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We prove that the convergence of a sequence of functions in the space L0 of measurable
functions, with respect to the topology of convergence in measure, implies the conver-
gence μ-almost everywhere (μ denotes the Lebesgue measure) of the sequence of rear-
rangements. We obtain nonexpansivity of rearrangement on the space L∞, and also on
Orlicz spaces LN with respect to a finitely additive extended real-valued set function. In
the space L∞ and in the space EΦ, of finite elements of an Orlicz space LΦ of a σ-additive
set function, we introduce some parameters which estimate the Hausdorff measure of
noncompactness. We obtain some relations involving these parameters when passing
from a bounded set of L∞, or LΦ, to the set of rearrangements.
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1. Introduction

The notion of rearrangement of a real-valued μ-measurable function was introduced by
Hardy et al. in [1]. It has been studied by many authors and leads to interesting results
in Lebesgue spaces and, more generally, in Orlicz spaces (see, e.g., [2–5]). The space L0

is a space of real-valued measurable functions, defined on a nonempty set Ω, in which
we can give a natural generalization of the topology of convergence in measure using a
group pseudonorm which depends on a submeasure defined on the power set �(Ω) of
Ω (see [6, 7] and the references given there). In the second section of this note we study
rearrangements of functions of the space L0. The rearrangements belong to the space
T0([0,+∞)) of all real-valued totally μ-measurable functions defined on [0,+∞). We ex-
tend to this setting some convergence results (see, e.g., [3, 5]). Precisely, we prove that the
convergence in the space L0 implies the convergence μ-almost everywhere of rearrange-
ments. Moreover, by the convergence in L0 of a nondecreasing sequence of nonnegative
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functions, we obtain the convergence in measure of the corresponding nondecreasing se-
quence of rearrangements. In the third section we introduce, in a natural manner, the
space L∞ as the closure of the subspace of all simple functions of L0 with respect to the
essentially supremum norm. The space L∞ so defined is contained in L0, and we prove
nonexpansivity of rearrangement on this space. In the last section we obtain nonexpan-
sivity of rearrangement on Orlicz spaces LN of a finitely additive extended real-valued set
function.

We recall (see [8]) that for a bounded subset Y of a normed space (X ,‖ · ‖) the Haus-
dorff measure of noncompactness γX(Y) of Y is defined by

γX(Y)= inf
{
ε > 0 : there is a finite subset F of X such that Y ⊆∪ f∈FBX( f ,ε)

}
,

(1.1)

where BX( f ,ε)= {g ∈ X : ‖ f − g‖ ≤ ε}. In sections 3 and 4 we introduce, respectively, a
parameter ωL∞ in L∞ and a parameter ωEΦ in the space EΦ of finite elements of a classical
Orlicz space LΦ of a σ-additive set function. By means of these parameters, we derive an
exact formula in L∞ and an estimate in EΦ for the Hausdorff measure of noncompact-
ness. Then as a consequence of nonexpansivity of rearrangement we obtain inequalities
involving such parameters, when passing from a set of functions in L∞, or in LΦ, to the
set of rearrangements. We denote by N, Q, and R the set of all natural, rational, and real
numbers, respectively.,

2. Rearrangements of functions and convergence in the space L0

Let Ω be a nonempty set and RΩ the set of all real-valued functions on Ω with its natural
Riesz space structure. Let � be an algebra in the power set �(Ω) of Ω and let η : �(Ω)→
[0,+∞] be a submeasure (i.e., a monotone, subadditive function with η(∅)= 0). Then

‖ f ‖0 = inf
{
a > 0 : η

({| f | > a
})

< a
}

, (2.1)

where {| f | > a} = {x ∈Ω : | f (x)| > a} and where inf∅= +∞ defines a group pseudo-
norm on RΩ (i.e., ‖0‖0 = 0, ‖ f ‖0 = ‖− f ‖0 and ‖ f + g‖0 ≤ ‖ f ‖0 + ‖g‖0 for all f ,g ∈
RΩ). We denote by

S(Ω,�)=
{ n∑

i=1

aiχAi : n∈N, ai ∈R, Ai ∈�

}

(2.2)

the space of all real-valued �-simple functions on Ω; hereby χA denotes the characteris-
tic function of A defined on Ω. By L0 := L0(Ω,�,η) we denote the closure of the space
S(Ω,�) in (RΩ,‖ · ‖0).

