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1. Introduction

LetD denote the unit disk in the complex plane C and ∂D its boundary. Denote by H(D)
the class of all analytic functions on D.

Let � denote the space of all f ∈H(D)∩C(D) such that

‖ f ‖� = sup

∣
∣ f
(
ei(θ+h)

)
+ f
(
ei(θ−h)

)− 2 f
(
eiθ
)∣∣

h
<∞, (1.1)

where the supremum is taken over all eiθ ∈ ∂D and h > 0. By a Zygmund theorem (see [1,
Theorem 5.3]) and the closed graph theorem, we have that f ∈� if and only if

sup
z∈D

(
1−|z|2)∣∣ f ′′(z)

∣
∣ <∞, (1.2)

moreover the following asymptotic relation holds:

‖ f ‖� � sup
z∈D

(
1−|z|2)∣∣ f ′′(z)

∣
∣. (1.3)

Therefore, � is called Zygmund class. Since the quantities in (1.3) are semi norms (they
do not distinguish between functions differing by a linear polynomial), it is natural to add
them to the quantity | f (0)|+ | f ′(0)| to obtain two equivalent norms on the Zygmund
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class of functions. Zygmund class with such defined norm will be called Zygmud space.
This norm will be again denoted by ‖ · ‖�.

By (1.3), we have

∣
∣ f ′(z)− f ′(0)

∣
∣≤ C‖ f ‖� ln

1
1−|z| . (1.4)

Also, we have
∣
∣ f (z)− f (0)− z f ′(0)

∣
∣

=
∣
∣
∣
∣

∫ z

0

∫ 1

0
f ′′(tζ)ζ dtdζ

∣
∣
∣
∣≤ ‖ f ‖�

∣
∣
∣
∣

∫ z

0

∫ 1

0

|ζ|dt
1− t|ζ| |dζ|

∣
∣
∣
∣

≤ ‖ f ‖�

∣
∣
∣
∣

∫ |z|

0
ln

1
1− s

ds
∣
∣
∣
∣= ‖ f ‖�

(
|z|+

(|z|− 1
)

ln
1

1−|z|
)

,

(1.5)

for every z ∈D. From this and since the quantity

sup
x∈[0,1)

(
x+ (x− 1)ln

1
1− x

)
(1.6)

is bounded, it follows that

‖ f ‖∞ ≤ C‖ f ‖�, (1.7)

for every f ∈�, and for some positive constant C independent of f .
We introduce the little Zygmund space �0 in the following natural way:

f ∈�0 ⇐⇒ lim
|z|→1

(
1−|z|)∣∣ f ′′(z)

∣
∣= 0. (1.8)

It is easy to see that �0 is a closed subspace of �.
Suppose that g :D→ C is a holomorphic map, f ∈H(D). The integral operator, called

Volterra-type operator,

Jg f (z)=
∫ z

0
f dg =

∫ 1

0
f (tz)zg′(tz)dt =

∫ z

0
f (ξ)g′(ξ)dξ, z ∈D, (1.9)

was introduced by Pommerenke in [2].
Another natural integral operator is defined as follows:

Ig f (z)=
∫ z

0
f ′(ξ)g(ξ)dξ. (1.10)

The importance of the operators Jg and Ig comes from the fact that

Jg f + Ig f =Mg f − f (0)g(0), (1.11)

where the multiplication operator Mg is defined by

(
Mg f

)
(z)= g(z) f (z), f ∈H(D), z ∈D. (1.12)
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In [2] Pommerenke showed that Jg is a bounded operator on the Hardy space H2 if
and only if g ∈ BMOA. The boundedness and compactness of Jg and Ig between some
spaces of analytic functions, as well as their n-dimensional extensions, were investigated
in [3–16] (see also the related references therein).

The purpose of this paper is to study the boundedness and compactness of integral
operators Jg and Ig on the Zygmund space and the little Zygmund space.

Throughout the paper, constants are denoted by C, they are positive and may differ
from one occurrence to an other. The notation a� b means that there is a positive con-
stant C such that a≤ Cb. If both a� b and b � a hold, then one says that a� b.

2. The boundedness and compactness of Jg ,Ig : �→�

In this section, we consider the boundedness and compactness of the operators Jg and
Ig on the Zygmund space. To this end, we need two lemmas. Before formulating these
lemmas, we quote the following result from [17].

Theorem 2.1. Assume that f is a holomorphic function on D and continuous on D. Then
the modulus of continuity on the closed disk is bounded by a constant times the modulus of
continuity on the circle.

