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1. Introduction and preliminaries

Variational inequalities introduced by Stampacchia [1] in the early sixties have had a great
impact and influence in the development of almost all branches of pure and applied sci-
ences and have witnessed an explosive growth in theoretical advances and algorithmic
development; see [1–11] and references therein. It is well known that the variational in-
equality problems are equivalent to the fixed point problems. This alternative equivalent
formulation is very important from the numerical analysis point of view and has played
a significant part in several numerical methods for solving variational inequalities and
complementarity; see [2, 4]. In particular, the solution of the variational inequalities can
be computed using the iterative projection methods. It is well known that the convergence
of the projection method requires the operator T to be strongly monotone and Lipschitz
continuous. Gabay [5] has shown that the convergence of a projection method can be
proved for cocoercive operators. Note that cocoercivity is a weaker condition than strong
monotonicity. Recently, Verma [8] introduced a system of nonlinear strongly monotone
variational inequalities and studied the approximation solvability of this system based on
a system of projection methods. Chang et al. [3] also introduced a new system of nonlin-
ear relaxed cocoercive variational inequalities and studied the approximation solvability
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of this system based on a system of projection methods. Projection methods have been
applied widely to problems arising especially from complementarity, convex quadratic
programming, and variational problems.

In this paper, we consider, based on the projection method, the approximation solv-
ability of a system of nonlinear relaxed cocoercive variational inequalities with three
different relaxed cocoercive mappings and three quasi-nonexpansive mappings in the
framework of Hilbert spaces. Solutions of the system of nonlinear relaxed cocoercive vari-
ational inequalities are also common fixed points of three different quasi-nonexpansive
mappings. Our results obtained in this paper generalize the results of Chang et al. [3],
Verma [8–10], Huang and Aslam Noor [6], and some others.

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·,·〉 and
‖ · ‖, respectively. Let C be a closed convex subset of H and let T : C→H be a nonlinear
mapping. Let PC be the projection of H onto the convex subset C. The classical variational
inequality denoted by VI(C,T) is to find u∈ C such that

〈Tu,v−u〉 ≥ 0, ∀v ∈ C. (1.1)

Recall the following definitions.
(1) T is said to be u-cocoercive [8, 10] if there exists a constant u > 0 such that

〈Tx−Ty,x− y〉 ≥ u‖Tx−Ty‖2, ∀x, y ∈ C. (1.2)

Clearly, every u-cocoercive mapping T is 1/u-Lipschitz continuous.
(2) T is called v-strongly monotone if there exists a constant v > 0 such that

〈Tx−Ty,x− y〉 ≥ v‖x− y‖2, ∀x, y ∈ C. (1.3)

(3) T is said to be relaxed (u,v)-cocoercive if there exist two constants u,v > 0 such
that

〈Tx−Ty,x− y〉 ≥ (−u)‖Tx−Ty‖2 + v‖x− y‖2, ∀x, y ∈ C. (1.4)

For u = 0, T is v-strongly monotone. This class of mappings is more general than
the class of strongly monotone mappings. It is easy to see that we have the following
implication.

v-strongly monotonicity⇒ relaxed (u,v)-cocoercivity.
(4) S : C→ C is said to be quasi-nonexpansive if F(S) 
= ∅ and

‖Sx− p‖ ≤ ‖x− p‖, ∀x ∈ C, p ∈ F(S). (1.5)

Next, we denote the set of fixed points of S by F(S). If x∗ ∈ F(S)∩VI(C,T), one can
easily see

x∗ = Sx∗ = PC
[
x∗ − ρTx∗

]= SPC
[
x∗ − ρTx∗

]
, (1.6)

where ρ > 0 is a constant.
This formulation is used to suggest the following iterative methods for finding a com-

mon element of the set of the common fixed points of three different quasi-nonexpansive
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mappings and the set of solutions of the variational inequalities with three different re-
laxed cocoercive mappings.

