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1. Introduction

Let x̃n = {xi}n1, p̃n = {pi}n1 denote two sequences of positive real numbers with
∑n

1 pi = 1.
From Theory of Convex Means (cf. [1–3]), the well-known Jensen’s inequality states that
for t < 0 or t > 1,

n
∑

1

pix
t
i ≥
( n
∑

1

pixi

)t

, (1.1)

and vice versa for 0 < t < 1. The equality sign in (1.1) occurs if and only if all members of
x̃n are equal (cf. [1, page 15]). In this article, we will consider the difference

dt = d(n)
t = d(n)

t

(

x̃n, p̃n
)

:=
n
∑

1

pix
t
i −
( n
∑

1

pixi

)t

, t ∈R/{0,1}. (1.2)

By the above, dt is identically zero if and only if all members of the sequence x̃n are equal;
hence this trivial case will be excluded in the sequel. An interesting fact is that there exists
an explicit constant cs,t, independent of the sequences x̃n and p̃n such that

dsdt ≥ cs,t
(

d(s+t)/2
)2

(1.3)
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for each s, t ∈R/{0,1}. More generally, we will prove the following inequality:

(

λs
)t−r ≤ (λr

)t−s(
λt
)s−r

, −∞ < r < s < t < +∞, (1.4)

where

λt := dt
t(t− 1)

, t �=0,1,

λ0 := log

( n
∑

1

pixi

)

−
n
∑

1

pi log xi; λ1 :=
n
∑

1

pixi log xi−
( n
∑

1

pixi

)

log
n
∑

1

pixi.

(1.5)

This inequality is very precise. For example (n= 2),

λ2λ4−
(

λ3
)2 = 1

72

(

p1p2
)2(

1 + p1p2
)(

x1− x2
)6
. (1.6)

Remark 1.1. Note that from (1.1) follows λt > 0, t �=0,1, assuming that not all members
of x̃n are equal. The same is valid for λ0 and λ1. Corresponding integral inequalities will
also be given. As a consequence of Theorem 2.2, a whole variety of applications arise. For
instance, we obtain a substantial improvement of Jensen’s inequality and a converse of
Holder’s inequality, as well. As an application to probability theory, we give a generalized
form of Lyapunov-like inequality for moments of distributions with support on (0,∞).
An inequality between the Kullback-Leibler divergence and Hellinger distance will also
be derived.

2. Results

Our main result is contained in the following.

Theorem 2.1. For p̃n, x̃n, dt defined as above, then

λt := dt
t(t− 1)

(2.1)

is log-convex for t ∈ I := (−∞,0)∪ (0,1)∪ (1,+∞). As a consequence, the following general
inequality is obtained.

Theorem 2.2. For −∞ < r < s < t < +∞, then

λt−rs ≤ (λr
)t−s(

λt
)s−r

, (2.2)

with

λ0 := log

( n
∑

1

pixi

)

−
n
∑

1

pi log xi,

λ1 :=
n
∑

1

pixi log xi−
( n
∑

1

pixi

)

log

( n
∑

1

pixi

)

.

(2.3)
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Applying standard procedure (cf. [1, page 131]), we pass from finite sums to definite inte-
grals and obtain the following theorem.

Theorem 2.3. Let f (x), p(x) be nonnegative and integrable functions for x ∈ (a,b), with
∫ b
a p(x)dx = 1.Denote

Ds =Ds(a,b, f , p) :=
∫ b

a
p(x) f s(x)dx−

(∫ b

a
p(x) f (x)dx

)s

. (2.4)

For 0 < r < s < t, r,s, t �=1, then

(

Ds

s(s− 1)

)t−r
≤
(

Dr

r(r− 1)

)t−s( Dt

t(t− 1)

)s−r
. (2.5)

3. Applications

Finally, we give some applications of our results in analysis, probability, and informa-
tion theory. Also, since the involved constants are independent on n, we will write

∑

(·)
instead of

∑n
1(·).

3.1. An improvement of Jensen’s inequality. By the inequality (2.2) various improve-
ments of Jensen’s inequality (1.1) can be established such as the following proposition.

Proposition 3.1. There exist
(i) for s > 3,

∑

pix
s
i ≥
(
∑

pixi
)s

+

(

s
2

)

(

d3

3d2

)s−2

d2; (3.1)

(ii) for 0 < s < 1,

∑

pix
s
i ≤
(
∑

pixi
)s− s(1− s)

2

(

3d2

d3

)2−s
d2, (3.2)

where d2 and d3 are defined as above.

