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Let BN be the unit ball in the N-dimensional complex space, for ψ, a holomorphic func-
tion in BN , and ϕ, a holomorphic map from BN into itself, the weighted composition op-
erator on the weighted Hardy space H2(β,BN ) is given by (Cψ,ϕ) f = ψ(z) f (ϕ(z)), where
f ∈H2(β,BN ). This paper discusses the spectrum of Cψ,ϕ when it is compact on a certain
class of weighted Hardy spaces and when the composition map ϕ has only one fixed point
inside the unit ball.

Copyright © 2007 Z.-H. Zhou and C. Yuan. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

It is well known that the general principle that the spectrum structure of the composition
operator Cϕ is closely related to the fixed point behavior of the map ϕ is well illustrated
by compact composition operators. Determining the spectrum of a compact operator is
equivalent to finding the eigenvalues of the operator. About the spectrum of a compact
operator in a weighted Hardy space defined in the disk or BN , we refer the reader to see
[1], where Cowen and MacCluer proved a theorem of considerable generality, which will
show that, essentially, all of the spaces of interest to us these eigenvalues are determined
by the derivative of ϕ at the Denjoy-Wolff fixed point of ϕ. Weighting a composition oper-
ator as a generalization of a multiplication operator and a composition operator, recently,
Gunatillake in [2] obtained some results for the spectrum of weighted composition op-
erators on the weighted Hardy spaces of the unit disk. It is, therefore, natural to wonder
what results can be obtained for the spectrum of weighted composition operators on the
weighted Hardy spaces on BN . In our paper, we almost completely answer the above ques-
tion, the fundamental ideas of the proof are those used by Gunatillake in [2] and Cowen
and MacCluer in [1], but there are technical difficulties in several variables that we need
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to consider before we will be ready to give the proof. This statement will also need some
clarification in the case of spaces defined on BN (N > 1) as the Denjoy-Wolff point may
not be well defined. In the proof of Lemma 2.1, a technique is inspired by the proof of [3,
Theorem 7].

2. The main results

For multiindexes m= [m1,m2, . . . ,mN ] and l = [l1, l2, . . . , lN ], we say that l < m for all |l| <
|m| or for l j < mj if |l| = |m|, and ln =mn for all n < j.

Lemma 2.1. Suppose Cψ ,ϕ is a compact operator on the Hardy space H2(β,BN ). If the com-
position map ϕ has only one fixed point a in the unit ball, then σ(Cψ ,ϕ)⊂ {0,ψ(a),ψ(a)μ},
where μ denotes all possible products of the eigenvalues of ϕ′(a).

Proof. Without loss of generality, we suppose a = 0. In fact, if a �=0, let ϕa denote the
automorphism commuting 0 and a, then ϕa ◦ ϕa(z) = z for every z in BN , it is obvious
that Cϕa ◦Cϕa = I , Cϕa is invertible, and σ(Cψ ,ϕ)= σ(Cϕa ◦Cψ ,ϕ ◦Cϕa).

Let ψ0 = ψ ◦ ϕa, ϕ0 = ϕa ◦ ϕ ◦ ϕa, then ψ0(0) = ψa, ϕ0(0) = 0, and ϕ′0(0) = ϕ′a(a)·
ϕ′(a)·ϕ′a(0). By ϕa ◦ ϕa(z) = z, it follows that ϕ′a(a)·ϕ′a(0) = I and ϕ′0(0) has the same
eigenvalue with ϕ′(a). So

Cψ0,ϕ0
( f )= ψ(ϕa(z)

)
f
(
ϕa ◦ϕ◦ϕa(z)

)= Cϕa ◦Cψ,ϕ ◦Cϕa( f ), (2.1)

Cψ,ϕ and Cψ0,ϕ0
are similar and have the same spectrum.