For each function f ∈ RΩ, set | f |∞ = supΩ | f | and denote by B(Ω,�) the closure of
the space S(Ω,�) in (RΩ,| · |∞). As ‖ f ‖0 ≤ | f |∞, we have B(Ω,�)⊆ L0. If for M ∈�(Ω)
we set η(M)=0 if M=∅ and η(M)=+∞ if M 
=∅, then (L0,‖ · ‖0)=(B(Ω,�),| · |∞). We
point out that the space B(Ω,�(Ω)) coincides with the space of all real-valued bounded
functions defined on Ω, and clearly B(Ω,�)⊆ B(Ω,�(Ω)).
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Throughout this note, given a finitely additive set function ν : �→ [0,+∞], we denote
by ν∗ : �(Ω) → [0,+∞] the submeasure defined by ν∗(E) = inf{ν(A) : A ∈� and E ⊆
A}. Moreover, whenever Ω is a Lebesgue measurable subset of Rn, we denote by μ the
Lebesgue measure on the σ-algebra of all Lebesgue measurable subsets of Ω, we write
μ-a.e. for μ-almost everywhere.

Example 2.1 (see [9, Chapter III]). Let Ω be a Lebesgue measurable subset of Rn, � the
σ-algebra of all Lebesgue measurable subsets of Ω and η = μ∗. If η(Ω) < +∞, then L0

coincides with the space M(Ω) of all real-valued μ-measurable functions defined on Ω. If
η(Ω)= +∞, then L0 coincides with the spaceT0(Ω) of all real-valued totally μ-measurable
functions defined on Ω.

The following definitions are adapted from [10, Chapter 4].

Definition 2.2.
(i) A subset A of Ω is said to be an η-null set if η(A)= 0.

(ii) A function f ∈ RΩ is said to be an η-null function if η({| f | > a}) = 0 for every
a > 0.

(iii) Two functions f ,g ∈RΩ are said to be equal η-almost everywhere, and is used the
notation f = g η-a.e. if f − g is an η-null function.

(iv) A function f ∈ RΩ is said to be dominated η-almost everywhere by a function g,
and is used the notation f ≤ g η-a.e. if there exists an η-null function h∈RΩ such
that f ≤ g +h.

Observe that a function f ∈RΩ is an η-null function if and only if ‖ f ‖0 = 0.
The distribution function η f of a function f ∈ L0 is defined by

η f (λ)= η
({| f | > λ

})
(λ≥ 0). (2.3)

Observe that η f = η| f | and η f may assume the value +∞. In the next proposition, we
state some elementary properties of the distribution function η f (see [2, Chapter 2]).

Proposition 2.3. Let f ,g ∈ L0 and a 
= 0. Then the distribution function η f of f is non-
negative and decreasing. Moreover,

(i) ηa f (λ)= η f (λ/|a|) for each λ≥ 0,
(ii) η f +g(λ1 + λ2)≤ η f (λ1) +ηg(λ2) for each λ1,λ2 ≥ 0.

Proposition 2.4. Let f ,g ∈ L0. If ‖ f − g‖0 = 0 then η f = ηg μ-a.e.

Proof. Let f ,g ∈ L0 and h ∈ L0 be an η-null function such that g = f + h. Let I and J
denote the intervals {λ ≥ 0 : η f (λ) = +∞} and {λ ≥ 0 : ηg(λ) = +∞}, respectively. We
start by proving that μ(I) = μ(J). Assume μ(I) 
= μ(J) and μ(I) < μ(J). Then I ⊂ J and
μ(J\I) > 0. Denoted by int(J\I) the interior of the interval J\I , we have ηg(λ)= +∞ and
η f (λ) < +∞ for each λ∈ int(J\I). Fix λ1 ∈ int(J\I) and λ2 > 0 such that λ1 + λ2 ∈ int(J\I).
By property (ii) of Proposition 2.3, we have

+∞= ηg
(
λ1 + λ2

)= η f +h
(
λ1 + λ2

)≤ η f
(
λ1
)

+ηh
(
λ2
)= η f

(
λ1
)
< +∞, (2.4)
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that is a contradiction. Set λ= supI = sup J and let λ0 ∈ [λ,+∞) be a point of continuity
of both the functions η f and ηg . By property (ii) of Proposition 2.3, it follows that

η f
(
λ0
)= lim

n
ηg−h

(
λ0 +

1
n

)
≤ ηg

(
λ0
)

+ lim
n
ηh

(
1
n

)
= ηg

(
λ0
)
. (2.5)

Similarly, we find ηg(λ0)≤ η f (λ0). Hence η f = ηg μ-a.e. �

Proposition 2.5. Let f ,g ∈ L0. If | f | ≤ |g| η-a.e., then η f ≤ ηg μ-a.e.

