clear that the generalized augmented La-
grangian function lp(x, y,r) is a nonlocal Lipschitz nonsmooth function when 0 < α < 1.
However, we have not founded one that is suitable for our purpose of convergence anal-
ysis of the second case. Fortunately, we may smooth lp(x, y,r) by approximation.

Definition 3.4. For any 0 < εk → 0 as k→ +∞, the following function is called an approx-
imate generalized augmented Lagrangian:

lp
(
x, y,r,εk

)= f (x) +
m∑

j=1

yjg j(x) + r

[ m∑

j=1

√
gj(x)2 + ε2

k

]α

. (3.17)

It is clear that the approximate generalized augmented Lagrangian is a smooth function.
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So we have the corresponding approximate generalized augmented Lagrangian prob-
lem (Qε) can be expressed as follows:

inf
{
lp
(
x, y,r,εk

)
, x ∈Rn

}
y ∈Rm, r ≥ 0. (3.18)

For this approximate generalized augmented Lagrangian function, it is necessary to
consider error estimation between generalized augmented Lagrangian function and the
approximate generalized augmented Lagrangian function. The following Lemma is about
the error estimation

Lemma 3.5. For generalized augmented Lagrangian function and approximate generalized
augmented Lagrangian function, the following statement holds:

lp
(
x, y,r,εk

)− lp(x, y,r)≤ rmεk, (3.19)

where εk → 0 as k→ +∞.

Proof. From (2.6) and (3.17), we can see that

{

f (x) +
m∑

j=1

yjg j(x) + r

[ m∑

j=1

√
gj(x)2 + ε2

k

]α}

−
{

f (x) +
m∑

j=1

yjg j(x) + r

[ m∑

j=1

√
gj(x)2

]α}

= r
{[ m∑

j=1

√
gj(x)2 + ε2

k

]α

−
[ m∑

j=1

√
gj(x)2

]α}

.

(3.20)

For
√
gj(x)2 + ε2

k −
√
gj(x)2 ≤ εk, thus we have that

[ m∑

j=1

√
gj(x)2 + ε2

k

]

−
[ m∑

j=1

√
gj(x)2

]

≤mεk, (3.21)

letting M =∑m
j=1

√
gj(x)2, then we can derive that

[ m∑

j=1

√
gj(x)2 + ε2

k

]α

−
[ m∑

j=1

√
gj(x)2

]α

≤ (M +mεk
)α−Mα. (3.22)

Since 0 < α < 1, when M +mεk ≥ 1, we can see that

(
M +mεk

)α−Mα ≤M +mεk −M =mεk, (3.23)

when M +mεk < 1, we have that

(
M +mεk

)α−Mα ≤ ξk, ξk ∈ (0,1). (3.24)

However, we can see εk → 0 as k→ +∞, thus we have that ξk → 0. Without lose of gener-
ality, we can derive that mεk = ξk when k is sufficiently large. Thus we have the following
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statement:

lp
(
x, y,r,εk

)− lp(x, y,r)≤ rmεk. (3.25)
�

Next we will discuss approximate optimality of approximate generalized augmented
Lagrangian problem (Qε).

Proposition 3.6 (approximate optimality condition). Assume that xε ∈ Rn is a ε-quasi
solution of (Qε), then

∣
∣
∣
∣
∣∇ f

(
xε
)

+
m∑

j=1

{

yj+rα

[ m∑

j=1

√

gj
(
xε
)2

+ ε2
k]α−1

m∑

j=1

[
gj
(
xε
)2

+ε2
k

]−1/2

gj
(
xε
)
}

∇gj
(
xε
)
∣
∣
∣
∣
∣≤ε,

(3.26)

where εk → 0, as k→ +∞.

Proof. From the definition of ε-quasi solution, we have that

lp
(
xε, y,r,εk

)≤ lp
(
x, y,r,εk

)
+ ε
∥
∥x− xε

∥
∥. (3.27)

From (3.17), we can see that

f
(
xε
)

+
m∑

j=1

yjg j
(
xε
)

+ r

[ m∑

j=1

√

gj
(
xε
)2

+ ε2
k

]α

≤ f (x) +
m∑

j=1

yjg j(x) + r

[ m∑

j=1

√
gj(x)2 + ε2

k

]α

+ ε
∥
∥x− xε

∥
∥;

(3.28)

it is clear that xε is a local optimal solution of the following optimization problem:

inf
x∈Rn

{

f (x) +
m∑

j=1

yjg j(x) + r

[ m∑

j=1

√
gj(x)2 + ε2

k

]α

+ ε
∥
∥x− xε

∥
∥
}

. (3.29)

Since the objective function of the above problem is local Lipschitz Thus we apply the
corollary of Proposition 2.4.3 in [15] and Example 2.1.3 in [15], and obtain the KKT
necessary condition:

∇f (xε
)

+
m∑

j=1

{

yj + rα

[ m∑

j=1

√

gj
(
xε
)2

+ε2
k

]α−1 m∑

j=1

[
gj
(
xε
)2

+ε2
k

]−1/2
gj
(
xε
)
}

∇gj
(
xε
)

+ξε=0,

(3.30)

where ξ ∈ [−1,1], thus we have that

∣
∣
∣
∣
∣∇ f

(
xε
)

+
m∑

j=1

{

yj+rα

[ m∑

j=1

√

gj
(
xε
)2

+ε2
k

]α−1 m∑

j=1

[
gj
(
xε
)2

+ε2
k

]−1/2
gj
(
xε
)
}

∇gj
(
xε
)
∣
∣
∣
∣
∣≤ ε.

