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This paper investigates the p(x)-Laplacian equations with singular nonlinearities−Δp(x)u

= λ/uγ(x) in Ω, u(x) = 0 on ∂Ω, where −Δp(x)u = −div(|∇u|p(x)−2∇u) is called p(x)-
Laplacian. The existence of positive solutions is given, and the asymptotic behavior of
solutions near boundary is discussed.
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1. Introduction

The study of differential equations and variational problems with nonstandard p(x)-
growth conditions is a new and interesting topic. We refer to [1, 2], the background of
these problems. Many results have been obtained on this kind of problems, for exam-
ple, [2–13]. In [4, 7], Fan and Zhao give the regularity of weak solutions for differential
equations with nonstandard p(x)-growth conditions. On the existence of solutions for
p(x)-Laplacian problems in bounded domain, we refer to [5, 11, 12].

In this paper, we consider the p(x)-Laplacian equations with singular nonlinearities:

−�p(x)u= λ

uγ(x) in Ω,

u(x)= 0 on ∂Ω,
(P)

where −�p(x)u = −div(|∇u|p(x)−2∇u) is called p(x)-Laplacian, Ω ⊂ RN is a bounded
domain with C2 boundary ∂Ω. If p(x) ≡ p (a constant), then (P) is the well-known
p-Laplacian problem. There are many results on the existence of positive solutions for
p-Laplacian problems with singular nonlinearities (see [14–18]), but the results on the
existence of positive solutions for p(x)-Laplacian problems with singular nonlinearities
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are rare. Our aim is to give the existence of positive solutions for problem (P), and give
the asymptotic behavior of positive solutions near boundary.

Throughout the paper, we assume that 0 < γ(x)∈ C(Ω) and p(x) satisfy
(H1) p(x)∈ C1(Ω), 1 < p− ≤ p+ < +∞, where p− = infΩ p(x), p+ = supΩ p(x).
Because of the nonhomogeneity of p(x)-Laplacian, p(x)-Laplacian problems are more

complicated than those of p-Laplacian ones, many results and methods for p-Laplacian
problems are invalid for p(x)-Laplacian problems (see [6]), and another difficulty of this
paper is that f (x,u) = 1/uγ(x) cannot be represented as h(x) f (u). Our results partially
generalized the results of [18].

2. Preliminary

In order to deal with p(x)-Laplacian problems, we need some theories on the spaces
Lp(x)(Ω), W1,p(x)(Ω) and properties of p(x)-Laplacian which we will use later (see [3, 8]).
Let

Lp(x)(Ω)=
{
u | u is a measurable real-valued function,

∫
Ω

∣∣u(x)
∣∣p(x)

dx <∞
}

,

C+
0 (Ω)= {u∈ C(Ω) | u > 0 in Ω, u= 0 on ∂Ω

}
.

(2.1)

We can introduce the norm on Lp(x)(Ω) by

|u|p(x) = inf

{
μ > 0 |

∫
Ω

∣∣∣∣u(x)
μ

∣∣∣∣
p(x)

dx ≤ 1.

}
. (2.2)

The space (Lp(x)(Ω), | · |p(x)) becomes a Banach space. We call it generalized Lebesgue
space. The space (Lp(x)(Ω), | · |p(x)) is a separable, reflexive, and uniform convex Banach
space (see [3, Theorems 1.10, Theorem 1.14]).

The space W1,p(x)(Ω) is defined by

W1,p(x)(Ω)= {u∈ Lp(x)(Ω) | ∣∣∇u∣∣∈ Lp(x)(Ω)
}

, (2.3)

and it can be equipped with the norm

|u| = |u|p(x) + |∇u|p(x), ∀u∈W1,p(x)(Ω). (2.4)

W
1,p(x)
0 (Ω) is the closure of C∞0 (Ω) in W1,p(x)(Ω), W1,p(x)(Ω) and W

1,p(x)
0 (Ω) are sep-

arable, reflexive, and uniform convex Banach spaces (see [3, Theorem 2.1]).