Proof. Let h∈ L0 be an η-null function such that | f | ≤ |g|+h. Then η| f | ≤ η|g|+h and, by
Proposition 2.4, η|g| = η|g|+h μ-a.e. Hence η| f | ≤ η|g| μ-a.e., which gives the assert. �

Observe that, when (Ω,�,ν) is a totally σ-finite measure space and η = ν∗, the distri-
bution function η f of f ∈ L0 is right continuous (see [2]). In our setting this is not true
anymore, as the following example shows.

Example 2.6 (see [9, Chapter III, page 103]). Let Ω = [0,1) and let � be the algebra of
all finite unions of right-open intervals contained in Ω. Denote again by μ the Lebesgue
measure μ restricted to �. Let η = μ∗. Consider the function f : [0,1)→ R defined as
f (x)= 0, if x ∈ [0,1) \Q, and as f (x)= 1/q, if x = p/q ∈ [0,1)∩Q in lowest terms. Then
‖ f ‖0 = 0 and so f is an η-null function but f is not null μ-a.e. since η({| f | > 0}) = 1.
Moreover, η f (λ)= 0 if λ > 0 and η f (0)= 1. Then η f is not right continuous in 0.

Throughout, without loss of generality, we will assume that the distribution function
η f of a function f ∈ L0 is right continuous, which together with Proposition 2.4 yields
η f = ηg whenever f ,g ∈ L0 and ‖ f − g‖0 = 0.

The decreasing rearrangement f ∗ of a function f ∈ L0 is defined by

f ∗(t)= inf
{
λ≥ 0 : η f (λ)≤ t

}
(t ≥ 0). (2.6)

Clearly, by the above assumption on η f , f ∗ = g∗ if f ,g ∈ L0 with ‖ f − g‖0 = 0.

Proposition 2.7. Let f ∈ L0. If f ∗(t)= +∞, then t = 0.

Proof. Assume that f ∗(t)= +∞. Then η f (λ) > t for all λ≥ 0. Since ‖ f ‖0 < +∞, for some
λ≥ 0 we have η f (λ) < +∞. Hence, as η f is decreasing, there exists finite limλ→+∞η f (λ)=
l ≥ 0. The thesis follows by proving that l = 0. Assume l > 0 and choose a function s ∈
S(Ω,�) such that ‖ f − s‖0 ≤ l/2.

Fix λ > l+ maxΩ |s| and put A= {| f | > λ}, then η(A)= η f (λ)≥ l and

∣
∣ f (x)− s(x)

∣
∣≥ ∣∣∣∣ f (x)

∣
∣−∣∣s(x)

∣
∣
∣
∣≥ l (2.7)

for each x ∈A. So that ‖ f − s‖0 ≥ l. So we obtain l ≤ ‖ f − s‖0 ≤ l/2: a contradiction. �

The following proposition contains some properties of rearrangements of functions
of L0. The proofs of (i)–(iv) (except some slight modifications) are identical to that of [2]
for rearrangements of functions of a Banach function space, and we omit them.
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Proposition 2.8. Let f ,g ∈ L0 and a∈R. Then f ∗ is nonnegative, decreasing, and right
continuous. Moreover,

(i) (a f )∗ = |a| f ∗;
(ii) f ∗(η f (λ))≤ λ, (η f (λ) < +∞) and η f ( f ∗(t))≤ t, ( f ∗(t) < +∞);

(iii) ( f + g)∗(t1 + t2)≤ f ∗(t1) + g∗(t2) for each t1, t2 ≥ 0;
(iv) if | f | ≤ |g| η-a.e., then f ∗ ≤ g∗ μ-a.e.

Proof. Clearly f ∗ is nonnegative and decreasing. We prove that f ∗ is right continuous.
Fix t0 ≥ 0 and assume that limt→t+

0
f ∗(t)= a < f ∗(t0) < +∞. Choose b ∈ (a, f ∗(t0)). Ob-

serve that, since b < f ∗(t0), we have that η f (b) > t0 by the definition of f ∗. Moreover,
since limt→t+

0
f ∗(t)= a, there exists t1 > 0 such that t0 < t1 < η f (b) and f ∗(t1) < b. From

the definition of f ∗ we obtain that η f (b) ≤ t1. It follows that t1 < η f (b) ≤ t1 which is a
contradiction. Then limt→t+

0
f ∗(t)= f ∗(t0).

