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1. Introduction

It is well known that the iterative technique is a very important method for dealing with
many nonlinear problems (see, e.g., [1–4]). Let E be a real Banach space, let X be a
nonempty subset of E, and let A,B : X ×X → E be two nonlinear mappings. Chang and
Guo [5] introduced and studied the following nonlinear problem in Banach spaces:

A(u,u)= u, B(u,u)= u, (1.1)

which has been used to study many kinds of differential and integral equations in Ba-
nach spaces. If A= B, then problem (1.1) reduces to the problem considered by Guo and
Lakshmikantham [1].

On the other hand, Huang et al. [6] introduced and studied the problem of finding
u∈ X , x ∈ Su, and y ∈ Tu such that

A(y,x)= u, (1.2)
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where A : X ×X → X is a nonlinear mapping and S,T : X → 2X are two set-valued map-
pings. They constructed an iterative algorithm for solving this problem and gave an ap-
plication to the problem of the general Bellman functional equation arising in dynamic
programming.

Let A,B : X ×X → E be two nonlinear mappings, let g : X → E be a nonlinear mapping,
and let S,T : X → 2X be two set-valued mappings. Motivated by above works, in this pa-
per, we study the following system of nonlinear inclusions problem of finding u ∈ X ,
x ∈ Su, and y ∈ Tu such that

A(y,x)= gu, B(x, y)= gu. (1.3)

It is easy to see that the problem (1.3) is equivalent to the following problem: find u∈ X
such that

gu∈ A
(
Tu,Su

)
, gu∈ B

(
Su,Tu

)
, (1.4)

which was considered by Huang and Fang [7] when g is an identity mapping. It is well
known that problem (1.3) includes a number of variational inequalities (inclusions) and
equilibrium problems as special cases (see, e.g, [8–10] and the references therein).

By using the iterative technique and Nadler’s theorem [11], we construct a new al-
gorithm for solving the system of nonlinear inclusions problem (1.3) in Banach spaces.
We prove the existence of solution for the system of nonlinear inclusions problem (1.3)
and the convergence of the sequences generated by the algorithm. As an application, we
discuss the existence of solution for a system of functional equations arising in dynamic
programming of multistage decision processes.

2. Preliminaries

Let P be a cone in E and let “≤” be a partial order induced by the cone P, that is, x ≤ y if
and only if y− x ∈ P. Recall that the cone P is said to be normal if there exists a constant
NP > 0 such that θ ≤ u≤ v implies that ‖u‖ ≤NP‖v‖, where θ denotes the zero element
of E.

A mapping A : E × E → E is said to be mixed monotone if for all u1,u2,v1,v2 ∈ E,
u1 ≤ u2 and v1 ≤ v2 imply that A(u1,v2)≤ A(u2,v1).

We denote by CB(X) the family of all nonempty closed bounded subsets of X . A set-
valued mapping F : X → CB(X) is said to be H-Lipschitz continuous if there exists a con-
stant λ > 0 such that

H
(
Fx,Fy

)≤ λ‖x− y‖, ∀x, y ∈ X , (2.1)

where H(·,·) denotes the Hausdorff metric on CB(X), that is, for any A,B ∈ CB(X),

H(A,B)=max

{

sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}

. (2.2)
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Definition 2.1. Let S,T : E→ E be two single-valued mappings. A single-valued mapping
A : E×E→ E is said to be (S,T)-mixed monotone if, for all u1,u2,v1,v2 ∈ E,

u1 ≤ u2, v1 ≤ v2 imply that A
(
Su1,Tv2

)≤ A
(
Su2,Tv1

)
. (2.3)

Remark 2.2. It is easy to see that, if S = T = I (I is the identity mapping), then (S,T)-
mixed monotonicity of A is equivalent to the mixed monotonicity of A. The following
example shows that the (S,T)-mixed monotone mapping is a proper generalization of
the mixed monotone mapping.

Example 2.3. Let R= (−∞,+∞), let A :R×R→R and S,T :R→R be defined by

A(x, y)= xy, S(x)= x, T(x)=−x (2.4)

for all x, y ∈R. Then it is easy to see that A is an (S,T)-mixed monotone mapping. How-
ever, A is not a mixed monotone.