Let T1,T2,T3 : C×C×C→H be three mappings. Consider a system of nonlinear vari-
ational inequality (SNVID) problems as follows.

Find x∗, y∗,z∗ ∈ C such that

〈
sT1
(
y∗,z∗,x∗

)
+ x∗ − y∗,x− x∗

〉≥ 0, ∀x ∈ C, s > 0, (1.7)
〈
tT2
(
z∗,x∗, y∗

)
+ y∗ − z∗,x− y∗

〉≥ 0, ∀x ∈ C, t > 0, (1.8)
〈
rT3
(
x∗, y∗,z∗

)
+ z∗ − x∗,x− z∗

〉≥ 0, ∀x ∈ C, r > 0. (1.9)

One can easily see that the SNVID problems (1.7), (1.8), and (1.9) are equivalent to
the following projection formulas

x∗ = PC
[
y∗ − sT1

(
y∗,z∗,x∗

)]
, s > 0,

y∗ = PC
[
z∗ − tT2

(
z∗,x∗, y∗

)]
, t > 0,

z∗ = PC
[
x∗ − rT3

(
x∗, y∗,z∗

)]
, r > 0,

(1.10)

respectively, where PC is the projection of H onto C.
Next, we consider some special classes of the SNVID problems (1.7), (1.8), and (1.9)

as follows.
(I) If r = 0, then the SNVID problems (1.7), (1.8), and (1.9) collapse to the following

SNVID problems.
Find x∗, y∗ ∈ C such that

〈
sT1
(
y∗,x∗,x∗

)
+ x∗ − y∗,x− x∗

〉≥ 0, ∀x ∈ C, s > 0,
〈
tT2
(
x∗,x∗, y∗

)
+ y∗ − x∗,x− x∗

〉≥ 0, ∀x ∈ C, t > 0.
(1.11)

(II) If t = r = 0, then the SNVID problems (1.7), (1.8), and (1.9) are reduced to the
following nonlinear variational inequality NVI problems.

Find an x∗ ∈ C such that

〈
T1
(
x∗,x∗,x∗

)
,x− x∗

〉≥ 0, ∀x ∈ C. (1.12)

(III) If T1,T2,T3 : C → H are univariate mappings, then the SVNID problems (1.7),
(1.8), and (1.9) are reduced to the following SNVID problems.

Find x∗, y∗ ∈ C such that

〈
sT1
(
y∗
)

+ x∗ − y∗,x− x∗
〉≥ 0, ∀x ∈ C, s > 0, (1.13)

〈
tT2
(
z∗
)

+ y∗ − z∗,x− y∗
〉≥ 0, ∀x ∈ C, t > 0, (1.14)

〈
rT3
(
x∗
)

+ z∗ − x∗,x− z∗
〉≥ 0, ∀x ∈ C, r > 0. (1.15)

(IV) If T1 = T2 = T3 = T : C→H are univariate mappings, then the SVNID problems
(1.7), (1.8), and (1.9) are reduced to the following SNVI problems.
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Find x∗, y∗ ∈ C such that

〈
sT
(
y∗
)

+ x∗ − y∗,x− x∗
〉≥ 0, ∀x ∈ C, s > 0, (1.16)

〈
tT
(
z∗
)

+ y∗ − z∗,x− y∗
〉≥ 0, ∀x ∈ C, t > 0, (1.17)

〈
rT
(
x∗
)

+ z∗ − x∗,x− z∗
〉≥ 0, ∀x ∈ C, r > 0. (1.18)

2. Algorithms

In this section, we consider an introduction of the general three-step models for the pro-
jection methods, and its special form can be applied to the convergence analysis for the
projection methods in the context of the approximation solvability of the SNVID prob-
lems (1.7)–(1.9), (1.13)–(1.15), and SNVI problems (1.16)–(1.18).