To complete the proof, suppose that f ∗(0) = +∞, and assume that limt→0+ f ∗(t) =
a < +∞. Choose b > a. Then η f (b) > 0 and since limt→0+ f ∗(t) = a we have that there
exists t2 > 0 such that t2 < η f (b) and f ∗(t2) < b. From the definition of f ∗ we obtain that
η f (b)≤ t2. It follows that t2 < η f (b)≤ t2 which is contradiction. Hence limt→0+ f ∗(t2)=
+∞. �

Now we show that the rearrangement of a function of L0 is a function of the space
T0([0,+∞)) of all real-valued totally μ-measurable functions defined on [0,+∞), intro-
duced in [9, Chapter III, Definition 10] (see also Example 2.1). In T0([0,+∞)), we write
| · |0 instead of ‖ · ‖0.

Theorem 2.9. Let f ∈ L0. Then
(i) f and f ∗ are equimeasurable, that is, η f (λ)= μ f ∗(λ) for all λ≥ 0;

(ii) f ∗ ∈ T0([0,+∞)) and | f ∗|0 = ‖ f ‖0.

Proof. (i) Fixed λ ≥ 0 such that η f (λ) < +∞, by the first inequality of property (ii) of
Proposition 2.8, we have that f ∗(η f (λ)) ≤ λ. Moreover, since f ∗ is decreasing, we have
f ∗(t)≤ λ for each t such that η f (λ) < t. It follows that μ f ∗(λ)= sup{ f ∗ > λ} ≤ η f (λ). It
remains to prove that η f (λ)≤ μ f ∗(λ). Suppose that f ∗(0)=+∞. Then μ f ∗(λ)=sup{ f ∗ >
λ} for all λ ≥ 0. Assume that there exists λ0 ≥ 0 such that η f (λ0) > μf ∗(λ0). Fixed t ∈
(μ f ∗(λ0),η f (λ0)), we have that f ∗(t)≤ λ0 since t > μ f ∗(λ0)= sup{ f ∗ > λ0}. On the other
hand, since t < η f (λ0), by the definition of f ∗, we obtain f ∗(t) > λ0 which is a con-
tradiction. The same proof breaks down if f ∗(0) < +∞ and λ < f ∗(0). If f ∗(0) < +∞
and λ ≥ f ∗(0) then μ f ∗(λ) = 0. Moreover, by the second part of the property (ii) of
Proposition 2.8, it follows that η f ( f ∗(0))= 0 and then η f (λ)= 0 for all λ≥ f ∗(0). This
completes the proof.

(ii) is an immediate consequence of (i). �

The next theorem states two well-known convergence results (see, e.g., [5, Lemma 1.1]
and [3, Lemma 2], resp.).

Theorem 2.10. Let Ω be a Lebesgue measurable subset of Rn, and let { fn} be a sequence of
elements of the space T0(Ω) of all real-valued totally μ-measurable functions defined on Ω.
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(i) If { fn} converges in measure to f , then f ∗n (t) converges to f ∗(t) in each point t of
continuity of f ∗.

(ii) If { fn} is a nondecreasing sequence of nonnegative functions convergent to f μ-a.e,
then f ∗n is a nondecreasing sequence convergent to f ∗ pointwise.

The remainder of this section will be devoted to extend these convergence results to
the general setting of the space L0. We need the following lemma.

Lemma 2.11. Let fn, f ∈ L0 (n= 1,2, . . .) be such that ‖ fn− f ‖0 → 0. Then η fn(λ)→ η f (λ)
for each point λ of continuity of η f . Moreover, if limλ→λ+

0
η f (λ)=+∞ then limn→+∞η fn(λ0)=

+∞.

Proof. Let λ > 0 be a point of continuity of η f and assume η fn(λ) � η f (λ). Then there are
ε0 > 0 and a subsequence (η fnk

) of (η fn) such that |η fnk
(λ)− η f (λ)| > ε0 for each k ∈ N.