(3.31)
�
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Theorem 3.7 (convergence analysis). Assume that yk ∈ Rm is bounded, 0 < rk → +∞ as
k→ +∞, xkε ∈Rn is generated by some methods for solving the following problem (Qk

ε):

inf
{
lp
(
x, yk,rk

)
;x ∈Rn

}
yk ∈Rm, rk ≥ 0. (3.32)

Suppose that there exist n, N ∈R such that for any k, f (xkε)≥ n, lp(xkε, y
k,rk,εk)≤N . Then

every limit point xε of {xkε} is feasible to the primal problem (P). Further assume that each xkε
satisfies the approximate first-order necessary optimality condition stated in Proposition 3.6
and the (LICP) of (P) holds at xε . Then xε satisfies the approximate first-order necessary
optimality condition of (P).

Proof. Without loss of generality, we assume that xkε → xε. From lp(xkε, yk,rk) ≤ N , we
have that

f
(
xkε
)

+
m∑

j=1

ykj g j
(
xkε
)

+ rk

[ m∑

j=1

√

gj
(
xkε
)2

+ ε2
k

]α

≤N. (3.33)

Since f (xkε)≥ n and {yk} ∈Rm be bounded, so there exist N1 ∈ Rn such that

rk

[ m∑

j=1

√

gj
(
xkε
)2

+ ε2
k

]α

≤N1 (3.34)

when k→ +∞, we have that gj(xε)= 0 and xε is a feasible solution to (P). �

Since xkε satisfies approximate optimality condition stated in Proposition 3.6. Let

μkj =
{

ykj + rkα

[ m∑

j=1

√

gj
(
xkε
)2

+ ε2
k

]α−1 m∑

j=1

[
gj
(
arxkε

)2
+ ε2

k

]−1/2
gj
(
xkαε
)
}

. (3.35)

From (3.26) we have that

∣
∣
∣
∣
∣∇ f

(
xkε
)

+
m∑

j=1

μkj∇gj
(
xkε
)
∣
∣
∣
∣
∣≤ ε. (3.36)

Now we prove by contradiction that the sequence
∑m

j=1 |μkj | is bounded as k→ +∞. Oth-

erwise without loss of generality, we assume that
∑m

j=1 |μkj | → +∞, then we can see that

lim
k→+∞

μkj
∑m

j=1

∣
∣μkj

∣
∣ = μ

∗
j j = 1, . . . ,m. (3.37)

We divide (3.26) by
∑m

j=1 |μ∗j | and take k→ +∞, we have that

∣
∣
∣
∣
∣

m∑

j=1

μ∗j ∇gj
(
x∗
)
∣
∣
∣
∣
∣= 0. (3.38)
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This contradicts the (LICQ) of (P) which holds at xε. So we have that
∑m

j=1 |μkj | is bound-
ed. So without loss of generality, we assume that

μkj −→ μ∗j , j = 1, . . . ,m. (3.39)

Taking k→ +∞ in (3.26) and applying (3.39), then we can derive the approximate first-
order necessary condition of (P).

4. Conclusion

As we know, Lagrangian method is a powerful tool to transform the constrained opti-
mization problem into an unstrained optimization problem. However, it will cause dual
gap between primal problem and dual one without some convexity requirements. In
[4, 6, 9], Huang and Yang introduced a generalized augmented Lagrangian and stud-
ied various properties of generalized augmented Lagrangian problem based on an as-
sumption that the set of exact optimal solutions of the primal constrained optimization
problem is not empty. But many mathematical programming problems do not have an
optimal solution, moreover sometimes we do not need to find an exact optimal solution
due to the fact that it is often very hard to find an exact optimal solution even if it does
exist. As a matter of fact, many numerical methods only yield approximate optimal so-
lutions. So in this paper, we consider the ε-quasi optimal solution and the generalized
augmented Lagrangian in nonlinear programming without the requirement that the set
of optimal solutions of the primal constrained optimization problems is not empty, es-
tablish dual function and dual problem based on the generalized augmented Lagrangian,
obtain approximate KKT necessary optimality condition of the generalized augmented
Lagrangian dual problem, and prove that the approximate stationary points of general-
ized augmented Lagrangian problem converge to that of the original problem. Our re-
sults generalized Huang and Yang’s corresponding results in [4, 6, 9] into approximate
case which is more suitable for numerical test.
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