Suppose Cψ,ϕ is compact. For any λ ∈ σ(Cψ,ϕ), then λ is an eigenvalue, and for the
eigenvector g of λ, Cψ,ϕg(z)= λg(z), that is,

ψ(z)g
(
ϕ(z)

)= λg(z). (2.2)

If g(0)�=0, then ψ(0)g(0)= λg(0), λ= ψ(0). If g(0)= 0 and ψ(0)= 0, then

(
∑

s≥1

Ψs(z)

)(
∑

t≥1

Gt
(
ϕ(z)

)
)

= λ
(
∑

t≥1

Gt(z)

)

, (2.3)

where Ψs and Gt are the homogeneous expansion of ψ(z) and g(z), and by the assump-
tion a = 0 and Schwarz lemma, it follows that lim |z|→0(|ϕ(z)|/|z|) < +∞ (in fact, ≤ 1).
Comparing the lowest power terms of two sides, it is easy to know that λ= 0.

If g(0)= 0 and ψ(0)�=0, differentiating (2.2) with respect to zj then leads to

g
(
ϕ(z)

) ∂ψ

∂zj
+ψ(z)ϕsj

∂g

∂ϕs
= λ ∂g

∂zj
, (2.4)

here, ψ(z)ϕsj(∂g/∂ϕs) stands for ψ(z)
∑N

s=1((∂ϕs/∂zj)(∂g/∂zs)) by Einstein’s convention.
For the higher-order differentiation, we get

∑

t<m

αt(z) +ψ(z)ϕs1s2···sNj1 j2···sN
∂mg

∂ϕs11 ···∂ϕsnN
= λ ∂mg

∂z
j1
1 ···∂z jNN

, (2.5)
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where
∑

t<mαt(z) denotes the sum of all the terms which have the differential order less
than m.

Now, let m be the multiindex that ∂mg/∂zm �=0 and, for any l < m,∂lg/∂zl = 0.
By g �=0 and g(0)= 0, m> 0, it follows that

ψ(0)·ϕ′(0)⊗ϕ′(0)⊗ ··· ⊗ϕ′(0)
︸ ︷︷ ︸

|m| copies

∂mg
(
ϕ(0)

)= λ∂mg(0). (2.6)

Notice that 0 is the fixed point of ϕ and ∂mg/∂zm = ∂mg/∂ϕm �=0, it follows that λ must
have the form of eigenvalue of ϕ′(0). The proof is complete. �

If [l1, l2, . . . , lN ] is an N-tuple of the integers 1,2, . . . ,N , let κ[l1,l2,...,lN ]
a denote the kernel

for evaluation of the corresponding partial derivative at a, that is,

〈
f ,κ[l1,l2,...,lN ]

a

〉= ∂|l| f

∂zl11 ∂z
l2
2 ···∂zlNN

(a), (2.7)

for all f in H2(β,BN ). For any positive integer m, let �m be the subspace spanned by Ka
and the derivative evaluation kernel at a for total order up to and including m, that is,

�m := span

{

Ka,κ
[1]
a , . . . ,κ[N]

a ,κ[N ,N]
a , . . . ,κ[N ,N]

a , . . . ,κ

[1,1, . . . ,1
︸ ︷︷ ︸
N copies

]

a , . . . ,κ

[N ,N , . . . ,N
︸ ︷︷ ︸

N copies

]

a

}

. (2.8)

For the details of the space �m, we also refer the reader to see [1, page 272], in fact, we
have the following lemma.

Lemma 2.2. �m is an invariant subspace of C∗ψ,ϕ.

Proof. First, we show that �0 is invariant as follows:

C∗ψ,ϕKa = ψ(a)Kϕ(a) = ψ(a)Ka, (2.9)

so �0 is invariant under C∗ψ,ϕ.
For �1, let f be any function on H2(β,BN ), then

〈
f ,C∗ψ,ϕκ

[ j]
a

〉
=
〈
ψ· f ◦ϕ,κ

[ j]
a

〉

= f ◦ϕ(a)
∂ψ

∂zj
(a) +ψ(a)

N∑

k=1

(
Dk f

)(
ϕ(a)

)(
Djϕ

k
)
(a)

= f (a)
∂ψ

∂zj
(a) +ψ(a)

N∑

k=1

(
Dk f

)
(a)
(
Djϕ

k
)
(a)

=
〈

f ,
∂ψ

∂zj
(a)Ka +ψ(a)

N∑

k=1

(
Djϕk

)
(a)κ[k]

a

〉

.