Put

I1 =
{
k ∈N : η fnk

(λ) > η f (λ) + ε0
}

, I2 =
{
k ∈N : η fnk

(λ) < ηf (λ)− ε0
}
. (2.8)

Either I1 or I2 is infinite. Let h > 0 such that

η f (λ−h) < η f (λ) +
ε0

2
, η f (λ+h) > ηf (λ)− ε0

2
. (2.9)

Suppose I1 is infinite and let k ∈ I1. Consider the sets

Aλ−h =
{
x ∈Ω :

∣
∣ f (x)

∣
∣ > λ−h

}
,

Ank ,λ =
{
x ∈Ω :

∣
∣ fnk (x)

∣
∣ > λ

}
.

(2.10)

Then η(Aλ−h) = η f (λ− h) and η(Ank ,λ) = η f nk (λ). We have that η fnk
(λ)− η f (λ− h) >

ε0/2. Moreover,

η
(
Ank ,λ\Aλ−h

)≥ η
(
Ank ,λ

)−η
(
Aλ−h

)
>
ε0

2
. (2.11)

Let x ∈ Ank ,λ\Aλ−h. Then | f (x)| ≤ λ−h and | fnk (x)| > λ. Therefore | fnk (x)|− | f (x)| > h.
Hence

η
({
x ∈Ω :

∣
∣ fnk (x)− f (x)

∣
∣ > h

})≥ η
({
x ∈Ω :

∣
∣ fnk (x)

∣
∣−∣∣ f (x)

∣
∣ > h

})

≥ η
(
Ank ,λ\Aλ−h

)
>
ε0

2
,

(2.12)

and this is a contradiction since ‖ fn− f ‖0 → 0. The proof is similar in the case the set I2

is infinite. The second part of the proposition follows analogously. �

Theorem 2.12. Let fn, f ∈L0 (n=1,2, . . .) be such that ‖ fn− f ‖0→0. Then f ∗n (t)→ f ∗(t)
for each point t of continuity of f ∗. Moreover, if limt→0+ f ∗(t)= +∞ then limn→+∞ f ∗n (0)=
+∞.

Proof. Let t0 > 0 be a point of continuity of f ∗ and assume f ∗n (t0) � f ∗(t0). Then there
are ε0 > 0 and a subsequence ( f ∗nk ) of ( f ∗n ) such that | f ∗nk (t0)− f ∗(t0)| > ε0 for each k ∈N.
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Put

I1 =
{
k ∈N : f ∗nk

(
t0
)
> f ∗

(
t0
)

+ ε0
}

, I2 =
{
k ∈N : f ∗nk

(
t0
)
< f ∗

(
t0
)− ε0

}
. (2.13)

Either I1 or I2 is infinite. Let h > 0 such that

f ∗
(
t0−h

)
< f ∗

(
t0
)

+
ε0

2
, f ∗

(
t0 +h

)
> f ∗

(
t0
)− ε0

2
. (2.14)

Suppose I1 is infinite . Fix k ∈ I1, t ∈ [t0−h, t0] and σ ∈ [ f ∗(t0) + ε0/2, f ∗(t0) + ε0]. Then

f ∗(t)≤ f ∗
(
t0
)

+
ε0

2
≤ σ ,

f ∗nk (t) > f ∗
(
t0
)

+ ε0 ≥ σ.
(2.15)

Hence η f (σ) ≤ t0 − h < t0 and η fk (σ) ≥ t0. This shows that η fn(σ) � η f (σ) for all k ∈ I1

and σ ∈ [ f ∗(t0) + ε0/2, f ∗(t0) + ε0] which by Lemma 2.11 is a contradiction. The second
implication follows similarly. �

Lemma 2.13. Let fn, f ∈ L0 (n = 1,2, . . .) be such that { fn} is a nondecreasing sequence of
nonnegative functions and ‖ fn− f ‖0 → 0. Then |η fn −η f |0 → 0.

