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We find a new part-metric-related inequality of the form min{ai,1/ai : 1≤ i≤ 5} ≤ ((1 +
w)a1a2a3 + a4 + a5)/(a1a2 + a1a3 + a2a3 + wa4a5) ≤ max{ai,1/ai : 1 ≤ i ≤ 5}, where 1 ≤
w ≤ 2. We then apply this result to show that ĉ = 1 is a globally asymptotically stable
equilibrium of the rational difference equation xn = (xn−1 + xn−2 + (1 +w)xn−3xn−4xn−5)/
(wxn−1xn−2 + xn−3xn−4 + xn−3xn−5 + xn−4xn−5), n= 1,2, . . . , a0,a−1,a−2,a−3,a−4 > 0.
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1. Introduction

Let f (x1, . . . ,xr) and g(x1, . . . ,xr) be polynomial functions with nonnegative coefficients
and nonnegative constant terms. Suppose that, for all possible positive combinations of
a1 through ar , the following inequality chain holds:

min
{

ai,
1
ai

: 1≤ i≤ r
}

≤ f
(

a1, . . . ,ar
)

g
(

a1, . . . ,ar
) ≤max

{

ai,
1
ai

: 1≤ i≤ r
}

. (1.1)

In this paper, we refer to such an elegant inequality chain as a part-metric-related
(PMR) inequality chain because it is closely related to the well-known part-metric p,
which is defined on (R+)r (where R+ stands for the whole set of positive reals) in this
way: for X= (x1, . . . ,xr)T ∈ (R+)r , Y= (y1, . . . , yr)T ∈ (R+)r ,

p(X,Y)=− log2 min
{

xi
yi

,
yi
xi

: 1≤ i≤ r
}

. (1.2)
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Below, there are some known PMR inequality chains [1–3]:

min
{

ai,
1
ai

: 1≤ i≤ 4
}

≤ a1 + a2 + a3a4

a1a2 + a3 + a4
≤max

{

ai,
1
ai

: 1≤ i≤ 4
}

,

min
{

ai,
1
ai

: 1≤ i≤ k
}

≤ a1 + ···+ ak−2 + ak−1ak
a1a2 + a3 + ···+ ak

≤max
{

ai,
1
ai

: 1≤ i≤ k
}

,

min
{

ai,
1
ai

: 1≤ i≤ 4
}

≤ A1a1 +A2a2 +A3a3a4 +A4

B1a1a2 +B2a3 +B3a4 +B4
≤max

{

ai,
1
ai

: 1≤ i≤ 4
}

,

(1.3)

where A1, A2, A3, A4, B1, B2, B3, B4 are positive numbers, A1 +A2 +A3 +A4 = B1 +B2 +
B3 +B4, A1 +A2 > B1, A3 < B2 +B3 < A3 +A4.

To our knowledge, all of the previously known PMR inequality chains were established
provided that both the numerator polynomial and the denominator polynomial have a
degree ≤ 2.

In this paper, we find a new PMR inequality chain of the form

min
{

ai,
1
ai

: 1≤ i≤ 5
}

≤ (1 +w)a1a2a3 + a4 + a5

a1a2 + a1a3 + a2a3 +wa4a5
≤max

{

ai,
1
ai

: 1≤ i≤ 5
}

, (1.4)

where 1≤ w ≤ 2. Unlike previous PMR inequality chains, this PMR inequality chain has
a numerator polynomial of degree = 3.

PMR inequality chains are very useful in establishing the stability results of some ra-
tional difference equations. For instance, Kruse and Nesemann [1] proved that ĉ = 1 is a
globally asymptotically stable equilibrium of the following well-known Putnam equation:

xn = xn−1 + xn−2 + xn−3xn−4

xn−1xn−2 + xn−3 + xn−4
, n= 1,2, . . . ,

a0,a−1,a−2,a−3 > 0.
(1.5)

For more information on this topic the reader is referred to [1–7].
With the aid of PMR inequality chain (1.4) and provided that 1≤w ≤ 2, we prove that

ĉ = 1 is a globally asymptotically stable equilibrium of the rational difference equation

xn = xn−1 + xn−2 + (1 +w)xn−3xn−4xn−5

wxn−1xn−2 + xn−3xn−4 + xn−3xn−5 + xn−4xn−5
, n= 1,2, . . . ,

a0,a−1,a−2,a−3,a−4 > 0.
(1.6)

Equation (1.6) can be viewed as a higher-degree extension of the Putnam equation.