Definition 2.4. Let S,T : E→ 2E be two multivalued mappings. A single-valued mapping
A : E×E→ E is said to be (S,T)-mixed monotone if, for all u1,u2,v1,v2 ∈ E, u1 ≤ u2 and
v1 ≤ v2 imply that

A
(
x1, y2

)≤A
(
x2, y1

)
, ∀x1 ∈ Su1, x2 ∈ Su2, y1 ∈ Tv1, y2 ∈ Tv2. (2.5)

Definition 2.5. If {xn} ⊂ E satisfies x1 ≤ x2 ≤ ··· ≤ xn ≤ ··· or x1 ≥ x2 ≥ ··· ≥ xn ≥ ··· ,
then {xn} is said to be a monotone sequence.

Definition 2.6. Let D ⊂ E. A mapping g : D→ E is said to satisfy condition (C) if, for any
sequence {xn} ⊂D satisfying {g(xn)} that is monotone, g(xn)→ g(x) implies that xn→ x.

Remark 2.7. If g is reversible and g−1 is continuous, then it is easy to see that g satisfies
condition (C).

3. Iterative algorithm

In this section, by using Nadler’s theorem [11], we construct a new iterative algorithm for
solving the system of nonlinear inclusions problem (1.3).

Let u0,v0 ∈ E, u0 < v0 (i.e., u0 ≤ v0 and u0 
= v0) and let D = [u0,v0] = {u ∈ E : u0 ≤
u≤ v0} be an order interval in E. Let S,T : D→ CB(D) and g : D→ E such that g(D)= E
and gu0 ≤ gv0. Suppose that A : D×D→ E is an (T ,S)-mixed monotone mapping and
B : D×D→ E is a (S,T)-mixed monotone mapping satisfying the following conditions:

(i) for any u,v ∈D, u≤ v implies that

B(x, y)≤A(y,x), ∀x ∈ Su, y ∈ Tv; (3.1)

(ii) there exist two constants a,b ∈ [0,1) such that

gu0 + a
(
gv0− gu0

)≤ B
(
x0, y0

)
, A

(
y0,x0

)≤ gv0− b
(
gv0− gu0

)
(3.2)

for all x0 ∈ Su0 and y0 ∈ Tv0;
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(iii) for u,v ∈D, gu≤ gv implies that u≤ v.
For u0 and v0, we take x0 ∈ Su0 and y0 ∈ Tv0. By virtue of g(D)= E, there exist u1,v1 ∈

D such that

gu1 = B
(
x0, y0

)− a
(
gv0− gu0

)
, gv1 =A

(
y0,x0

)
+ b
(
gv0− gu0

)
. (3.3)

It follows from (ii) that

gu0 ≤ gu1, gv1 ≤ gv0. (3.4)

By condition (i), we have

gv1 =A
(
y0,x0

)
+ b
(
gv0− gu0

)

≥ B
(
x0, y0

)
+ b
(
gv0− gu0

)

= gu1 + (a+ b)
(
gv0− gu0

)≥ gu1.

(3.5)

Therefore, gu0 ≤ gu1 ≤ gv1 ≤ gv0. From condition (iii), we know that u0 ≤ u1 ≤ v1 ≤ v0.
Now, by Nadler’s theorem [11], there exist x1 ∈ Su1 and y1 ∈ Tv1 such that

∥
∥x1− x0

∥
∥≤ (1 + 1)H

(
Su1,Su0

)
,

∥
∥y1− y0

∥
∥≤ (1 + 1)H

(
Tv1,Tv0

)
. (3.6)

In virtue of g(D)= E, there exist u2,v2 ∈D such that

gu2 = B
(
x1, y1

)− a
(
gv1− gu1

)
, gv2 =A

(
y1,x1

)
+ b
(
gv1− gu1

)
. (3.7)

Since B is (S,T)-mixed monotone and A is (T ,S)-mixed monotone,

gu1 = B
(
x0, y0

)− a
(
gv0− gu0

)≤ B
(
x1, y1

)− a
(
gv1− gu1

)= gu2,

gv2 =A
(
y1,x1

)
+ b
(
v1−u1

)≤ A
(
y0,x0

)
+ b
(
gv0− gu0

)= gv1.
(3.8)

It follows from condition (i) that

gu2 = B
(
x1, y1

)− a
(
gv1− gu1

)

≤ A
(
y1,x1

)− a
(
gv1− gu1

)

= gv2− (a+ b)
(
gv1− gu1

)≤ gv2.