If u∈W
1,p(x)
loc (Ω)∩C+

0 (Ω), u is called a positive solution of (P) if u(x) satisfies

∫
Q
|∇u|p(x)−2∇u∇qdx−

∫
Q

λ

uγ(x) qdx = 0, ∀q ∈W
1,p(x)
0 (Q), (2.5)

for any domain Q �Ω.
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Let W
1,p(x)
0,loc (Ω)= {u | there is an open domain Q �Ω s.t. u∈W

1,p(x)
0 (Q)}, and define

A : W
1,p(x)
loc (Ω)∩C+

0 (Ω)→ (W
1,p(x)
0,loc (Ω))∗ as

〈Au,ϕ〉 =
∫
Ω

(
|∇u|p(x)−2∇u∇ϕ− λ

uγ(x)ϕ
)
dx, (2.6)

where u∈W
1,p(x)
loc (Ω)∩C+

0 (Ω), ϕ∈W
1,p(x)
0,loc (Ω); then we have the following lemma.

Lemma 2.1 (see [5, Theorem 3.1]). A : W
1,p(x)
loc (Ω)∩C+

0 (Ω) → (W
1,p(x)
0,loc (Ω))∗ is strictly

monotone.
Let g ∈ (W

1,p(x)
0,loc (Ω))∗, if 〈g,ϕ〉 ≥ 0, for all ϕ∈W

1,p(x)
0,loc (Ω), ϕ≥ 0 a.e. in Ω, then denote

g ≥ 0 in (W
1,p(x)
0,loc (Ω))∗; correspondingly, if −g ≥ 0 in (W

1,p(x)
0,loc (Ω))∗, then denote g ≤ 0 in

(W
1,p(x)
0,loc (Ω))∗.

Definition 2.2. Let u∈W
1,p(x)
loc (Ω)∩C+

0 (Ω). If Au≥ 0(Au≤ 0) in (W
1,p(x)
0,loc (Ω))∗, then u

is called a weak supersolution (weak subsolution) of (P).

Copying the proof of [10], we have the following lemma.

Lemma 2.3 (comparison principle). Let u,v ∈W
1,p(x)
loc (Ω)∩C(Ω) be positive and satisfy

Au−Av ≥ 0 in (W
1,p(x)
0,loc (Ω))∗. Let ϕ(x)=min{u(x)− v(x),0}. If ϕ(x)∈W

1,p(x)
0,loc (Ω) (i.e.,

u≥ v on ∂Ω), then u≥ v a.e. in Ω.

Lemma 2.4 (see [7]). If g(x,u) is continuous on Ω×R, u∈W1,p(x)(Ω) is a bounded weak
solution of −�p(x)u+ g(x,u) = 0 in Ω, u = w0 on ∂Ω, where w0 ∈W1,p(x)(Ω), then u ∈
C1,α

loc (Ω), where α∈ (0,1) is a constant.

3. Existence of positive solutions

In order to deal with the existence of positive solutions, let us consider the problem

−�p(x)u= λ(|u|+ an
)γ(x) in Ω,

u(x)= 0 for x ∈ ∂Ω,

(3.1)

where {an} is a positive strictly decreasing sequence and limn→+∞ an = 0. We have the
following lemma.

Lemma 3.1. For any n = 1,2, . . . , problem (3.1) possesses a weak positive solution �n ∈
C(Ω).

Proof. The relative functional of (3.1) is

ϕ=
∫
Ω

1
p(x)

∣∣∇u(x)
∣∣p(x)

dx−
∫
Ω
Fn(x,u)dx, (3.2)

where Fn(x,u)= ∫ u0 λ/((|t|+ an)γ(x))dt. Since ϕ is coercive in W
1,p(x)
0 (Ω), then ϕ possesses

a nontrivial minimum point �n, then |�n| is also a nontrivial minimum point of problem
(3.1), then (3.1) possesses a weak positive solution. The proof is completed. �
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Here and hereafter, we will use the notation d(x,∂Ω) to denote the distance of x ∈Ω
to the boundary of Ω. Denote d(x) = d(x,∂Ω) and ∂Ωε = {x ∈Ω | d(x) < ε}. Since ∂Ω
is C2 regularly, then there exists a positive constant σ such that d(x) ∈ C2(∂Ω2σ), and
|∇d(x)| ≡ 1. Let δ ∈ (0,(1/3)σ) be a small enough constant. Denote

v1(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(x), d(x) < δ,

δ +
∫ d(x)

