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others.
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1. Introduction and preliminaries

Variational inequalities [1, 2] and hemivariational inequalities [3] have significant appli-
cations in various fields of mathematics, physics, economics, and engineering sciences.
The associated operator equations are equally essential in the sense that these turn out
to be powerful tools to the solvability of variational inequalities. Relaxed monotone op-
erators have applications to constrained hemivariational inequalities. Since in the study
of constrained problems in reflexive Banach spaces E the set of all admissible elements is
nonconvex but star-shaped, corresponding variational formulations are no longer vari-
ational inequalities. Using hemivariational inequalities, one can prove the existence of
solutions to the following type of nonconvex constrained problems (P): find u in C such
that 〈Au− g,v〉 ≥ 0, for all v ∈ TC(u), where the admissible set C ⊂ E is a star-shaped set
with respect to a certain ball BE(u0,ρ), and TC(u) denotes Clarke’s tangent cone of C at u
in C. It is easily seen that when C is convex, (1.1) reduces to the variational inequality of
finding u in C such that 〈Au− g,v〉 ≥ 0, for all ∈ C.

Example 1.1 (see [3]). Let A : E→E∗ be a maximal monotone operator from a reflexive
Banach space E into E∗ with strong monotonicity, and let C ⊂ E be star-shaped with
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respect to a ball BE(u0,ρ). Suppose that Au0− g /=0 and that distance function dC satisfies
the condition of relaxed monotonicity 〈u∗ − v∗,u− v〉 ≥ − c‖u− v‖2, for all u,v ∈ E,
and for any u∗ ∈ ∂dC(u) and v∗ in ∂dC(v) with c satisfying 0 < c < 4a2ρ/‖Au0 − g‖2,
where a is the constant for the strong monotonicity of A. Here ∂dC is a relaxed monotone
operator. Then the problem (P) has at least one solution.

Let PC be the projection of a separable real Hilbert space H onto the nonempty closed
convex subset C. We consider the variational inequality problem which is denoted by
VI(C,A): find u∈ C such that

〈Au+w,v−u〉 ≥ 0, ∀v ∈ C, w ∈ Tu, (1.1)

where A and T are two nonlinear mappings. Recall the following definitions.
(1) A is called v-strongly monotone if there exists a constant v > 0 such that

〈Ax−Ay,x− y〉 ≥ v‖x− y‖2, ∀x, y ∈ C. (1.2)

(2) A is said to be μ-cocoercive if there exists a constant μ > 0 such that

〈Ax−Ay,x− y〉 ≥ μ‖Ax−Ay‖2, ∀x, y ∈ C. (1.3)

(3) A is called relaxed u-cocoercive if there exists a constant u > 0 such that

〈Ax−Ay,x− y〉 ≥ (−u)‖Ax−Ay‖2, ∀x, y ∈ C. (1.4)

(4) A is said to be relaxed (u,v)-cocoercive if there exist two constants u,v > 0 such
that

〈Ax−Ay,x− y〉 ≥ (−u)‖Ax−Ay‖2 + v‖x− y‖2, ∀x, y ∈ C. (1.5)

For u= 0, A is v-strongly monotone. This class of mappings is more general than the
class of strongly monotone mappings.

(5) T : H→2H is said to be a relaxed monotone operator if there exists a constant k > 0
such that 〈w1−w2,u− v〉 ≥ − k‖u− v‖2, where w1 ∈ Tu and w2 ∈ Tv.

(6) A multivalued operator T is Lipschitz continuous if there exists a constant λ > 0
such that ‖w1−w2‖ ≤ λ‖u− v‖, where w1 ∈ Tu and w2 ∈ Tv.

(7) S : C→C is said to be nonexpansive if ‖Sx− Sy‖ ≤ ‖x− y‖, for all x, y ∈ C. Next
we will denote the set of fixed points of S by F(S).

In order to prove our main results, we need the following lemmas and definitions.

Lemma 1.2 (see [4]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1− λn

)
an + bn, ∀n≥ n0, (1.6)

where n0 is some nonnegative integer and {λn} is a sequence in (0,1) with
∑∞

n=1λn =∞,
bn = o(λ), then limn→∞an = 0.
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Lemma 1.3. For any z ∈H , u∈ C satisfies the inequality

〈u− z,v−u〉 ≥ 0, ∀v ∈ C, (1.7)

if and only if u= PCz.