3.2. A converse of Holder’s inequality. The following converse statement holds.

Proposition 3.2. Let {ai}, {bi}, i= 1,2, . . . , be arbitrary sequences of positive real numbers
and 1/p+ 1/q = 1, p > 1. Then

pq
[

(
∑

a
p
i

)1/p(∑
b
q
i

)1/q−
∑

aibi

]

≤
(

∑

a
p
i log

a
p
i

b
q
i

−
(
∑

a
p
i

)

log

∑

a
p
i

∑

b
q
i

)1/p(
∑

b
q
i log

b
q
i

a
p
i

−
(
∑

b
q
i

)

log

∑

b
q
i

∑

a
p
i

)1/q

.

(3.3)

For 0 < p < 1, the inequality (3.3) is reversed.
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3.3. A new moments inequality. Apart from Jensen’s inequality, in probability theory is
very important Lyapunov moments inequality which asserts that for 0 <m < n < p,

(

EXn)p−m ≤ (EXm)p−n(EXp)n−m. (3.4)

This inequality is valid for any probability law with support on (0,+∞). A consequence
of Theorem 2.2 gives a similar but more precise moments inequality.

Proposition 3.3. For 1 <m < n < p and for any probability distribution P with supp P =
(0,+∞), then

(

EXn− (EX)n
)p−m ≤ C(m,n, p)

(

EXm− (EX)m
)p−n(

EXp− (EX)p
)n−m

, (3.5)

where the constant C(m,n, p) is given by

C(m,n, p)= (n2 )p−m

(m2 )p−n( p
2 )

n−m . (3.6)

There remains an interesting question: under what conditions on m, n, p is the inequality
(3.5) valid for distributions with support on (−∞,+∞)?

3.4. An inequality on symmetrized divergence. Define probability distributions P and
Q of a discrete random variable by

P(X = i)= pi, Q(X = i)= qi, i= 1,2, . . . ,
∑

pi =
∑

qi = 1. (3.7)

Among the other quantities, of importance in information theory, are Kullback-Leibler
divergence DKL(P‖Q) and Hellinger distance H(P,Q), defined to be

DKL
(

P‖Q) :=
∑

pi log
pi
qi

,

H(P,Q) :=
√

∑
(√

pi−
√

qi
)2
.

(3.8)

The distribution P represents here data, observations, while Q typically represents a
model or an approximation of P. Gibbs’ inequality states that DKL(P‖Q) ≥ 0 and
DKL(P‖Q)= 0 if and only if P =Q. It is also well known that

DKL
(

P‖Q)≥H2(P,Q). (3.9)

Since Kullback and Leibler themselves (see [4]) defined the divergence as

DKL
(

P‖Q)+DKL
(

Q‖P), (3.10)

we will give a new inequality for this symmetrized divergence form.

Proposition 3.4. Let

DKL
(

P‖Q)+DKL
(

Q‖P)≥ 4H2(P,Q). (3.11)



Slavko Simic 5

4. Proofs

Before we proceed with proofs of the above assertions, we give some preliminaries which
will be used in the sequel.

Definition 4.1. It is said that a positive function f (s) is log-convex on some open interval
I if

f (s) f (t)≥ f 2
(

s+ t

2

)

(4.1)

for each s, t ∈ I .
We quote here a useful lemma from log-convexity theory (cf. [5], [6, pages 284–286].

Lemma 4.2. A positive function f is log-convex on I if and only if the relation

f (s)u2 + 2 f
(

s+ t

2

)

uw+ f (t)w2 ≥ 0 (4.2)

holds for each real u, w, and s, t ∈ I . This result is nothing more than the discriminant test
for the nonnegativity of second-order polynomials. Another well-known assertions are the
following (cf. [1, pages 74, 97-98]).

Lemma 4.3. If g(x) is twice differentiable and g′′(x)≥ 0 on I , then g(x) is convex on I and

∑

pig
(

xi
)≥ g

(
∑

pixi
)

(4.3)

for each xi ∈ I , i= 1,2, . . . , and any positive weight sequence {pi},
∑

pi = 1.

Lemma 4.4. If φ(s) is continuous and convex for all s1, s2, s3 of an open interval I for which
s1 < s2 < s3, then

φ
(

s1
)(

s3− s2
)

+φ
(

s2
)(

s1− s3
)

+φ
(

s3
)(

s2− s1
)≥ 0. (4.4)

Proof of Theorem 2.1. Consider the function f (x,u,w,r,s, t) given by

f (x,u,w,r,s, t) := f (x)= u2 xs

s(s− 1)
+ 2uw

xr

r(r− 1)
+w2 xt

t(t− 1)
, (4.5)

where r := (s+ t)/2 and u, w, r, s, t are real parameters with r,s, t �∈ {0,1}. Since

f ′′(x)= u2xs−2 + 2uwxr−2 +w2xt−2 = (uxs/2−1 +wxt/2−1)2 ≥ 0, x > 0, (4.6)

by Lemma 4.3, we conclude that f (x) is convex for x > 0. Hence, by Lemma 4.3 again,

u2

∑

pix
s
i

s(s− 1)
+ 2uw

∑

pix
r
i

r(r− 1)
+w2

∑

pix
t
i

t(t− 1)
≥ u2

(∑

pixi
)s

s(s− 1)
+ 2uw

(∑

pixi
)r

r(r− 1)
+w2

(∑

pixi
)t

t(t− 1)
,

(4.7)

that is,

u2λs + 2uwλr +w2λt ≥ 0 (4.8)
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holds for each u,w ∈R. By Lemma 4.2 this is possible only if