(3.9)

Therefore,

gu0 ≤ gu1 ≤ gu2 ≤ gv2 ≤ gv1 ≤ gv0. (3.10)

So

u0 ≤ u1 ≤ u2 ≤ v2 ≤ v1 ≤ v0. (3.11)

By induction, we can get an iterative algorithm for solving the system of nonlinear inclu-
sions problem (1.3) as follows.
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Algorithm 3.1. Let u0,v0 ∈ E, u0 < v0, let D = [u0,v0]= {u∈ E : u0 ≤ u≤ v0} be an order
interval in E. Let S,T : D→ CB(D) and g : D→ E with g(D)= E and gu0 ≤ gv0. Suppose
that A : D×D→ E is an (T ,S)-mixed monotone mapping and B : D×D→ E is (S,T)-
mixed monotone mapping satisfying conditions (i)–(iii). Taking x0 ∈ Su0 and y0 ∈ Tv0,
we can get iterative sequences {un}, {vn}, {xn}, and {yn} as follows:

gun+1 = B
(
xn, yn

)− a
(
gvn− gun

)
,

gvn+1 =A
(
yn,xn

)
+ b
(
gvn− gun

)
,

xn+1 ∈ Sun+1,
∥
∥xn+1− xn

∥
∥≤

(
1 +

1
n+ 1

)
H
(
Sun+1,Sun

)
,

yn+1 ∈ Tvn+1,
∥
∥yn+1− yn

∥
∥≤

(
1 +

1
n+ 1

)
H
(
Tvn+1,Tvn

)
,

(3.12)

gu0 ≤ gu1 ≤ gu2 ≤ ··· ≤ gun ≤ ··· ≤ gvn ≤ ··· ≤ gv2 ≤ gv1 ≤ gv0, (3.13)

u0 ≤ u1 ≤ u2 ≤ ··· ≤ un ≤ ··· ≤ vn ≤ ··· ≤ v2 ≤ v1 ≤ v0 (3.14)

for all n= 0,1,2, . . . .

Remark 3.2. From Algorithm 3.1, we can get some new algorithms for solving some spe-
cial cases of problem (1.3).

4. Existence and convergence

In this section, we will prove the existence of solutions for the system of nonlinear inclu-
sions problem (1.3) and the convergence of sequences generated by Algorithm 3.1.

Theorem 4.1. Let E be a real Banach space, P ⊂ E a normal cone in E, u0,v0 ∈ E with
u0 < v0, and D = [u0,v0]. Let g : D→ E be a mapping such that g(D)= E, gu0 ≤ gv0, and g
satisfies condition (C). Suppose that S,T : D→ CB(D) are two H-Lipschitz continuous map-
pings with Lipschitz constants α > 0 and γ > 0, respectively, A : D×D→ E is a (T ,S)-mixed
monotone mapping and B : D×D→ E is an (S,T)-mixed monotone mapping. Assume that
conditions (i)–(iii) are satisfied and

(iv) there exists a constant β ∈ [0,1) with a+ b+β < 1 such that, for any u,v ∈D, u≤ v
implies that

A(y,x)−B(x, y)≤ β(gv− gu) (4.1)

for all x ∈ Su, y ∈ Tv.
Then there exist u∗ ∈D, x∗ ∈ Su∗, and y∗ ∈ Tu∗ such that

gu∗ = A
(
y∗,x∗

)
, gu∗ = B

(
x∗, y∗

)
,

un −→ u∗, vn −→ u∗, xn −→ x∗, yn −→ y∗ (n−→∞).
(4.2)
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Proof. It follows from (3.12), (3.13), (3.14), and condition (iv) that