From Lemma 1.3, one can easily get the following results.

Lemma 1.4. u∈ C is a solution of the VI(C,A) if and only if u satisfies

u= PC
[
u− ρ(Au+w)

]
, (1.8)

where w is in Tu and ρ > 0 is a constant.
If u∈ F(S)∩VI(C,A), one can easily see that

u= Su= PC
[
u− ρ(Au+w)

]= SPC
[
u− ρ(Au+w)

]
, (1.9)

where ρ > 0 is a constant.
This formulation is used to suggest the following iterative methods for finding a common

element of two different sets of fixed points of a nonexpansive mapping as well as the solutions
of the general variational inequalities involving multivalued relaxed monotone mappings.

2. Algorithms

Algorithm 2.1. For any u0 ∈ C and w0 ∈ Tu0, compute the sequence {un} by the iterative
processes:

un+1 =
(
1−αn

)
un +αnSPC

[
un− ρ

(
Aun +wn

)]
, (2.1)

where {αn} is a sequence in [0,1], for all n≥ 0, and S is a nonexpansive mapping.

(I) If S= I in Algorithm 2.1, then we have the following algorithm.

Algorithm 2.2. For any u0 ∈ C and w0 ∈ Tu0, compute the sequence {un} by the iterative
processes:

un+1 =
(
1−αn

)
un +αnPC

[
un− ρ

(
Aun +wn

)]
, (2.2)

where {αn} is a sequence in [0,1], for all n≥ 0.

(II) If S= I and {αn} = 1 in Algorithm 2.1, then we have the following algorithm.

Algorithm 2.3. For any u0 ∈ C and w0 ∈ Tu0, compute the sequence {un} by the iterative
processes:

un+1 = PC
[
un− ρ

(
Aun +wn

)]
, (2.3)

which was mainly considered by Verma [5].
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3. Main results

Theorem 3.1. Let C be a closed convex subset of a separable real Hilbert space H . Let A :
C→H be a relaxed (u,v)-cocoercive and μ-Lipschitz continuous mapping, and let S be a
nonexpansive mapping from C into itself such that F(S)∩VI(C,A) /=∅. Let T : H→2H

be a multivalued relaxed monotone and Lipschitz continuous operator with corresponding
constants k > 0 and m > 0. Let {un} be a sequence generated by Algorithm 2.1. {αn} is a
sequence in [0,1] satisfying the following conditions:

(i)
∑∞

n=0αn =∞,
(ii) 0 < ρ < 2(r− γμ− k)/(μ+m)2, r > γμ+ k.

Then the sequence {un} converges strongly to u∗ ∈ F(S)∩VI(C,A).

Proof. Let u∈ C be the common element of F(S)∩VI(C,A), then we have

u∗ = (1−αn
)
u∗ +αnSPC

[
u∗ − ρ

(
Au∗ +w∗

)]
, (3.1)

where w∗ ∈ Tu∗. Observing (2.1), we obtain

∥
∥un+1−u∗

∥
∥= ∥∥(1−αn

)
un +αnSPC

[
un− ρ

(
Aun +wn

)]−u∗
∥
∥

= ∥∥(1−αn
)
un +αnSPC

[
un− ρ

(
Aun +wn

)]

− (1−α)u∗ +αSPC
[
u∗ − ρ

(
Au∗ +w∗

)]∥∥

= (1−αn
)∥∥un−u∗

∥
∥+αn

∥
∥[un− ρ

(
Aun +wn

)]− [u∗ − ρ
(
Au∗ +w∗

)]∥∥.
(3.2)

Now we consider the second term of the right side of (3.2). By the assumption that A
is relaxed (γ,r)-cocoercive and μ-Lipschitz continuous and T is relaxed monotone and
m-Lipschitz continuous, we obtain