Proof. Assume by contradiction |η fn − η f |0 � 0. Since η fn ≤ η fn+1 ≤ η f , we find ε0 > 0,
σ0 > 0 and n∈N such that

μ
({
λ≥ 0 : η f (λ)−η fn(λ) > ε0

})
> σ0 (2.16)

for all n∈N with n≥ n. Set Bn = {λ≥ 0 : η f (λ)−η fn(λ) > ε0}, then ∩n≥nBn is nonempty,
and for λ0 ∈∩n≥nBn we have

sup
n≥n

η fn

(
λ0
)≤ η f

(
λ0
)− ε0. (2.17)

Then we choose h > 0 such that

η f
(
λ1
)−η fn

(
λ2
)≥ ε0

2
(2.18)

for all λ1,λ2 ∈ [λ0,λ0 +h] and all n≥ n. In particular, we have

η f
(
λ0 +h

)−η fn

(
λ0
)≥ ε0

2
. (2.19)

Then using the same notations and considerations similar to that of Lemma 2.11, we find

{
x ∈Ω : f (x)− fn(x) > h

}⊇ Aλ0+h \An,λ0 ,

η
(
Aλ0+h \An,λ0

)≥ η f
(
λ0 +h

)−η fn

(
λ0
)≥ ε0

2

(2.20)

which is a contradiction since ‖ fn− f ‖0 → 0. �

Theorem 2.14. Let fn, f ∈ L0 (n = 1,2, . . .) be such that { fn} is a nondecreasing sequence
of nonnegative functions and ‖ fn− f ‖0 → 0. Then | f ∗n − f ∗|0 → 0.
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Proof. The proof, using Lemma 2.13, is analogous to the proof of Theorem 2.12. �

We remark that if { fn} is a sequence of elements of the space T0(Ω), Theorem 2.14
yields (ii) of Theorem 2.10.

3. Nonexpansivity of rearrangement in the space L∞

We introduce the notion of essentially boundedness, following [10]. For f ∈RΩ, set

‖ f ‖∞ = inf
A⊆Ω, η(A)= 0

sup
Ω\A

| f |, (3.1)

then ‖ · ‖∞ defines a group pseudonorm on RΩ, for each submeasure η on �(Ω).
We recall that, if ν is a finitely additive extended real-valued set function on an alge-

bra � ⊆�(Ω) and η = ν∗, the space L∞(Ω,�,ν) of all real-valued essentially bounded
functions introduced in [10] is defined by

L∞(Ω,�,ν)= { f ∈RΩ : ‖ f ‖∞ < +∞}. (3.2)

In our setting it is natural to define a space L∞(Ω,�,η) of all real-valued essentially
bounded functions as follows.

Definition 3.1. The space L∞ := L∞(Ω,�,η) is the closure of the space S(Ω,�) in (RΩ,
‖ · ‖∞).

Let f ∈ RΩ. Since ‖ f ‖0 ≤ ‖ f ‖∞, we have L∞ ⊆ L0. Moreover, ‖ f ‖0 = 0 if and only
if ‖ f ‖∞ = 0. In the remainder part of this note we will identify functions f ,g ∈ RΩ for
which ‖ f − g‖0 = 0. Then (L0,‖ · ‖0) and (L∞,‖ · ‖∞) become an F-normed space (in the
sense of [11]) and a normed space, respectively.

Proposition 3.2. Let ν be a finitely additive extended real-valued set function on an algebra
� in �(Ω) and η=ν∗. Then the space L∞(Ω,�,ν) coincides with the space L∞(Ω,�(Ω),η).

Proof. Given f ∈ L∞(Ω,�(Ω),η), find a simple function s∈ S(Ω,�(Ω)) such that ‖ f −
s‖∞ < +∞. From ‖ f ‖∞ ≤ ‖ f − s‖∞ + ‖s‖∞, we get f ∈ L∞(Ω,�,ν). On the other hand,
if f ∈ L∞(Ω,�,ν) then there exists A⊆Ω such that η(A)= 0 and such that supΩ\A | f | <
+∞. Consider the real function g on Ω defined by g = f on Ω\A and by g = 0 on A. Of
course g ∈ L∞(Ω,�,ν) and ‖ f − g‖∞ = 0. Moreover, g ∈ B(Ω,�(Ω))⊆ L∞(Ω,�(Ω),η).
Then there exists a sequence (sn) in S(Ω,�(Ω)) such that |g − sn|∞ → 0. Since ‖ f −
sn‖∞ ≤ ‖ f − g‖∞ +‖g − sn‖∞ = |g − sn|∞, we have that f ∈ L∞(Ω,�(Ω),η). �

We write briefly B([0,+∞)) instead of B(Ω,�), when Ω= [0,+∞), � is the σ-algebra
of all Lebesgue measurable subsets of Ω and η = μ∗. The next proposition establishes that
the rearrangement of a function of L∞ is a function of B([0,+∞)).

Proposition 3.3. Let f ∈ L∞. Then f ∗ ∈ B([0,+∞)) and | f ∗|∞ = f ∗(0)= ‖ f ‖∞.