θ ≤ gvn− gun = A
(
yn−1,xn−1

)−B
(
xn−1, yn−1

)
+ (a+ b)

(
gvn−1− gun−1

)

≤ β
(
gvn−1− gun−1

)
+ (a+ b)

(
gvn−1− gun−1

)

= (a+ b+β)
(
gvn−1− gun−1

)≤ ··· ≤ (a+ b+β)n
(
gv0− gu0

)
(4.3)

for all n= 1,2, . . . . Since the cone P is normal, we have

∥
∥gvn− gun

∥
∥≤NP(a+ b+β)n

∥
∥gv0− gu0

∥
∥. (4.4)

Thus, the condition a+ b+β ∈ [0,1) implies that

∥
∥gvn− gun

∥
∥−→ 0 (n−→∞). (4.5)

Now we prove that {gun} is a Cauchy sequence. In fact, for any n,m∈N, if n≤m, then
it follows from (3.14) that

(
gvn− gun

)− (gum− gun
)= gvn− gum ∈ P (4.6)

and so gum− gun ≤ gvn− gun. Since P is a normal cone, we conclude that

∥
∥gum− gun

∥
∥≤NP

∥
∥gvn− gun

∥
∥. (4.7)

Similarly, if n >m, we have gun− gum ≤ gvm− gum and so

∥
∥gun− gum

∥
∥≤NP

∥
∥gvm− gum

∥
∥. (4.8)

It follows from (4.7) and (4.8) that

∥
∥gun− gum

∥
∥≤NP max

{∥∥gvn− gun
∥
∥,
∥
∥gvm− gum

∥
∥} (4.9)

for all n,m ∈ N. From (4.5) and (4.9), we know that {gun} is a Cauchy sequence in E.
Let gun → k∗ ∈ E as n→∞. Since g(D) = E, there exists u∗ ∈ D such that gu∗ = k∗.
Now (4.5) implies that gvn→ gu∗ as n→∞. Since g satisfies condition (C), we know that
un → u∗ and vn → u∗ as n→∞. Now the closedness of P implies that gun ≤ gu∗ ≤ gvn
for all n= 1,2, . . . . It follows from condition (iii) that un ≤ u∗ ≤ vn for all n= 1,2, . . . . By
(3.12) and the H-Lipschitz continuity of mappings S and T , we have

∥
∥xn+1− xn

∥
∥≤

(
1 +

1
n+ 1

)
H
(
Sun+1,Sun

)≤
(

1 +
1

n+ 1

)
·α∥∥un+1−un

∥
∥,

∥
∥yn+1− yn

∥
∥≤

(
1 +

1
n+ 1

)
H
(
Tvn+1,Tvn

)≤
(

1 +
1

n+ 1

)
· γ∥∥vn+1− vn

∥
∥.

(4.10)

Thus, {xn} and {yn} are both Cauchy sequences in D. Let

lim
n→∞xn = x∗, lim

n→∞ yn = y∗. (4.11)
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Next, we prove that x∗ ∈ Su∗ and y∗ ∈ Tu∗. In fact,

d
(
x∗,Su∗

)= inf
{∥∥x∗ −ω

∥
∥ : ω ∈ Su∗

}

≤ ∥∥x∗ − xn
∥
∥+d

(
xn,Su∗

)≤ ∥∥x∗ − xn
∥
∥+H

(
Sun,Su∗

) (4.12)

and so d(x∗,Su∗)= 0. It follows that x∗ ∈ Su∗. Similarly, we have y∗ ∈ Tu∗.
We now prove that gu∗ = A(y∗,x∗) and gu∗ = B(x∗, y∗). Since un ≤ u∗ ≤ vn, B is

(S,T)-mixed monotone and A is (T ,S)-mixed monotone, it follows from (i) that

gun+1 = B
(
xn, yn

)− a
(
gvn− gun

)≤ B
(
x∗, y∗

)− a
(
gvn− gun

)

≤A
(
y∗,x∗

)
+ b
(
gvn− gun

)− (a+ b)
(
gvn− gun

)

≤A
(
yn,xn

)
+ b
(
gvn− gun

)− (a+ b)
(
gvn− gun

)≤ gvn+1.