Algorithm 2.1. For any x0, y0,z0 ∈ C, compute the sequences {xn}, {yn}, and {zn} by the
iterative processes

zn+1 = S3PC
[
xn+1− rT3

(
xn+1, yn+1,zn

)]
,

yn+1 = S2PC
[
zn+1− tT2

(
zn+1,xn+1, yn

)]
,

xn+1 =
(
1−αn

)
xn +αnS1PC

[
yn− sT1

(
yn,zn,xn

)]
,

(2.1)

where {αn} is a sequence in [0,1] for all n ≥ 0, and S1, S2, and S3 are three quasi-non-
expansive mappings.

(I) If T1,T2,T3 : C→H are univariate mappings, then Algorithm 2.1 is reduced to the
following algorithm.

Algorithm 2.2. For any x0, y0,z0 ∈ C, compute the sequences {xn}, {yn}, and {zn} by the
iterative processes

zn+1 = S3PC
[
xn+1− rT3

(
xn+1

)]
,

yn+1 = S2PC
[
zn+1− tT2

(
zn+1

)]
,

xn+1 =
(
1−αn

)
xn +αnS1PC

[
yn− sT1

(
yn
)]

,

(2.2)

where {αn} is a sequence in [0,1] for all n ≥ 0, and S1, S2, and S3 are three quasi-non-
expansive mappings.

(II) If T1 = T2 = T3 = T and S1 = S2 = S3 = S in Algorithm 2.2, then we have the fol-
lowing algorithm.

Algorithm 2.3. For any x0, y0,z0 ∈ C, compute the sequences {xn}, {yn}, and {zn} by the
iterative processes

zn+1 = SPC
[
xn+1− rT

(
xn+1

)]
,

yn+1 = SPC
[
zn+1− tT

(
zn+1

)]
,

xn+1 =
(
1−αn

)
xn +αnSPC

[
yn− sT

(
yn
)]

,

(2.3)

where {αn} is a sequence in [0,1] for all n≥ 0, and S is a quasi-nonexpansive mapping.
In order to prove our main results, we need the following lemmas and definitions.
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Lemma 2.4. Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1− λn

)
an + bn + cn, ∀n≥ n0, (2.4)

where n0 is some nonnegative integer, {λn} is a sequence in (0,1) with
∑∞

n=1 λn =∞, bn =
◦(λn), and

∑∞
n=0 cn <∞, then limn→∞ an = 0.

Definition 2.5. A mapping T : C×C×C→H is said to be relaxed (u,v)-cocoercive in the
first variable if there exist constants u,v > 0 such that, for all x,x′ ∈ C,

〈
T(x, y,z)−T(x′, y′,z′),x− x′

〉≥ (−u)
∥
∥T(x, y,z)−T(x′, y′,z′)

∥
∥2

+ v‖x− x′‖2, ∀ y, y′,z,z′ ∈ C.
(2.5)

Definition 2.6. A mapping T : C×C×C→H is said to be μ-Lipschitz continuous in the
first variable if there exists a constant μ > 0 such that, for all x,x′ ∈ C,

∥
∥T(x, y,z)−T(x′, y′,z′)

∥
∥≤ μ‖x− x′‖, ∀ y, y′,z,z′ ∈ C. (2.6)

3. Main results

Theorem 3.1. LetC be a closed convex subset of a real Hilbert spaceH . LetT1 : C×C×C→
H be a relaxed (u1,v1)-cocoerceive and μ1-Lipschitz continuous mapping in the first vari-
able, T2 : C×C×C →H a relaxed (u2,v2)-cocoerceive and μ2-Lipschitz continuous map-
ping in the first variable, T3 : C×C×C→H a relaxed (u3,v3)-cocoerceive and μ3-Lipschitz
continuous mapping in the first variable, and S1,S2,S3 : C → C three quasi-nonexpansive
mappings. Suppose that x∗, y∗,z∗ ∈ C are solutions of the SNVID problems (1.7)–(1.9),
x∗, y∗,z∗ ∈ F(S1)∩ F(S2)∩ F(S3), and {xn}, {yn}, and {zn} are the sequences generated
by Algorithm 2.1. If {αn} is a sequence in [0,1] satisfying the following conditions:

(i)
∑∞

n=0αn =∞,
(ii) 0 < s, t,r < min{2(v1−u1μ

2
1)/μ2

1,2(v2−u2μ
2
2)/μ2

2,2(v3−u3μ
2
3)/μ2

3},
(iii) v1 > u1μ

2
1, v2 > u2μ

2
2 and v3 > u3μ

2
3,

then the sequences {xn}, {yn}, and {zn} converge strongly to x∗, y∗, and z∗, respectively.

Proof. Since x∗, y∗, and z∗ are the common elements of the set of solutions of the SNVID
problems (1.7)–(1.9) and the set of common fixed points of S1, S2, and S3, we have

x∗ = S1PC
[
y∗ − sT1

(
y∗,z∗,x∗

)]
, s > 0,

y∗ = S2PC
[
z∗ − tT2

(
z∗,x∗, y∗

)]
, t > 0,

z∗ = S3PC
[
x∗ − rT3

(
x∗, y∗,z∗

)]
, r > 0.

(3.1)

Observing (2.1), we obtain

∥
∥xn+1− x∗

∥
∥= ∥∥(1−αn

)
xn +αnS1PC

[
yn− sT1

(
yn,zn,xn

)]− x∗
∥
∥

≤ (1−αn
)∥∥xn− x∗

∥
∥+αn

∥
∥yn− y∗ − s

[
T1
(
yn,zn,xn

)−T1
(
y∗,z∗,x∗

)]∥∥.
(3.2)
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By the assumption that T1 is relaxed (u1,v1)-cocoercive and μ1-Lipschitz continuous in
the first variable, we obtain

∥
∥yn− y∗ − s

[
T1
(
yn,zn,xn

)−T1
(
y∗,z∗,x∗

)]∥∥2

= ∥∥yn− y∗
∥
∥− 2s

〈
yn− y∗,T1

(
yn,zn,xn

)−T1
(
y∗,z∗,x∗

)〉

+ s2
∥
∥T1

(
yn,zn,xn

)−T1
(
y∗,z∗,x∗

)∥∥2

≤ ∥∥yn− y∗
∥
∥− 2s

[−u1
∥
∥T1

(
yn,zn,xn

)−T1
(
y∗,z∗,x∗

)∥∥2
+ v1

∥
∥yn− y∗

∥
∥2]

+ s2μ2
1

∥
∥yn− y∗

∥
∥2

≤ ∥∥yn− y∗
∥
∥+ 2su1μ

2
1

∥
∥yn− y∗

∥
∥2− 2sv1

∥
∥yn− y∗

∥
∥2

+ s2μ2
1

∥
∥yn− y∗

∥
∥2

= θ2
1

∥
∥yn− y∗

∥
∥2

,

(3.3)

where θ2
1 = 1 + s2μ2

1 − 2sv1 + 2su1μ
2
1. From the conditions (ii) and (iii), we know θ1 < 1.

Substituting (3.3) into (3.2) yields that

∥
∥xn+1− x∗

∥
∥≤ (1−αn

)∥∥xn− x∗
∥
∥+αnθ1

∥
∥yn− y∗

∥
∥. (3.4)

Now, we estimate
∥
∥yn+1− y∗

∥
∥= ∥∥S2PC

[
zn+1− tT2

(
zn+1,xn+1, yn

)]− y∗
∥
∥

≤ ∥∥zn+1− z∗ − t
[
T2
(
zn+1,xn+1, yn

)−T2
(
z∗,x∗, y∗

)]∥∥.
(3.5)

By the assumption that T2 is relaxed (u2,v2)-cocoercive and μ2-Lipschitz continuous in
the first variable, we obtain