2. A new PMR inequality chain

Instead of merely giving a new PMR inequality chain, we present a more general result as
follows.
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Theorem 2.1. Let a1, a2, a3, a4, a5 be positive numbers. Let 1≤w ≤ 2. Let

ai = (1 +w)ai−5ai−4ai−3 + ai−2 + ai−1

ai−5ai−4 + ai−5ai−3 + ai−4ai−3 +wai−2ai−1
, i= 6,7, . . . . (2.1)

Then,

min
{

ai,
1
ai

: 1≤ i≤ 5
}

≤ ak ≤max
{

ai,
1
ai

: 1≤ i≤ 5
}

, k = 6,7, . . . . (2.2)

In the case k ≥ 7, one of the two equalities holds if and only if (a1,a2,a3,a4,a5)= (1,1,1,1,1).

In order to prove Theorem 2.1, we need three lemmas, which are presented as follows.

Lemma 2.2 [8, page 1]. Let a1, . . . ,an, b1, . . . ,bn be positive numbers. Then,

min
{

ai
bi

: 1≤ i≤ n
}

≤ a1 + ···+ an
b1 + ···+ bn

≤max
{

ai
bi

: 1≤ i≤ n
}

. (2.3)

Moreover, at least one equality holds if and only if a1/b1 = ··· = an/bn.

Lemma 2.3. Let a1, a2, a3, a4, a5 be positive numbers. Let

a6 = 2a1a2a3 + a4 + a5

a1a2 + a1a3 + a2a3 + a4a5
. (2.4)

Then,

min
{

ai,
1
ai

: 1≤ i≤ 5
}

≤ a6 ≤max
{

ai,
1
ai

: 1≤ i≤ 5
}

. (2.5)

Moreover, at least one equality holds if and only if (a1,a2,a3,a4,a5)= (1,1,1,1,1).

Proof. We consider only the second inequality of this chain because the first one can be
treated in a similar way. We distinguish among three possibilities.

Case 1 (min{a4,a5} < max{a1,a2,a3}). We may, without loss of generality, assume that
a4 < a1. By Lemma 2.2, we get

a6 <
a1 + a1a2a3 + a1a2a3 + a5

a1a2 + a1a3 + a2a3 + a4a5
≤max

{

1
a2

,a2,a1,
1
a4

}

≤max
{

ai,
1
ai

: 1≤ i≤ 5
}

.

(2.6)

Case 2 (max{a4,a5} > min{a1,a2,a3}). Without loss of generality, assume that a4 > a1.
Define an auxiliary function in this way:

f (x)= 2a1a2a3 + x+ a5

a1a2 + a1a3 + a2a3 + a5x
, x ∈ [a1,+∞). (2.7)

Then, df (x)/dx = (a1a2 + a1a3 + a2a3− a5(2a1a2a3 + a5))/(a1a2 + a1a3 + a2a3 + a5x)2. Let

Δ= a1a2 + a1a3 + a2a3− a5
(

2a1a2a3 + a5
)

. (2.8)

Then, there are two possible cases.
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Subcase 2.1. Δ �= 0. Then, f (x) is strictly increasing or strictly decreasing and hence,

a6 = f
(

a4
)

< max
{

lim
x→+∞ f (x), f

(

a1
)

}

. (2.9)

As limx→+∞ f (x)= 1/a5 ≤max{ai,1/ai : 1≤ i≤ 5} and

f
(

a1
)= a1 + a1a2a3 + a1a2a3 + a5

a1a2 + a1a3 + a2a3 + a1a5
≤max

{

1
a2

,a2,a1,
1
a1

}

≤max
{

ai,
1
ai

: 1≤ i≤ 5
}

,

(2.10)

it follows from (2.9) that a6 < max{ai,1/ai : 1≤ i≤ 5}.
Subcase 2.2. Δ= 0. Then, f (x) is a fixed-valued function and hence,

a6 = f
(

a4
)= 1

a5
≤max

{

ai,
1
ai

: 1≤ i≤ 5
}

,

a6 = f
(

a1
)= a1 + a1a2a3 + a1a2a3 + a5

a1a2 + a1a3 + a2a3 + a1a5
≤max

{

1
a2

,a2,a1,
1
a1

}

≤max
{

ai,
1
ai

: 1≤ i≤ 5
}

,

a6 = f
(

a3
)= a1a2a3 + a1a2a3 + a3 + a5

a1a2 + a1a3 + a2a3 + a3a5
≤max

{

a3,a2,
1
a2

,
1
a3

}

≤max
{

ai,
1
ai

: 1≤ i≤ 5
}

.