By Theorem 2.1 and standard arguments (see, e.g., [18, Proposition 3.11]), the follow-
ing lemma follows.

Lemma 2.2. Assume that g is an analytic function onD. Then Jg (or Ig) : �→� is compact
if and only if Jg (or Ig) : �→ � is bounded, and for any bounded sequence ( fk)k∈N in �
which converges to zero uniformly onD as k→∞, ‖Jg fk‖� → 0 (or ‖Ig fk‖� → 0) as k→∞.

Lemma 2.3. Suppose that f ∈�0, then

lim
|z|→1

∣
∣ f ′(z)

∣
∣

ln
(
1/
(
1−|z|2)) = 0. (2.1)

Proof. Since f ∈�0, it follows that for every ε > 0 there is a δ ∈ (1/2,1) such that

(
1−|z|)∣∣ f ′′(z)

∣
∣ < ε, (2.2)

whenever δ < |z| < 1.
From (2.2), when δ < |z| < 1, we have that

∣
∣ f ′(z)− f ′(0)

∣
∣=

∣
∣
∣
∣

∫ 1

0
f ′′(tz)zdt

∣
∣
∣
∣≤

∫ δ/|z|

0

∣
∣ f ′′(tz)

∣
∣|z|dt+

∫ 1

δ/|z|

∣
∣ f ′′(tz)

∣
∣|z|dt

≤ ‖ f ‖�

∫ δ/|z|

0

|z|dt
1− t|z| + ε

∫ 1

δ/|z|
|z|dt

1− t|z| ≤ ‖ f ‖� ln
1

1− δ
+ ε ln

1
1−|z| .

(2.3)
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Dividing (2.3) by ln(1/(1−|z|)) and letting |z| → 1, we obtain

lim
|z|→1

∣
∣ f ′(z)

∣
∣

ln
(
1/
(
1−|z|)) ≤ ε, (2.4)

from which the lemma follows. �

Now, we are in a position to formulate and prove the main results of this section.

Theorem 2.4. Assume that g is an analytic function on D. Then Jg : �→� is bounded if
and only if g ∈�.

Proof. Assume that Jg : �→� is bounded. Taking the function given by f (z)= 1, we see
that g ∈�.

Conversely, assume that g ∈�. Employing (1.4) and (1.7), we have

(
1−|z|2)∣∣(Jg f

)′′
(z)
∣
∣= (1−|z|2)∣∣ f ′(z)g′(z) + f (z)g′′(z)

∣
∣

≤ C‖ f ‖�
(
1−|z|2)∣∣g′(z)

∣
∣ ln

1
1−|z|2 +C‖ f ‖�

(
1−|z|2)∣∣g′′(z)

∣
∣

≤ C‖ f ‖�‖g‖�

(
(
1−|z|2)

(
ln

1
1−|z|2

)2

+ 1
)
.

(2.5)

On the other hand, we have that

Jg( f )(0)= 0,
∣
∣(Jg( f )

)′
(0)
∣
∣= ∣∣ f (0)g′(0)

∣
∣≤ ‖ f ‖�

∣
∣g′(0)

∣
∣. (2.6)

From (2.6), by taking the supremum in (2.5) overD and using the fact that the quantity

sup
x∈(0,1]

x
(

ln
1
x

)2

(2.7)

is finite, the boundedness of the operator Jg : �→� follows. �

Theorem 2.5. Assume that g is an analytic function on D. Then Ig : �→� is bounded if
and only if g ∈H∞ ∩�log, where

‖g‖�log = sup
z∈D

(
1−|z|2)∣∣g′(z)

∣
∣ ln

1
1−|z|2 . (2.8)

Proof. Assume that g ∈H∞ ∩�log. Then by (1.4), we have

(
1−|z|2)∣∣(Ig f

)′′
(z)
∣
∣= (1−|z|2)∣∣ f ′′(z)g(z) + f ′(z)g′(z)

∣
∣

≤ C‖ f ‖�
∣
∣g(z)

∣
∣+C‖ f ‖�

(
1−|z|2)∣∣g′(z)

∣
∣ ln

1
1−|z|2

≤ C‖ f ‖�‖g‖∞ +C‖ f ‖�‖g‖�log .