(2.10)
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That is,

C∗ψ,ϕκ
[ j]
a = ∂ψ

∂zj(a)
Ka +ψ(a)

N∑

k=1

(Djϕk)(a)κ[k]
a , (2.11)

or we can denote this by Einstein’s convention

C∗ψ,ϕκ
[ j]
a = ∂ψ

∂zj(a)
Ka +ψ(a)ϕkj (a)κ[k]

a . (2.12)

So �1 is invariant under C∗ψ,ϕ.
We can induct this to the higher order and get

C∗ψ,ϕκ
[ j1, j2]
a = α1(a) +ψ(a)ϕk1,k2

j1, j2 (a)κ[k1,k2]
a , (2.13)

where α1(a) denotes the lower-order terms which belongs to �1, as well as

C∗ψ,ϕκ
[ j1, j2,..., jm]
a = αm−1(a) +ψ(a)ϕk1,k2,...,km

j1, j2,..., jm (a)κ[k1,k2,...,km]
a , (2.14)

where αm−1(a) belongs to �m−1.
Thus we have proved that, for any finite positive integerm, �m is an invariant subspace

of C∗ψ,ϕ. �

Lemma 2.3. Suppose Cψ,ϕ is a bounded operator on H2(β,BN ) with only one fixed point of
ϕ in the unit ball. Then {ψ(a),ψ(a)μ} ⊂ σ(Cψ,ϕ), where μ denotes the possible product of
eigenvalues of ϕ′(a).

Proof. First, we use (2.9), (2.12), (2.13), and (2.14) to compute the matrix representation
of C∗ψ,ϕ restricted to the subspace �m. That is,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ(a) ∗ ∗ ··· ∗
0 ψ(a)·ϕ′(a) ∗ ··· ∗
0 0 ψ(a)·ϕ′(a)⊗ϕ′(a) ··· ∗
...

...
...

. . .
...

0 0 0 ··· ψ(a)·ϕ′(a)⊗ϕ′(a)⊗ ··· ⊗ϕ′(a)
︸ ︷︷ ︸

m copies

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(2.15)

Let us call this matrix Am. Then Am is an (1 +m+m2 + ··· +mN )× (1 +m+m2 +
··· +mN ) upper-triangular matrix. The ∗′s denote αj(a)

′
s.

The subspace �m is finite dimensional and, therefore, is closed. The Hardy space
H2(β,BN ) can be decomposed as H2(β,BN ) =�m ⊕�⊥

m. The block matrix of C∗ψ,ϕ with
respect to this decomposition is

(
Am B
0 Cm

)

. (2.16)
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The fact that �m is invariant under C∗ψ,ϕ makes the lower-left corner of this decom-
position 0. Since there is a 0 at the lower left and the subspace is finite dimensional, the
spectrum of C∗ψ,ϕ is the union of the spectrum of Am and the spectrum of Cm [1, page
270]. Since Am is a finite dimensional upper-triangular matrix, its spectrum is the eigen-
value of Am. By the arguments in [1, pages 274-275], we can conclude that the spectrum
of C∗ψ,ϕ contains the set

{
ψ(a),ψ(a)μ

}
, (2.17)

where μ denotes the product of m eigenvalues of ϕ′(a). So {ψ(a),ψ(a)μ} is contained in
σ(Cψ,ϕ) and this completes the proof. �

Remark 2.4. The set

{

Ka,κ[1]
a , . . . ,κ[N]

a ,κ[1,1]
a , . . . ,κ[N ,1]

a , . . . ,κ[N ,N]
a , . . . ,κ

[1,1, . . . ,1
︸ ︷︷ ︸
Ncopies

]

a , . . . ,κ

[N ,N , . . . ,N
︸ ︷︷ ︸

Ncopies

]

a

}

(2.18)

is only the generated element set instead of the basis. So the matrix representation of
C∗ψ,ϕ|�m is not unique. This matrix is called the redundant matrix. It can also be used to
prove Lemma 2.1.