(2.11)

Suppose that a6 =max{ai,1/ai : 1 ≤ i ≤ 5}. Then, all of the equalities in (2.11) hold
and, by Lemma 2.2, we have (a1,a2,a3,a4,a5) = (1,1,1,1,1). This, however, contradicts
the assumption that a4 > a1. So, a6 < max{ai,1/ai : 1≤ i≤ 5}.
Case 3 (max{a4,a5} ≤min{a1,a2,a3} ≤max{a1,a2,a3} ≤min{a4,a5}). This is equiva-
lent to a1 = a2 = a3 = a4 = a5. By Lemma 2.2, we get

a6 = a3
1 + a1

a2
1 + a2

1
≤max

{

a1,
1
a1

}

=max
{

ai,
1
ai

: 1≤ i≤ 5
}

. (2.12)

Suppose a6 = max{ai,1/ai : 1 ≤ i ≤ 5}. Then the equality in (2.12) holds and, by
Lemma 2.2, we get a1 = 1. Hence, (a1,a2,a3,a4,a5)= (1,1,1,1,1).

The proof is complete. �

Lemma 2.4. Let a1, a2, a3, a4, a5 be positive numbers. Let

a6 = 3a1a2a3 + a4 + a5

a1a2 + a1a3 + a2a3 + 2a4a5
. (2.13)

Then,

min
{

a1,a2,a3,
1
a4

,
1
a5

}

≤ a6 ≤max
{

a1,a2,a3,
1
a4

,
1
a5

}

. (2.14)

Moreover, one of the equalities holds if and only if a1 = a2 = a3 = 1/a4 = 1/a5.
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Proof. The claimed results follow from Lemma 2.2 and the inspection that

a6 = a1a2a3 + a1a2a3 + a1a2a3 + a4 + a5

a1a2 + a1a3 + a2a3 + a4a5 + a4a5
. (2.15)

�

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Define two auxiliary functions in this way:

f1(w)= (1 +w)a1a2a3 + a4 + a5

a1a2 + a1a3 + a2a3 +wa4a5
, w ∈ [1,2];

f2(w)= (1 +w)a2a3a4 + a5 + a6

a2a3 + a2a4 + a3a4 +wa5a6
, w ∈ [1,2].

(2.16)

Then,

df1(w)
dw

= a1a2a3
(

a1a2 + a1a3 + a2a3
)− a4a5

(

a1a2a3 + a4 + a5
)

(

a1a2 + a1a3 + a2a3 +wa4a5
)2 ,

df2(w)
dw

= a2a3a4
(

a2a3 + a2a4 + a3a4
)− a5a6

(

a2a3a4 + a5 + a6
)

(

a2a3 + a2a4 + a3a4 +wa5a6
)2 .

(2.17)

Let

Δ1 = a1a2a3
(

a1a2 + a1a3 + a2a3
)− a4a5

(

a1a2a3 + a4 + a5
)

,

Δ2 = a2a3a4
(

a2a3 + a2a4 + a3a4
)− a5a6

(

a2a3a4 + a5 + a6
)

.
(2.18)

Notice that f1(w) is nondecreasing or is strictly decreasing according as Δ1 ≥ 0 or Δ1 <
0. This and Lemmas 2.3-2.4 yield

min
{

ai,
1
ai

: 1≤ i≤ 5
}

≤min
{

f1(1), f1(2)
}≤ a6 = f1(w)

≤max
{

f1(1), f1(2)
}≤max

{

ai,
1
ai

: 1≤ i≤ 5
}

.
(2.19)

Notice that f2(w) is nondecreasing or is strictly decreasing according as Δ2 ≥ 0 or Δ2 <
0. This and Lemmas 2.3–2.4 lead to

min
{

ai,
1
ai

: 2≤ i≤ 6
}

≤min
{

f2(1), f2(2)
}≤ a7 = f2(w)

≤max
{

f2(1), f2(2)
}≤max

{

ai,
1
ai

: 2≤ i≤ 6
}

.
(2.20)
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By (2.19), we have

max
{

ai,
1
ai

: 2≤ i≤ 6
}

=max
{

max
{

ai,
1
ai

: 2≤ i≤ 5
}

,a6,
1
a6

}

≤max
{

ai,
1
ai

: 1≤ i≤ 5
}

,

min
{

ai,
1
ai

: 2≤ i≤ 6
}

=min
{

min
{

ai,
1
ai

: 2≤ i≤ 5
}

,a6,
1
a6

}

≥min
{

ai,
1
ai

: 1≤ i≤ 5
}

.

(2.21)

Plugging (2.21) into (2.20), we get

min
{

ai,
1
ai

: 1≤ i≤ 5
}

≤ a7 ≤max
{

ai,
1
ai

: 1≤ i≤ 5
}

. (2.22)

Working inductively, we can prove that

min
{

ai,
1
ai

: 1≤ i≤ 5
}

≤ ak ≤max
{

ai,
1
ai

: 1≤ i≤ 5
}

, k = 6,7, . . . . (2.23)

Suppose that

a7 =max
{

ai,
1
ai

: 1≤ i≤ 5
}

. (2.24)

Equations (2.20)–(2.24) imply that max{ f2(1), f2(2)} =max{ai,1/ai : 2 ≤ i ≤ 6}. So, we
are confronted with two possibilities.