δ

(
2δ− t

δ

)2/(p−−1)

dt, δ ≤ d(x) < 2δ,

δ +
∫ 2δ

δ

(
(2δ− t)

δ

)2/(p−−1)

dt, 2δ ≤ d(x).

(3.3)

Obviously, v1(x)∈ C1(Ω)∩C+
0 (Ω).

Lemma 3.2. If λ > 0 is large enough, then v1(x) is a subsolution of (P).

Proof. Since |∇d(x)| ≡ 1, when λ > 0 is large enough, we have

−�p(x)v1 =−�d(x)≤ λ[
v1(x)

]γ(x) , ∀x ∈Ω, d(x) < δ. (3.4)

By computation, when δ < d(x) < 2δ, we have

−�p(x)v1 =−div
{[(

2δ−d(x)
δ

)2/(p−−1)]p(x)−1

∇d(x)
}

=−
[(

2δ−d(x)
δ

)2/(p−−1)]p(x)−1

�d(x)

−
[(

2δ−d(x)
δ

)2/(p−−1)]p(x)−1[∇d(x)∇p(x)
]

ln
(

2δ−d(x)
δ

)2/(p−−1)

+
2
δ

(
p(x)− 1

)
p− − 1

[
2δ−d(x)

δ

](2(p(x)−1)/(p−−1))−1

.

(3.5)

When λ > 0 is large enough, it is easy to see that

−�p(x)v1 ≤ λ[
v1(x)

]γ(x) , ∀x ∈Ω, δ < d(x) < 2δ,

−�p(x)v1 = 0≤ λ[
v1(x)

]γ(x) , ∀x ∈Ω, 2δ < d(x).

(3.6)

From (3.4) and (3.6), we can conclude that v1(x) is a subsolution of (P). �
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Theorem 3.3. If λ > 0 is a large enough constant, then problem (P) possesses only one posi-
tive solution uλ, and uλ is increasing with respect to λ.

Proof. Denote un = �n + an, where �n is a solution of (3.1). Since {un} is a sequence of
positive solutions of

−�p(x)u= λ

uγ(x) in Ω,

u(x)= an for x ∈ ∂Ω,
(II)

then every un is subsolution and supersolution of −�p(x)u = λ/uγ(x) in Ω. According to
comparison principle, we have that un ≥ un+1 for n= 1,2, . . .. Since v1(x) is a subsolution
of (P) and v1(x)= 0 on ∂Ω, then un ≥ un+1 ≥ v1 for n= 1,2, . . .. According to Lemma 2.4,
we have that {un} has uniform C1,α local regularity property, and hence we can choose
a subsequence, which we denoted by {u1

n}, such that u1
n → w and ∇u1

n → h in Ω. In fact,
h=∇w in Ω.

For any domain D �Ω, for any ϕ∈W
1,p(x)
0 (D). The C1,α regularity result implies that

the sequences {un} and {∇un} are equicontinuous in D; from the C1,α estimate we con-
clude that ∇w ∈ Cα(D) for some 0 < α < 1. Thus w ∈W1,p(x) (D)∩C1,α(D). From the
C1,α regularity result, we see that |∇u1

n|p−1|∇ϕ| ≤ C|∇ϕ| on D, and since the function
ξ → |ξ|p−2ξ is continuous on Rn, it follows that |∇u1

n(x)|p−2∇u1
n(x) · ∇ϕ(x) →

|∇w(x)|p−2∇w(x) ·∇ϕ(x) for x ∈D. Thus, by the dominated convergence theorem, for

any ϕ∈W
1,p(x)
0 (D), we can see that

∫
D

∣∣∇u1
n(x)