(4.13)

Therefore, gu∗ =A(y∗,x∗)= B(x∗, y∗). This completes the proof. �

Theorem 4.2. Let E be a real Banach space, P ⊂ E a normal cone in E, u0,v0 ∈ E with
u0 < v0, and D = [u0,v0]. Let g : D→ E be a mapping such that g(D) = E, gu0 ≤ gv0, and
g satisfies condition (C). Suppose that S,T : D → CB(D) are two H-Lipschitz continuous
mappings with Lipschitz constants α > 0 and γ > 0, respectively, A : D×D→ E is an (T ,S)-
mixed monotone mapping, and B : D×D→ E is a (S,T)-mixed monotone mapping. Assume
that conditions (i)–(iii) are satisfied and

(iv)′ for any u,v ∈D, u≤ v implies that

A(y,x)−B(x, y)≤ L(gv− gu) (4.14)

for all x ∈ Su, y ∈ Tv, where L : E→ E is a bounded linear mapping with a spectral
radius r(L)= β < 1 and a+ b+β < 1.

Then there exist u∗ ∈D, x∗ ∈ Su∗, and y∗ ∈ Tu∗ such that

gu∗ = A
(
y∗,x∗

)
, gu∗ = B

(
x∗, y∗

)
,

un −→ u∗, vn −→ u∗, xn −→ x∗, yn −→ y∗ (n−→∞).
(4.15)

Proof. It follows from (3.12), (3.13), (3.14), and condition (iv)′ that

θ ≤ gvn− gun =A
(
yn−1,xn−1

)−B
(
xn−1, yn−1

)
+ (a+ b)

(
gvn−1− gun−1

)

≤ L
(
gvn−1− gun−1

)
+ (a+ b)

(
gvn−1− gun−1

)

≤ (L+ (a+ b)I
)(
gvn−1− gun−1

)= J
(
gvn−1− gun−1

)
(4.16)

for all n= 1,2, . . ., where J = L+ (a+ b)I and I is the identity mapping. By induction, we
conclude that

θ ≤ gvn− gun ≤ Jn
(
gv0− gu0

)
(4.17)

for all n= 1,2, . . . . Since r(L)= β < 1, from [12, Example 10.3(b) and Theorem 10.3(b)]
by Rudin, we have

lim
n→∞‖J

n‖1/n = r(J)≤ a+ b+β < 1. (4.18)
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This implies that there exists n0 ∈N such that

∥
∥Jn
∥
∥≤ (a+ b+β)n, ∀n≥ n0. (4.19)

Since P is a normal cone and a+ b+ β < 1, it follows from (4.17) and (4.19) that ‖gvn−
gun‖ → 0 as n→∞. The rest argument is similar to the corresponding part of the proof
in Theorem 4.1 and we omit it. This completes the proof. �

If S= T in Theorem 4.1, we have the following result.

Corollary 4.3. Let E be a real Banach space, P ⊂ E a normal cone in E, u0,v0 ∈ E with
u0 < v0, and D = [u0,v0]. Let g : D→ E be a mapping such that g(D)= E, gu0 ≤ gv0, and g
satisfies (iii) and condition (C). Suppose that S : D→ CB(D) is H-Lipschitz continuous with
Lipschitz constant α > 0, and A,B : D×D→ E are both (S,S)-mixed monotone mappings
such that

(B1) for any u,v ∈D, u≤ v implies that

B(x, y)≤ A(y,x), ∀x ∈ Su, y ∈ Sv; (4.20)

(B2) for all u,v ∈D, u≤ v, there exists β ∈ [0,1) such that

A(y,x)−B(x, y)≤ β(gv− gu); (4.21)

for all x ∈ Su, y ∈ Sv;
(B3) there are a,b ∈ [0,1) with a+ b+β < 1 such that

gu0 + a
(
gv0− gu0

)≤ B
(
u0,v0

)
, A

(
v0,u0

)≤ gv0− b
(
gv0− gu0

)
. (4.22)

Then there exist u∗ ∈D and x∗, y∗ ∈ Su∗ such that

gu∗ = B
(
x∗, y∗

)= A(y∗,x∗), lim
n→∞un = lim

n→∞vn = u∗, (4.23)

where

gun+1 = B
(
un,vn

)− a
(
gvn− gun

)
, gvn+1 =A

(
vn,un

)
+ b
(
gvn− gun

)
(4.24)

for all n= 1,2, . . . .