Case 1 ( f2(1) = max{ai,1/ai : 2 ≤ i ≤ 6}). By Lemma 2.3, we get (a2,a3,a4,a5,a6) =
(1,1,1,1,1), implying a7 = 1. So, (2.24) reduces to 1=max{1,a1,1/a1}, implying a1 = 1.
Hence, (a1,a2,a3,a4,a5)= (1,1,1,1,1).

Case 2 ( f2(2)=max{ai,1/ai : 2≤ i≤ 6}). By Lemma 2.4, we get

a2 = a3 = a4 = 1
a5
= 1

a6
, f2(2)= 1

a6
. (2.25)

By (2.19), (2.20), (2.24), and (2.25), we derive

max
{

ai,
1
ai

: 1≤ i≤ 5
}

= a7 ≤ f2(2)= 1
a6
≤ 1

min
{

f1(1), f1(2)
}

≤max
{

ai,
1
ai

: 1≤ i≤ 5
}

.

(2.26)

So, all of the equalities in (2.26) hold. In particular, we have

min
{

f1(1), f1(2)
}=min

{

ai,
1
ai

: 1≤ i≤ 5
}

. (2.27)
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In the case f1(1)=min{ai,1/ai : 1≤ i≤ 5}, it follows from Lemma 2.3 that a1 = a2 =
a3 = a4 = a5 = 1, and the claimed result is proven. Now, suppose that f1(2) =
min{ai,1/ai : 1≤ i≤ 5}. By Lemma 2.4, we get

a1 = a2 = a3 = 1
a4
= 1

a5
. (2.28)

Then, (2.25) and (2.28) yield a1 = a2 = a3 = a4 = a5 = 1.

The proof is complete. �

3. Application to difference equation

For fundamental knowledge concerning the stability of difference equations, refer to [9,
10]. In what follows, R+ stands for the whole set of positive reals, p for the part-metric
defined on (R+)r .

Lemma 3.1 [1]. Let ((R+)r ,d) be a metric space, T a continuous mapping defined on this
space and with an equilibrium C∈ (R+)r . Consider the first-order difference equation system

Xn = T
(

Xn−1
)

, n= 1,2, . . . . (3.1)

Suppose there is a positive integer k such that d(Tk(X),C) < d(X,C) holds for each X �= C.
Then C is globally asymptotically stable.

Now, let us establish the following result with the aid of Theorem 2.1.

Theorem 3.2. ĉ = 1 is a globally asymptotically stable equilibrium point of the rational
difference equation

xn = xn−1 + xn−2 + (1 +w)xn−3xn−4xn−5

wxn−1xn−2 + xn−3xn−4 + xn−3xn−5 + xn−4xn−5
, n= 1,2, . . . ;

x0,x−1,x−2,x−3,x−4 > 0.
(3.2)

Proof. The first-order difference equation system associated with (3.2) is

Xn = T
(

Xn−1
)

, n= 1,2, . . . , (3.3)

where T is a continuous mapping defined on the metric space ((R+)5, p) by

T
((

a1,a2,a3,a4,a5
)T)= (a2,a3,a4,a5,a6

)T
,

a6 = (1 +w)a1a2a3 + a4 + a5

a1a2 + a1a3 + a2a3 +wa4a5
.

(3.4)

For our purpose, it suffices to show that C = (1,1,1,1,1)T is a globally asymptotically
stable equilibrium of system (3.3). Consider an arbitrary point X = (a1,a2,a3,a4,a5)T ∈
(R+)5, X �= (1,1,1,1,1)T . Let

T6(X)= (a7,a8,a9,a10,a11
)T
. (3.5)
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Then,

ak = (1 +w)ak−5ak−4ak−3 + ak−2 + ak−1

ak−5ak−4 + ak−5ak−3 + ak−4ak−3 +wak−2ak−1
, 6≤ k ≤ 11. (3.6)

By Theorem 2.1, we have

min
{

ai,
1
ai

: 1≤ i≤ 5
}

< ak < max
{

ai,
1
ai

: 1≤ i≤ 5
}

, 7≤ k ≤ 11, (3.7)

which implies

min
{

ai,
1
ai

: 7≤ i≤ 11
}

> min
{

ai,
1
ai

: 1≤ i≤ 5
}

. (3.8)

So,

p
(

T6(X
)

,C)=− log2 min
{

ai,
1
ai

: 7≤ i≤ 11
}

<− log2 min
{

ai,
1
ai

: 1≤ i≤ 5
}

= p(X,C).
(3.9)

The claimed result then follows from Lemma 3.1. The proof is complete. �
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