∣∣p−2∇u1
n(x) ·∇ϕ(x)dx −→

∫
D

∣∣∇w(x)
∣∣p−2∇w(x) ·∇ϕ(x)dx. (3.7)

Furthermore, since 0 ≤ λ/([u1
n(x)]γ(x)) ≤ λ/([u1

n+1(x)]γ(x)), and λ/([u1
n(x)]γ(x)) →

λ/([w(x)]γ(x)) for each x ∈D, by the monotone convergence theorem we obtain

∫
D

λ[
u1
n(x)

]γ(x) ϕdx −→
∫
D

λ[
w(x)

]γ(x) ϕdx, ∀ϕ∈W
1,p(x)
0 (D). (3.8)

Therefore, it follows that

∫
D

∣∣∇w(x)
∣∣p−2∇w(x) ·∇ϕ(x)dx−

∫
D

λ[
w(x)

]γ(x) ϕdx = 0, ∀ϕ∈W
1,p(x)
0 (D), (3.9)

and hence w is a weak solution of −Δp(x)w = λ/([w(x)]γ(x)) on D.
Obviously, w is a solution of (P), and satisfies w ≥ v1. According to comparison prin-

ciple, it is easy to see that (P) possesses only one positive solution, and uλ is increasing
with respect to λ. �
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4. Asymptotic behavior of positive solutions

In the following, we will use Ci to denote positive constants.

Theorem 4.1. If u is a positive weak solution of problem (P), thenC2d(x)≤ u(x) as x→ ∂Ω.

Proof. Similar to the proof of Lemma 3.2, there exists a positive constant C2 such that
when δ > 0 is small enough, then v2(x) = C2d(x) is a subsolution of (P) on ∂Ωδ . Thus
u(x)≥ v2(x)= C2d(x) on ∂Ωδ . The proof is completed. �

Denote γ∗ =maxx∈∂Ω2σ
γ(x) and γ∗ =minx∈∂Ω2σ

γ(x).

Theorem 4.2. If 1≤ γ∗ < γ∗, for any weak solution u of problem (P), we have

C3
[
d(x)

]θ1 ≤ u(x)≤ C4
[
d(x)

]θ2 as x −→ ∂Ω, (4.1)

where θ1 =maxd(x)≤σ(p(x)/(p(x)− 1 + γ(x))), θ2 =mind(x)≤σ(p(x)/(p(x)− 1 + γ(x))).

Proof. From Theorem 4.1 we only consider (P) in the case of 1 < γ∗ < γ∗. Denote

v3(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(
d(x)

)θ
, d(x) < δ,

aδθ +
∫ d(x)

δ
aθδθ−1

(
2δ− t

δ

)2/(p−−1)

dt, δ ≤ d(x) < 2δ,

aδθ +
∫ 2δ

δ
aθδθ−1

(
2δ− t

δ

)2/(p−−1)

dt, 2δ ≤ d(x),

(4.2)

where a and θ are positive constants and satisfy θ ∈ (0,1), 0 < δ is small enough.
Obviously, v3(x)∈ C1(Ω)∩C+

0 (Ω). By computation,

−�p(x)v3(x)=−(aθ)p(x)−1(θ− 1)
(
p(x)− 1

)(
d(x)

)(θ−1)(p(x)−1)−1(
1 +Π(x)

)
, d(x) < δ,

(4.3)

where

Π(x)= d
(∇p∇d) lnaθ

(θ− 1)
(
p(x)− 1

) +d
(∇p∇d) lnd(
p(x)− 1

) +d
�d

(θ− 1)
(
p(x)− 1

) . (4.4)

Obviously |Π(x)| ≤ 1/2, when δ > 0 is small enough. Let θ = θ1 and a∈ (0,1) is small
enough, when δ ∈ (0,a) is small enough, we can conclude that

−�p(x)v3(x)≤ λ[
v2(x)

]γ(x) , d(x) < δ. (4.5)
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By computation, when δ < d(x) < 2δ, we have