∥
∥zn+1− z∗ − t

[
T2
(
zn+1,xn+1, yn

)−T2
(
z∗,x∗, y∗

)]∥∥2

= ∥∥zn+1− z∗
∥
∥2− 2t

〈
zn+1− z∗,T2

(
zn+1,xn+1, yn

)−T2
(
z∗,x∗, y∗

)〉

+ t2
∥
∥T2

(
zn,xn+1, yn

)−T2
(
z∗,x∗, y∗

)∥∥2

≤ ∥∥zn+1− z∗
∥
∥2− 2t

[−u2
∥
∥T2

(
zn+1,xn+1, yn

)−T2
(
z∗,x∗, y∗

)∥∥2
+ v2

∥
∥zn+1− z∗

∥
∥2]

+ t2μ2
2

∥
∥zn+1− z∗

∥
∥2

≤ ∥∥zn+1− z∗
∥
∥2

+ 2tu2μ
2
2

∥
∥zn+1− z∗

∥
∥2− 2tv2

∥
∥zn+1− z∗

∥
∥2

+ t2μ2
2

∥
∥zn+1− z∗

∥
∥2

≤ θ2
2

∥
∥zn+1− z∗

∥
∥2

,
(3.6)

where θ2 = 1 + t2μ2
2− 2tv2 + 2tu2μ

2
2. From the conditions (ii) and (iii), we know that θ2 <

1. Substituting (3.6) into (3.5) yields that

∥
∥yn+1− y∗

∥
∥≤ θ2

∥
∥zn+1− z∗

∥
∥, (3.7)

which implies that

∥
∥yn− y∗

∥
∥≤ θ2

∥
∥zn− z∗

∥
∥. (3.8)
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Similarly, substituting (3.8) into (3.4), we have

∥
∥xn+1− x∗

∥
∥≤ (1−αn

)∥∥xn− x∗
∥
∥+αnθ1θ2

∥
∥zn− z∗

∥
∥. (3.9)

Next, we show that

∥
∥zn+1− z∗

∥
∥= ∥∥S3PC

[
xn+1− rT3

(
xn+1, yn+1,zn

)]− z∗
∥
∥

≤ ∥∥xn+1− x∗ − r
[
T3
(
xn+1, yn+1,zn

)−T
(
x∗, y∗,z∗

)]∥∥.
(3.10)

By the assumption that T3 is relaxed (u3,v3)-cocoercive and μ3-Lipschitz continuous in
the first variable, we obtain

∥
∥xn+1− x∗ − r

[
T3
(
xn+1, yn+1,zn

)−T3
(
x∗, y∗,z∗

)]∥∥2

= ∥∥xn+1− x∗
∥
∥2− 2r

〈
xn+1− x∗,T3

(
xn+1, yn+1,zn

)−T3
(
x∗, y∗,z∗

)〉

+ r2
∥
∥T3

(
xn+1, yn+1,zn

)−T3
(
x∗, y∗,z∗

)∥∥2

≤ ∥∥xn+1− x∗
∥
∥2− 2r

[−u3
∥
∥T3

(
xn+1, yn+1,zn

)−T3
(
x∗, y∗,z∗

)∥∥2
+ v3

∥
∥xn+1− x∗

∥
∥2]

+ r2μ2
3

∥
∥xn− x∗

∥
∥2

≤ ∥∥xn+1− x∗
∥
∥2

+ 2ru3μ
2
3

∥
∥xn+1− x∗

∥
∥2− 2rv3

∥
∥xn+1− x∗

∥
∥2

+ r2μ2
3

∥
∥xn+1− x∗

∥
∥2

= θ2
3

∥
∥xn+1− x∗

∥
∥2

,
(3.11)

where θ2
3 = 1 + r2μ2

3 − 2rv3 + 2ru3μ
2
3. From the conditions (ii) and (iii), we know that

θ3 < 1. Substituting (3.11) into (3.10), we obtain

∥
∥zn+1− z∗

∥
∥≤ θ3

∥
∥xn+1− x∗

∥
∥, (3.12)

which implies

∥
∥zn− z∗

∥
∥≤ θ3

∥
∥xn− x∗

∥
∥. (3.13)