λsλt ≥ λ2
r = λ2

(s+t)/2, (4.9)

and the proof is done. �

Proof of Theorem 2.2. Note that the function λs is continuous at the points s= 0 and s= 1
since

λ0 := lim
s→0

λs = log

( n
∑

1

pixi

)

−
n
∑

1

pi log xi,

λ1 := lim
s→1

λs =
n
∑

1

pixi log xi−
( n
∑

1

pixi

)

log

( n
∑

1

pixi

)

.

(4.10)

Therefore, log λs is a continuous and convex function for s∈R. Applying Lemma 4.4 for
−∞ < r < s < t < +∞, we get

(t− r) logλs ≤ (t− s) logλr + (s− r) logλt, (4.11)

which is equivalent to the assertion of Theorem 2.2. �

Remark 4.5. The method of proof we just exposed can be easily generalized. This is left
to the reader.

Proof of Theorem 2.3 can be produced by standard means (cf. [1, pages 131–134]) and
therefore is omitted.

Proof of Proposition 3.1. Applying Theorem 2.2 with 2 < 3 < s, we get

λs−3
2 λs ≥ λs−2

3 , (4.12)

that is,

λs =
∑

pix
s
i −
(∑

pixi
)s

s(s− 1)
≥
(

λ3

λ2

)s−2

λ2, (4.13)

and the proof of Proposition 3.1, part (i), follows. Taking 0 < s < 1 < 2 < 3 in Theorem 2.2
and proceeding as before, we obtain the proof of the part (ii). Note that in this case

λs =
(∑

pixi
)s−∑ pix

s
i

s(1− s)
. (4.14)

�

Proof of Proposition 3.2. From Theorem 2.2, for r = 0, s= s, t = 1, we get

λs ≤ λ1−s
0 λs1, (4.15)

that is,
(∑

pixi
)s−∑ pix

s
i

s(1− s)

≤
(

log
∑

pixi−
∑

pi log xi
)1−s(∑

pixi log xi−
(
∑

pixi
)

log
∑

pixi
)s
.

(4.16)
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Putting

s= 1
p

, 1− s= 1
q

; pi = b
q
i

∑

b
q
j

, xi = a
p
i

b
q
i

, i= 1,2, . . . , (4.17)

after some calculations, we obtain the inequality (3.3). In the case 0 < p < 1, put r = 0,
s= 1, t = s and proceed as above. �

Proof of Proposition 3.3. For a probability distribution P of a discrete variable X , defined
by

P
(

X = xi
)= pi, i= 1,2, . . . ;

∑

pi = 1, (4.18)

its expectance EX and moments EXr of rth-order (if exist) are defined by

EX :=
∑

pixi; EXr :=
∑

pix
r
i . (4.19)

Since suppP = (0,∞), for 1 <m < n < p, the inequality (2.2) reads

(

EXn− (EX)n

n(n− 1)

)p−m
≤
(

EXm− (EX)m

m(m− 1)

)p−n(EXp− (EX)p

p(p− 1)

)n−m
, (4.20)

which is equivalent with (3.5). If P is a distribution with a continuous variable, then, by
Theorem 2.3, the same inequality holds for

EX :=
∫∞

0
tdP(t); EXr :=

∫∞

0
trdP(t) <∞. (4.21)

�

Proof of Proposition 3.4. Putting s= 1/2 in (4.16), we get

(

log
∑

pixi−
∑

pi log xi
)1/2(∑

pixi log xi−
(
∑

pixi
)

log
∑

pixi
)1/2

≥ 4
((
∑

pixi
)1/2−

∑

pix
1/2
i

)

.
(4.22)

Now, for xi = qi/pi, i= 1,2, . . . , and taking in account that
∑

pi =
∑

qi = 1, we obtain

√

DKL
(

P‖Q)DKL
(

Q‖P)≥ 4
(

1−
∑
√

piqi
)

= 2
∑
(

pi + qi− 2
√

piqi
)= 2H2(P,Q).

(4.23)

Therefore,

DKL
(

P‖Q)+DKL
(

Q‖P)≥ 2
√

DKL
(

P‖Q)DKL
(

Q‖P)≥ 4H2(P,Q). (4.24)

�
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