By Lemmas 2.1 and 2.3, we can easily get the following theorem, which is the main
theorem of this paper.

Theorem 2.5. Let Cψ,ϕ be a compact operator on the weighted Hardy space H2(β,BN ). If ϕ
has only one fixed point in the unit ball, then the spectrum of Cψ,ϕ is the set

{
0,ψ(a),ψ(a)μ

}
, (2.19)

where μ is all possible products of ϕ′(a) and a is the only fixed point of ϕ.

As we will see in the next theorem, compactness of Cψ,ϕ on some H2(β,BN ) for some
weight functions ψ implies that ϕ has only one fixed point in the unit ball.

Theorem 2.6. Let Cψ,ϕ be a compact operator on H2(β,BN ), where

∞∑

s=0

(N − 1 + s)!
(N − 1)!s!

1

β(s)2 =∞. (2.20)

If lim inf r→1−|ψ(rζ)| > 0 for ζ is the fixed point of ϕ, then ϕ has only one fixed point in the
unit ball.

Proof. By contradiction, first, suppose ϕ has no fixed point, so ϕ must have its Denjoy-
Wollf point denoted by ξ on ∂BN , and let r belong to the interval (0,1).

Now, we apply the adjoint of Cψ,ϕ to the normalized kernel function Krξ/‖Krξ‖ as
follows:

∥
∥
∥
∥
∥C

∗
ψ,ϕ

Krξ∥
∥Krξ

∥
∥

∥
∥
∥
∥
∥=

∣
∣ψ(rξ)

∣
∣
∥
∥Kϕ(rξ)

∥
∥

∥
∥Krξ

∥
∥ . (2.21)
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Since ξ is the Denjoy-Wollf point on the boundary, there exits a sequence {ξn} tending

to ξ such that |ϕ(rξn)| ≥ |rξn|. But ‖Kw‖ =
√∑∞

s=0(((N − 1 + s)!/(N−!)!s!)(|w|2s/β(s)2))
is an increasing function of |w|, ‖Kϕ(rξn)‖ ≥ ‖Krξn‖, it follows that

∥
∥
∥
∥
∥C

∗
ψ,ϕ

Krξn∥
∥Krξn

∥
∥

∥
∥
∥
∥
∥≥

∣
∣ψ
(
rξn

)∣∣. (2.22)

By [4, Lemma 3.11], it follows that Krξn /‖Krξn‖ converges weakly to zero as r tends to 1
and n tends to∞.

Since C∗ψ,ϕ is compact, the left-hand side of (2.21) tends to 0, but the right-hand side
of (2.21) is larger than δξ > 0. That is a contradiction, so ϕ must have its fixed point in
BN .

Now, we show the singleness of the fixed point of ϕ. By contradiction, suppose ϕ has
more than one fixed point, then the fixed point set is an affine set, we denote it by E,
which must be uncountable if not single. Then C∗ψ,ϕKa = ψ(a)Ka for all a ∈ E. E is an
affine set, it is connected, so ψ(E) is an single point set or an uncountable set.

(i) If ψ(E) is a constant, then ψ(a) is the eigenvalue of C∗ψ,ϕ, which is infinite multi-
plicity. This contradicts to the compactness of C∗ψ,ϕ.

(ii) If ( ψ(E) is not a constant, then it has uncountable elements. That is to say, C∗ψ,ϕ

has uncountable eigenvalues. That is impossible.
Hence, it must be the case that ϕ has only one fixed point in the unit ball and the proof

is complete. �

Theorem 1 in [5] gives a method to find ψ so that Cψ,ϕ is compact on the Hardy
spaceH2(BN ) when ϕ has fixed points on the boundary, we discuss the spectrum for such
operators. First, we quote the theorem as a lemma.