If S= I in Corollary 4.3, we have the following result.

Corollary 4.4. Let E be a real Banach space, P ⊂ E a normal cone in E, u0,v0 ∈ E, u0 < v0,
and D = [u0,v0]. Let g : D→ E be a mapping such that g(D)= E, gu0 ≤ gv0, and g satisfies
(iii) and condition (C). Suppose that A,B : D×D→ E are both mixed monotone and satisfy
the following conditions:

(C1) there exists β ∈ [0,1) such that

A(v,u)−B(u,v)≤ β(gv− gu) (4.25)

for all u,v ∈D with u≤ v;
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(C2) for all u,v ∈D, u≤ v implies that

B(u,v)≤A(v,u); (4.26)

(C3) there are a,b ∈ [0,1) with a+ b+β < 1 such that

gu0 + a
(
gv0− gu0

)≤ B
(
u0,v0

)
, A

(
v0,u0

)≤ gv0− b
(
gv0− gu0

)
. (4.27)

Then there exists u∗ ∈D such that

gu∗ =A
(
u∗,u∗

)= B
(
u∗,u∗

)
, lim

n→∞un = lim
n→∞vn = u∗, (4.28)

where

gun+1 = B
(
un,vn

)− a
(
gvn− gun

)
, gvn+1 =A

(
vn,un

)
+ b
(
gvn− gun

)
(4.29)

for all n= 1,2, . . . .

5. An application

Dynamic programming, because of its wide applicability, has evoked much interest
among people of various discipline. See, for example, [13–17] and the references therein.

Let Y and Z be two Banach spaces, G ⊂ Y a state space, Δ ⊂ Z a decision space, and
R= (−∞,+∞). We denote by B(G) the set of all bounded real-valued functional defined
on G. Define ‖ f ‖ = supx∈G | f (x)|. Then (B(G),‖ · ‖) is a Banach space. Let

P = { f ∈ B(G) : f (x)≥ 0, ∀x ∈G
}
. (5.1)

Obviously, P is a normal cone. In this section, we consider a system of functional equa-
tions as follows.

Find a bounded functional f : G→R such that

f1 ∈ S f (x), f2 ∈ T f (x),

g f (x)= sup
y∈Δ

[
ϕ(x, y) +F1

(
x, y, f1

(
W(x, y)

)
, f2
(
W(x, y)

))]
,

g f (x)= sup
y∈Δ

[
ϕ(x, y) +F2

(
x, y, f2

(
W(x, y)

)
, f1
(
W(x, y)

))]
(5.2)

for all x ∈ G, where W : G× Δ→ G, ϕ : G× Δ→ R, F1,F2 : G× Δ×R×R→ R, S,T :
B(G)→ 2B(G), and g : B(G)→ B(G).

As an application of Theorem 4.1, we have the following result concerned with the
existence of solution for the system of functional equations problem (5.2).

Theorem 5.1. Suppose that
(1) ϕ, F1, and F2 are bounded;
(2) there exist two bounded functionals u0,v0 : G→ R with u0 
= v0, u0(x) ≤ v0(x) for

all x ∈G, and suppose that S,T : D = [u0,v0]→ CB(D) are H-Lipschitz continuous
with Lipschitz constants α > 0 and γ > 0, respectively;
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(3) g : D→ B(G) satisfies g(D)= B(G), gu0 ≤ gv0, and
(a) for any {un} ⊂D with {gun} being monotone, u∈D, if gun→ gu, then un→

u;
(b) for any u,v ∈ D, if u(x) ≤ v(x), for all x ∈ G, then gu(x) ≤ gv(x), for all

x ∈G;
(4) there exists a constant β ∈ [0,1) such that, for any u,v ∈ D, if u(x) ≤ v(x) for all

x ∈G, then

F1
(
x, y,ω

(
W(x, y)