Similarly, substituting (3.13) into (3.9) yields that

∥
∥xn+1− x∗

∥
∥≤ (1−αn

)∥∥xn− x∗
∥
∥+αnθ1θ2θ3

∥
∥xn− x∗

∥
∥

≤ [1−αn
(
1− θ1θ2θ3

)]∥∥xn− x∗
∥
∥.

(3.14)

Noticing that
∑∞

n=0αn(1− θ1θ2θ3) =∞ and applying Lemma 2.4 into (3.14), we can get
the desired conclusion easily. This completes the proof. �

Remark 3.2. Theorem 3.1 extends the solvability of the SNVI of Chang [3] and Verma
[8] to the more general SNVID (1.7)–(1.9) and improves the main results of [3, Theorem
2.1], [8, Theorem 3.3] by using an explicit iteration scheme, Algorithm 2.1. The compu-
tation workload is much less than the implicit algorithms in Chang [3] and Verma [8].
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Moreover, Theorem 3.1 also extends the SNVID of Huang and Aslam Noor [6] to some
extent.

From Theorem 3.1, we can get the following results immediately.

Theorem 3.3. Let C be a closed convex subset of a real Hilbert space H . Let T1 : C →
H be a relaxed (u1,v1)-cocoerceive and μ1-Lipschitz continuous mapping, T2 : C → H a
relaxed (u2,v2)-cocoerceive and μ2-Lipschitz continuous mapping, T3 : C → H a relaxed
(u3,v3)-cocoerceive and μ3-Lipschitz continuous mapping, and S1,S2,S3 : C→ C three quasi-
nonexpansive mappings. Suppose that x∗, y∗,z∗ ∈ C are solutions of the SNVID problems
(1.13)–(1.15), x∗, y∗,z∗ ∈ F(S1)∩ F(S2)∩ F(S3), and {xn}, {yn}, and {zn} are the se-
quences generated by Algorithm 2.2. If {αn} is a sequence in [0,1] satisfying the following
conditions:

(i)
∑∞

n=0αn =∞,
(ii) 0 < s, t,r < min{2(v1−u1μ

2
1)/μ2

1,2(v2−u2μ
2
2)/μ2

2,2(v3−u3μ
2
3)/μ2

3},
(iii) v1 > u1μ

2
1, v2 > u2μ

2
2 and v3 > u3μ

2
3,

then the sequences {xn}, {yn}, and {zn} converge strongly to x∗, y∗, and z∗, respectively.

Remark 3.4. Theorem 3.3 includes Theorem 3.5 of Huang and Aslam Noor [6] as a special
case and also improves the main results of Chang et al. [3] and Verma [8] by explicit
projection algorithms.

Theorem 3.5. Let C be a closed convex subset of a real Hilbert space H . Let T : C → H
be a relaxed (u,v)-cocoerceive and μ-Lipschitz continuous mapping and let S : C → C be a
quasi-nonexpansive mapping. Suppose that x∗, y∗,z∗ ∈ C are solutions of the SNVI prob-
lems (1.16)–(1.18), x∗, y∗,z∗ ∈ F(S), and {xn}, {yn}, and {zn} are the sequences generated
by Algorithm 2.3. If {αn} is a sequence in [0,1] satisfying the following conditions:

(i)
∑∞

n=0αn =∞,
(ii) 0 < s, t,r < (2(v−uμ2))/μ2,

(iii) v > uμ2,
then the sequences {xn}, {yn}, and {zn} converge strongly to x∗, y∗, and z∗, respectively.
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