(2.9)
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On the other hand, we have that

Ig( f )(0)= 0,
∣
∣(Ig( f )

)′
(0)
∣
∣= ∣∣ f ′(0)g(0)

∣
∣≤ ‖ f ‖�

∣
∣g(0)

∣
∣. (2.10)

From this, by taking the supremum in (2.9) overD and using the conditions of the theo-
rem, the boundedness of the operator Ig : �→� follows.

Conversely, assume that Ig : �→ � is bounded. Then there is a positive constant C
such that

∥
∥Ig f

∥
∥

� ≤ C‖ f ‖�, (2.11)

for every f ∈�. Set

h(z)= (z− 1)
[(

1 + ln
1

1− z

)2

+ 1
]

, (2.12)

ha(z)= h(az)
a

(
ln

1
1−|a|2

)−1

(2.13)

for a∈D such that |a| >√1− 1/e. Then, we have

h′a(z)=
(

ln
1

1− az

)2(
ln

1
1−|a|2

)−1

,

h′′a (z)= 2a
1− az

(
ln

1
1− az

)(
ln

1
1−|a|2

)−1

.

(2.14)

Thus for
√

1− 1/e < |a| < 1, we have

∣
∣h′′a (z)

∣
∣≤ 2

1−|z|
(

ln
1

1−|a| +C
)(

ln
1

1−|a|2
)−1

≤ C

1−|z| , (2.15)

and consequently

M1 = sup√
1−1/e<|a|<1

∥
∥ha
∥
∥

� <∞. (2.16)

Therefore, we have that

∞ >
∥
∥Ig
∥
∥
∥
∥ha
∥
∥

� ≥
∥
∥Igha

∥
∥

�

≥ sup
z∈D

(
1−|z|2)∣∣h′′a (z)g(z) +h′a(z)g′(z)

∣
∣

≥ (1−|a|2)∣∣h′′a (a)g(a) +h′a(a)g′(a)
∣
∣

≥ (1−|a|2)
∣
∣
∣
∣

2a
1−|a|2 g(a) + g′(a) ln

1
1−|a|2

∣
∣
∣
∣

≥−2|a|∣∣g(a)
∣
∣+

(
1−|a|2)∣∣g′(a)

∣
∣ ln

1
1−|a|2 .

(2.17)
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Next, let

fa(z)= h(az)
a

(
ln

1
1−|a|2

)−1

−
∫ z

0
ln

1
1− aw

dw (2.18)

for a∈D such that |a| >√1− 1/e. Then, we have

f ′a (z)=
(

ln
1

1− az

)2(
ln

1
1−|a|2

)−1

− ln
1

1− az
,

f ′′a (z)= 2a
1− az

(
ln

1
1− az

)(
ln

1
1−|a|2

)−1

− a

1− az
.

(2.19)

Similar to the previous case, we have

M2 = sup√
1−1/e<|a|<1

∥
∥ fa
∥
∥

� <∞. (2.20)

From this and by using the facts that

f ′a (a)= 0, f ′′a (a)= a

1−|a|2 , (2.21)

we have that

∞ >
∥
∥Ig
∥
∥
∥
∥ fa
∥
∥

� ≥
∥
∥Ig fa

∥
∥

�

≥ sup
z∈D

(
1−|z|2)∣∣ f ′′a (z)g(z) + f ′a (z)g′(z)

∣
∣

≥ (1−|a|2)∣∣ f ′′a (a)g(a) + f ′a (a)g′(a)
∣
∣

= (1−|a|2)∣∣ f ′′a (a)g(a)
∣
∣= |a|∣∣g(a)

∣
∣,

(2.22)

for
√

1− 1/e < |a| < 1. From (2.22), we see that sup√1−1/e<|z|<1 |g(z)| <∞. From this and
by the maximum modulus theorem, it follows that g ∈H∞, as desired.

From (2.17) and (2.22), it follows that

(
1−|a|2)

∣
∣g′(a)

∣
∣ ln

1
1−|a|2 ≤

∥
∥Igha

∥
∥

� + 2‖g‖∞ ≤M1
∥
∥Ig
∥
∥

�→� + 2‖g‖∞ <∞ (2.23)

for every
√

1− 1/e < |a| < 1.
On the other hand, we have that

sup
|a|≤√1−1/e

(
1−|a|2)∣∣g′(a)

∣
∣ ln

1
1−|a|2 ≤

1
e

max
|a|=√1−1/e

∣
∣g′(a)

∣
∣

≤ sup√
1−1/e≤|a|<1

(
1−|a|2)∣∣g′(a)

∣
∣ ln

1
1−|a|2 .