)
,z
(
W(x, y)

))−F2
(
x, y,z

(
W(x, y)

)
,ω
(
W(x, y)

))

≤ β
(
gv(x)− gu0(x)

) (5.3)

for all z ∈ Su, ω ∈ Tv, x ∈G, and y ∈ Δ;
(5) for any u,v ∈D with u(x)≤ v(x) for all x ∈G,

F2
(
x, y,z

(
W(x, y)

)
,ω
(
W(x, y)

))≤ F1
(
x, y,ω

(
W(x, y)

)
,z
(
W(x, y)

))
(5.4)

for all z ∈ Su, ω ∈ Tv, x ∈G, and y ∈ Δ;
(6) for any z ∈ Su0, ω ∈ Tv0, x ∈G, and y ∈ Δ,

gu0(x) + a
(
gv0(x)− gu0(x)

)≤ F2
(
x, y,z

(
W(x, y)

)
,ω
(
W(x, y)

))
,

F1
(
x, y,ω

(
W(x, y)

)
,z
(
W(x, y)

))≤ gv0(x)− b
(
gv0(x)− gu0(x)

)
,

(5.5)

where a,b ∈ [0,1) with a+ b+β < 1;
(7) for any u1,u2,v1,v2 ∈D, if u1(x)≤ u2(x) and v1 ≤ v2(x) for all x ∈G, then

F2
(
x, y, y1

(
W(x, y)

)
,x2
(
W(x, y)

))≤ F2
(
x, y, y2

(
W(x, y)

)
,x1
(
W(x, y)

))
,

F1(x, y,x1
(
W(x, y)

)
, y2
(
W(x, y)

))≤ F1
(
x, y,x2

(
W(x, y)

)
, y1
(
W(x, y)

)) (5.6)

for all x1 ∈ Su, x2 ∈ Su2, y1 ∈ Tv1, y2 ∈ Tv2, x ∈G, and y ∈ Δ.
Then there exist u∗ ∈D, z∗ ∈ Su∗, and ω∗ ∈ Tu∗ such that

gu∗ = sup
y∈Δ

{
ϕ(x, y) +F1

(
x, y,ω∗

(
W(x, y)

)
,z∗W(x, y)

)}
,

gu∗ = sup
y∈Δ

{
ϕ(x, y) +F2

(
x, y,z∗

(
W(x, y)

)
,ω∗W

(
x, y)

)} (5.7)

for all x ∈G.

Proof. For any u,v ∈D, we define the mappings A, B as follows:

A(u,v)(x)= sup
y∈Δ

[
ω
(
x, y) +F1

(
x, y,u

(
W(x, y)

)
,v
(
W
(
x, y)

))]
,

B(u,v)(x)= sup
y∈Δ

[
ω
(
x, y) +F2

(
x, y,u

(
W(x, y

))
,v
(
W(x, y)

))] (5.8)
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for all x ∈ G. From (1.1) and (4.7), we know that A,B : D×D→ B(G) are (T ,S)-mixed
monotone and (S,T)-mixed monotone, respectively. By assumptions (1.3)–(4.5), it is
easy to check that A, B and S, T satisfy all the conditions of Theorem 4.1. Thus, Theorem
4.1 implies that there exist u∗ ∈D, z∗ ∈ Su∗, and ω∗ ∈ Tu∗ such that gu∗ = A(ω∗,z∗)=
B(z∗,ω∗), that is,

gu∗ = sup
y∈Δ

{
ϕ(x, y) +F1

(
x, y,ω∗

(
W(x, y)

)
,z∗W(x, y)

)}
,

gu∗ = sup
y∈Δ

{
ϕ(x, y) +F2

(
x, y,z∗

(
W(x, y)

)
,ω∗W(x, y)

)} (5.9)

for all x ∈G. This completes the proof. �
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