−�p(x)v3 =−div

{[
aθδθ−1

(
2δ−d(x)

δ

)2/(p−−1)
]p(x)−1

∇d(x)

}

=−
[
aθδθ−1

(
2δ−d(x)

δ

)2/(p−−1)
]p(x)−1

×[∇d(x)∇p(x)
]

lnaθδθ−1
(

2δ−d(x)
δ

)2/(p−−1)

−
[
aθδθ−1

(
2δ−d(x)

δ

)2/(p−−1)
]p(x)−1

�d(x)

+
2
δ

(
p(x)− 1

)
p− − 1

(
aθδθ−1)p(x)−1

[
2δ−d(x)

δ

](2(p(x)−1)/(p−−1))−1

.

(4.6)

Thus, there exists a positive constant C∗ such that
∣∣−�p(x)v3

∣∣≤ C∗δ(θ−1)(p(x)−1)−1, δ < d(x) < 2δ. (4.7)

Obviously,

v3(x)≤ a(θ + 1)δθ , δ < d(x) < 2δ. (4.8)

Let θ = θ1, when a∈ (0,1) is small enough, δ ∈ (0,a) is small enough, then

−�p(x)v3(x)≤ λ[
v2(x)

]γ(x) , δ < d(x) < 2δ. (4.9)

It is easy to see that

−�p(x)v3(x)= 0≤ λ[
v2(x)

]γ(x) , 2δ < d(x). (4.10)

Combining (4.5), (4.9), and (4.10), it is easy to see that when θ = θ1, a∈ (0,1) is small
enough and δ ∈ (0,a) is small enough, then v(x) is a subsolution of (P), then u(x) ≥
C3[d(x)]θ1 on ∂Ωδ .

Similarly, when δ > 0 is small enough, θ = θ2, and a ≥ maxx∈∂Ωδ
(u(x)/δθ) is large

enough, we can see that v(x) is a supersolution of (P) on ∂Ωδ , and u(x) ≤ a[d(x)]θ2 on
∂Ωδ . The proof is completed. �

Theorem 4.3. If limd(x)→0 p(x)= p0 and limd(x)→0 p(x)/(p(x)− 1 + γ(x))= s, where s≤ 1
is a positive constant, u is a solution of (P), then

lim
d(x)→0

u(x)

C
(
d(x)

)s = 1, C = lim
d(x)→0

[
λ

θp(x)−1(1− θ)
(
p(x)− 1

)
]1/(p(x)−1+γ(x))

. (4.11)
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Proof. It can be obtained easily from Theorem 4.2. �

Theorem 4.4. If 1≥ γ∗, for any positive constant θ ∈ (0,1), u is a weak solution of problem
(P), then there exists a positive constant C5 such that C1d(x)≤ u(x)≤ C5(d(x))θ as x→ ∂Ω.

Proof. According to Theorem 4.1, it only needs to prove u(x) ≤ C5(d(x))θ as x → ∂Ω.
Define a function on ∂Ωδ as v4(x)= C5(d(x))θ , where C5 ≥ (1/δθ)maxx∈∂Ωδ

u(x). Similar
to the proof of Theorem 4.2, when δ > 0 is small enough, then v4(x) is a supersolution of
(P) on ∂Ωδ , then u(x)≤ v4(x)= C5(d(x))θ on ∂Ωδ . The proof is completed. �

Theorem 4.5. If γ∗ < 1 < γ∗, u is a weak solution of problem (P), then there exists a positive
constant C6 such that C1d(x) ≤ u(x) ≤ C6(d(x))θ as x→ ∂Ω, where θ =mind(x)≤δ(p(x)/
(p(x)− 1 + γ(x))).

Proof. According to Theorem 4.1, it only needs to prove u(x) ≤ C6(d(x))θ as x → ∂Ω.
Similar to the proof of Theorem 4.2, when δ > 0 is small enough, then v5(x)= C6(d(x))θ

is a supersolution of (P) on ∂Ωδ , then u(x) ≤ v5(x) = C6(d(x))θ on ∂Ωδ . The proof is
completed. �
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