Lemma 2.7. Suppose ϕ is a linear-fractional map of BN with ϕ(e1) = e1 and for ζ ∈ ∂BN ,
|ϕ(ζ)| = 1 if and only if ζ = e1. If b(z) is continuous on BN with b(e1)= 0, then the operator
TbCϕ is compact on H2(BN ).

If ϕ has a fixed point inside the ball, Theorem 2.5 gives the spectrum. Therefore, we
compute the spectrum when ϕ has no fixed point inside the unit ball. We will denote the
composition of ϕ with itself n times by ϕn, that is, ϕn = ϕ ◦ϕ ◦ ··· ◦ϕ (n times). Now,
we give the last theorem of this paper.

Theorem 2.8. Suppose ψ and ϕ satisfy the hypothesis in Lemma 2.7, and ϕ is one-to-one
which has no fixed point inside the unit ball. Then σ(Cψ,ϕ)= {0}.
Proof. We will show that the spectral radius of this operator is 0. Since ϕ is a nonauto-
morphism linear fractional map with a fixed point at e1, it takes the unit sphere to an
ellipsoid sphere by [6, Theorem 6] which is tangent to the unit sphere at e1. e1 is the only
fixed point of ϕ, so it is the Denjoy-Wollf point.

Let ε > 0, there exists δ > 0 such that |ψ(z)| < ε whenever |z− e1| < δ and z is in the
closed unit ball. Let W = {z : |z − e1| < δ,|z| ≤ 1}, clearly, W is open in BN . Let U =
ϕ(BN ), then U is tangent to the unit sphere at e1. Let V = U −W , then V is a compact
subset of the unit ball. Therefore, the sequence {ϕn} converges uniformly to e1 on V .
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Considering a point ξ on the unit sphere, then ϕ(ξ) is either in W or V . If ϕ(ξ) is in V ,
then there is anN0 that does not depend on ξ such that ϕj(ξ) is inW for all j > N0. If ϕ(ξ)

is not in V , consider the sequence {ϕj(ξ)}∞
j=1

, either ϕj(ξ) is in W for all j, or ϕj(ξ) will

be in V for some j. If ϕj(ξ) is in V for some j, take j′ to be the smallest integer such that
ϕj(ξ) is inV . Then ϕ(ξ) is inW for all j > j′ +N0. Therefore, for any ξ on the unit sphere,

at most N0 terms of the sequence {ϕj(ξ)}∞
j=1

will be outside W . Hence, at most N0 terms

of the sequence {|ψ(ϕj(ξ))|}∞
j=1

will be larger than ε for any ξ. Also ψ is bounded on BN ,

therefore, |ψ(ϕj(ξ))| <M for some M > 0. Now, if f is in H2(BN ) and n > N0, then

∥
∥Cnψ,ϕ( f )

∥
∥2 = sup

0<r<1

∫

S

∣
∣ψ(ζ)

∣
∣2∣∣ψ

(
ϕ(ζ)

)∣∣2 ···∣∣ψ(ϕn−1(ζ)
)∣∣2∣∣ f

(
ϕn(ζ)

)∣∣2
d(ζ)

≤ ε2(n−N0−1)M2(N0+1) sup
0<r<1

∫

S

∣
∣ f
(
ϕn(ζ)

)∣∣2
d(ζ)

= ε2(n−N0−1)M2(N0+1)
∥
∥Cϕn( f )

∥
∥2

≤ ε2(n−N0−1)M2(N0+1)
∥
∥Cϕn

∥
∥2‖ f ‖2,

(2.23)

but Cϕn = Cnϕ, therefore

∥
∥Cnψ,ϕ

∥
∥≤ ε(n−N0−1)M(N0+1)

∥
∥Cϕn

∥
∥. (2.24)

Hence, for all n large enough,

∥
∥Cnψ,ϕ

∥
∥1/n ≤ ε·2∥∥Cnϕ

∥
∥1/n ≤ ε·2∥∥Cϕ

∥
∥. (2.25)

By [6, Theorem 14], Cϕ is bounded.
So we can get that the spectral radius of the operator on H2(BN ) is 0, therefore,

σ(Cψ,ϕ)= {0}. This completes the proof. �
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