(2.24)

From (2.23) and (2.24), we obtain g ∈�log, finishing the proof of the theorem. �



S. Li and S. Stević 7

Theorem 2.6. Assume that g is an analytic function on D. Then, Jg : �→� is compact if
and only if g ∈�.

Proof. If Jg : �→ � is compact, then it is bounded, and by Theorem 2.4 it follows that
g ∈�.

Now assume that g ∈� and that ( fn)n∈N is a sequence in � such that supn∈N‖ fn‖� ≤
L and that fn → 0 uniformly on D as n→∞. Now note that for every ε > 0, there is a
δ ∈ (0,1), such that

(
1−|z|2)

(
ln

1
1−|z|2

)2

< ε, (2.25)

whenever δ < |z| < 1. Let K = {z ∈D : |z| ≤ δ}. Note that K is a compact subset of D. In
view of (1.4), (1.7), and (2.25), we have that

∥
∥Jg fn

∥
∥

� = sup
z∈D

(
1−|z|2)∣∣ f ′n (z)g′(z) + fn(z)g′′(z)

∣
∣+

∣
∣ fn(0)g′(0)

∣
∣

≤ sup
z∈K

(
1−|z|2)∣∣ f ′n (z)g′(z)

∣
∣+ sup

z∈D\K

(
1−|z|2)∣∣ f ′n (z)g′(z)

∣
∣

+ sup
z∈D

(
1−|z|2)∣∣ fn(z)g′′(z)

∣
∣+

∣
∣ fn(0)g′(0)

∣
∣

≤ C‖g‖� sup
z∈K

∣
∣ f ′n (z)

∣
∣sup
z∈K

(
1−|z|2) ln

1
1−|z|

+C
∥
∥ fn
∥
∥

�‖g‖� sup
z∈D\K

(
1−|z|2)

(
ln

1
1−|z|

)2

+‖g‖� sup
z∈D

∣
∣ fn(z)

∣
∣+

∣
∣ fn(0)

∣
∣‖g‖�

≤ 2C
e
‖g‖� sup

z∈K

∣
∣ f ′n (z)

∣
∣+CεL‖g‖� + 2‖g‖� sup

z∈D

∣
∣ fn(z)

∣
∣.

(2.26)

Since fn→ 0 uniformly onD, by the Cauchy estimate, it follows that f ′n → 0 uniformly on
compacts ofD, in particular on K . Using this, the fact that the quantity supx∈(0,1] x ln(1/x)
is bounded, that ε is an arbitrary positive number, by letting n→∞ in the last inequality,
we obtain that limn→∞‖Jg fn‖� = 0. Therefore, by Lemma 2.2, it follows that Jg : �→� is
compact. �

Theorem 2.7. Assume that g is an analytic function on D. Then, Ig : �→� is compact if
and only if g = 0.

Proof. Assume that g = 0. Then, it is clear that Ig : �→� is compact.
Conversely, suppose that Ig : �→� is compact. Let (zn)n∈N be a sequence in D such

that |zn| → 1 as n→∞, and let ( fn)n∈N be defined by

fn(z)= h
(
znz
)

zn

(

ln
1

1−∣∣zn
∣
∣2

)−1

−
∫ z

0
ln3 1

1− znw
dw

(

ln
1

1−∣∣zn
∣
∣2

)−2

. (2.27)
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Similar to the proof of Theorem 2.5, we see that supn∈N‖ fn‖� ≤ C and fn converges to 0
uniformly on D as n→∞. Since Ig : �→� is compact, we have

∥
∥Ig fn

∥
∥

� −→ 0 as n−→∞. (2.28)

Thus

∣
∣zn
∣
∣
∣
∣g
(
zn
)∣∣≤ sup

z∈D

(
1−|z|2)∣∣ f ′′n (z)g(z) + f ′n (z)g′(z)

∣
∣

= sup
z∈D

(
1−|z|2)∣∣(Ig fn

)′′
(z)
∣
∣≤ ∥∥Ig fn

∥
∥

� −→ 0
(2.29)

as n→∞. Hence, we obtain lim|z|→1 |g(z)| = 0, which by the maximum modulus theorem
implies that g = 0, as desired. �

3. The boundedness and compactness of Jg ,Ig : �0 →�0

In this section, we study the boundedness and compactness of the operator Jg (or Ig) :
�0 →�0. Before formulating the main results of this section, we need an auxiliary result
which is incorporated in the lemma which follows.