∥
∥un−u∗ − ρ

[(
Aun +wn

)− (Au∗ +w∗
)]∥∥2

= ∥∥un−u∗
∥
∥2− 2ρ

〈(
Aun +wn

)− (Au∗ +w∗
)
,un−u∗

〉

+ ρ2
∥
∥(Aun +wn

)− (Au∗ +w∗
)∥∥2

= ∥∥un−u∗
∥
∥2− 2ρ

〈
Aun−Au∗,un−u∗

〉− 2ρ
〈
wn−w∗,un−u∗

〉

+ ρ2
∥
∥(Aun +wn

)− (Au∗ +w∗
)∥∥2

≤ ∥∥un−u∗
∥
∥2− 2ρ

(− γ
∥
∥Aun−Au∗

∥
∥+ r

∥
∥un−u∗

∥
∥)+ 2ρk

∥
∥un−u∗

∥
∥

+ ρ2‖(Aun +wn
)− (Au∗ +w∗

)‖2

≤ ∥∥un−u∗
∥
∥2

+ 2ρ(γμ− r + k)
∥
∥un−u∗

∥
∥+ ρ2

∥
∥(Aun +wn

)− (Au∗ +w∗
)∥∥2

.
(3.3)
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Next we consider the second term of the right side of (3.3):
∥
∥(Aun +wn

)− (Au∗ +w∗
)∥∥

= ∥∥(Aun−Au∗
)

+
(
wn−w∗

)∥∥≤ ‖Aun−Au∗
∥
∥+

∥
∥wn−w∗

∥
∥≤ (μ+m)

∥
∥un−u∗

∥
∥.

(3.4)

Substituting (3.4) into (3.3) yields

∥
∥un−u∗ − ρ

[(
Aun +wn

)− (Au∗ +w∗
)]∥∥2

≤ ∥∥un−u∗
∥
∥2

+ 2ρ(γμ− r + k)
∥
∥un−u∗

∥
∥+ ρ2(μ+m)2∥∥un−u∗

∥
∥2

= [1 + 2ρ(γμ− r + k) + ρ2(μ+m)2]∥∥un−u∗
∥
∥2 = θ2∥∥un−u∗

∥
∥2

,

(3.5)

where θ =
√

1 + 2ρ(γμ− r + k) + ρ2(μ+m)2. From condition (ii), we have θ < 1. Substi-
tuting (3.5) into (3.2), we have
∥
∥un+1−u∗

∥
∥≤ (1−αn

)∥∥un−u∗
∥
∥+αnθ

∥
∥un−u∗

∥
∥≤ [1−αn(1− θ)

]∥∥un−u∗
∥
∥. (3.6)

Observing condition (i) and applying Lemma 1.2 into (3.6), we can get limn→∞‖un −
u∗‖ = 0. This completes the proof. �

From Theorem 3.1, we have the following theorems immediately.

Theorem 3.2. Let C be a closed convex subset of a separable real Hilbert space H . Let A :
C→H be a relaxed (u,v)-cocoercive and μ-Lipschitz continuous mapping such that
VI(C,A) /=∅. Let T : H→2H be a multivalued relaxed monotone and Lipschitz continuous
operator with corresponding constants k > 0 and m> 0. Let {un} be a sequence generated by
Algorithm 2.2. {αn} is a sequence in [0,1] satisfying the following conditions:

(i)
∑∞

n=0αn =∞,
(ii) 0 < ρ < 2(r− γμ− k)/(μ+m)2, r > γμ+ k.

Then the sequence {un} converges strongly to u∗ ∈VI(C,A).

Theorem 3.3. Let C be a closed convex subset of a separable real Hilbert space H . Let A :
C→H be a relaxed (u,v)-cocoercive and μ-Lipschitz continuous mapping such that
VI(C,A) /=∅. Let T : H→2H be a multivalued relaxed monotone and Lipschitz continu-
ous operator with corresponding constants k > 0 and m > 0. Let {un} be a sequence gener-
ated by Algorithm 2.3. Assume that the following condition is satisfied: 0 < ρ < 2(r − γμ−
k)/(μ+m)2, r > γμ+ k, then the sequence {un} converges strongly to u∗ ∈VI(C,A).

Remark 3.4. Theorem 3.3 includes [5] as a special case when A collapses to a strong
monotone mapping.
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