Lemma 3.1. A closed set K in �0 is compact if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

(
1−|z|2)∣∣ f ′′(z)

∣
∣= 0. (3.1)

The proof is similar to the proof of [19, Lemma 1]. We omit the details.

Theorem 3.2. Assume that g is an analytic function onD. Then
(a) Jg : �0 →�0 is bounded;
(b) Jg : �0 →�0 is compact;
(c) g ∈�0.

Proof. (b)⇒(a) is obvious.
(a)⇒(c). Assume that Jg : �0 →�0 is bounded. Then, by taking f (z) = 1, we see that

g ∈�0.
(c)⇒(b). Assume g ∈�0. Then, for any f ∈�0, by (1.4) and (1.7), we have

(
1−|z|2)∣∣(Jg f

)′′
(z)
∣
∣

= (1−|z|2)∣∣ f ′(z)g′(z) + f (z)g′′(z)
∣
∣

≤ C‖ f ‖�
(
1−|z|2)∣∣g′(z)

∣
∣ ln

1
1−|z|2 +C‖ f ‖�

(
1−|z|2)∣∣g′′(z)

∣
∣

≤ C‖ f ‖�

∣
∣g′(z)

∣
∣

ln
(
1/
(
1−|z|2))

(
1−|z|2)

(
ln

1
1−|z|2

)2

+C‖ f ‖�
(
1−|z|2)∣∣g′′(z)

∣
∣.

(3.2)
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Taking the supremum in the last inequality over the set { f ∈ H(D) | ‖ f ‖� ≤ 1}, em-
ploying Lemmas 2.3 and 3.1, and (2.7), the compactness of the operator Jg : �0 → �0

follows. �

Theorem 3.3. Assume that g is an analytic function on D. Then, Ig : �0 →�0 is bounded
if and only if g ∈H∞ ∩�log.

Proof. Assume that g ∈H∞ ∩�log. Then from Theorem 2.5, Ig : �→� is bounded, and
hence Ig : �0 →� is bounded. To prove that Ig : �0 →�0 is bounded, it is enough to show
that for any f ∈�0, Ig f ∈�0. Now, for any f ∈�0, we have

(
1−|z|2)∣∣(Ig f

)′′
(z)
∣
∣

= (1−|z|2)∣∣ f ′(z)g′(z) + f ′′(z)g(z)
∣
∣

≤
(
(
1−|z|2)∣∣g′(z)

∣
∣ ln

1
1−|z|2

)∣
∣ f ′(z)

∣
∣/ ln

1
1−|z|2 +

∣
∣g(z)

∣
∣(1−|z|2)∣∣ f ′′(z)

∣
∣

≤ ‖g‖�log

∣
∣ f ′(z)

∣
∣

ln(1/(1−|z|2))
+‖g‖∞

(
1−|z|2)∣∣ f ′′(z)

∣
∣.

(3.3)

From (3.3) and by employing Lemma 2.3, we obtain the desired result.
Conversely, assume that Ig : �0 → �0 is bounded. Then it is clear that Ig : �0 → � is

bounded. Since the functions defined in (2.13) and (2.18) belong to �0, we obtain g ∈
H∞ ∩�log. �

Theorem 3.4. Assume that g is an analytic function onD. Then, Ig : �0 →�0 is compact if
and only if g = 0.

Proof. The sufficiency is obvious. Now we prove the necessity. From the assumption that
Ig : �0 →�0 is compact, we see that Ig : �0 →� is compact. Since the functions in (2.27)
belong to �0, similar to the proof of Theorem 2.7, we obtain the desired result. �
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[16] S. Stević, “Boundedness and compactness of an integral operator on a weighted space on the
polydisc,” Indian Journal of Pure and Applied Mathematics, vol. 37, no. 6, pp. 343–355, 2006.

[17] P. M. Tamrazov, “Contour and solid structure properties of holomorphic functions of a complex
variable,” Russian Mathematical Surveys, vol. 28, no. 1, pp. 141–1731, 1973.

[18] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies
in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995.

[19] K. Madigan and A. Matheson, “Compact composition operators on the Bloch space,” Transac-
tions of the American Mathematical Society, vol. 347, no. 7, pp. 2679–2687, 1995.

Songxiao Li: Department of Mathematics, Shantou University, Shantou, Guang Dong 515063,
China; Department of Mathematics, Jia Ying University, Meizhou, Guang Dong 514015, China
Email addresses: jyulsx@163.com; lsx@mail.zjxu.edu.cn
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