Proof. Let ε > 0. Then there is A ⊆ Ω such that η(A) = 0 and supΩ\A | f | < ‖ f ‖∞ + ε.
Hence {| f | > ‖ f ‖∞ + ε} ⊆A, so that η({| f | > ‖ f ‖∞ + ε})= 0.
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Therefore | f ∗|∞ = f ∗(0) ≤ ‖ f ‖∞ + ε so that | f ∗|∞ ≤ ‖ f ‖∞. Now we have to prove
that ‖ f ‖∞ ≤ | f ∗|∞. Assume | f ∗|∞ < c < ‖ f ‖∞. Then for each A⊆Ω such that η(A)= 0
we have supΩ\A | f | > c and η f (c)= η({| f | > c}) > 0. For t ∈ [0,η f (c)), by the definition
of the function f ∗, we obtain f ∗(t)≥ c > | f ∗|∞ = f ∗(0) which is a contradiction, since
f ∗ is decreasing. �

Our next aim is to prove nonexpansivity of rearrangement on L∞. We need the follow-
ing two lemmas.

Lemma 3.4. Let s1,s2 ∈ S(Ω,�). Then |s∗1 − s∗2 |∞ ≤ ‖s1− s2‖∞.

Proof. Let s1,s2 ∈ S(Ω,�) and put ‖s1− s2‖∞ = ε. Let {A1, . . . ,An} be a finite partition of
Ω in � such that s1 =

∑n
i=1 aiχAi and s2 =

∑n
i=1 biχAi . Set

s=
n∑

i=1

min
{∣∣ai

∣
∣,
∣
∣bi
∣
∣}χAi\A, (3.3)

where η(A)= 0 and |s1(x)− s2(x)| ≤ ε for all x ∈Ω\A. It suffices to prove that

s(x)≤ ∣∣s1(x)
∣
∣≤ sε(x), s(x)≤ ∣∣s2(x)

∣
∣≤ sε(x), (3.4)

for all x ∈Ω\A, where sε = |s|+ ε. In fact, from this and from property (iv) of Proposition
2.8, it follows that

s∗ ≤ s∗1 ≤ s∗ε μ-a.e., s∗ ≤ s∗2 ≤ s∗ε μ-a.e., (3.5)

and thus |s∗1 − s∗2 |∞ ≤ |s∗ε − s∗|∞ = ε. Fix x ∈ Ω\A and let i ∈ {1, . . . ,n} such that x ∈
Ai\A. Now, if s(x)= |ai| we have

s(x)= ∣∣s1(x)
∣
∣≤ ∣∣ai

∣
∣+ ε= sε(x). (3.6)

If s(x)= |bi|, since ‖s1− s2‖∞ = ε implies 0≤ |ai|− |bi| ≤ |ai− bi| ≤ ε, we have

s(x)≤ ∣∣ai
∣
∣= ∣∣s1(x)

∣
∣≤ ∣∣bi

∣
∣+ ε= sε(x). (3.7)

Analogously we obtain s(x)≤ |s2(x)| ≤ sε(x) for x ∈Ω\A, and the lemma follows. �

Lemma 3.5. Let f ∈ L∞. Then for each ε > 0 there exists a function s ∈ S(Ω,�) such that
‖ f − s‖∞ ≤ ε/2 and | f ∗ − s∗|∞ ≤ ε.

Proof. Fix ε > 0. Then similar to [10, page 101] (see Theorem 3.10), we have that there is
a finite partition {A1, . . . ,An} of Ω in � and A⊆Ω with η(A)= 0 such that

sup
x,y∈Ai\A

∣
∣ f (x)− f (y)

∣
∣≤ ε (3.8)

for each i∈ {1, . . . ,n}. Set

λi = inf
x∈Ai\A

∣
∣ f (x)

∣
∣, Λi = sup

x∈Ai\A

∣
∣ f (x)

∣
∣, ai = λi +Λi

2
, (3.9)
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for each i∈ {1, . . . ,n}. Define the simple function

s=
n∑

i=1

aiχAi . (3.10)

Then for each i ∈ {1, . . . ,n} and for each x ∈ Ai\A we have | f (x)− s(x)| ≤ ε/2. Hence
‖ f − s‖∞ ≤ ε/2. Now consider the simple function ϕ defined by

ϕ(x)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∣
∣
∣
∣ai +

ε

2

∣
∣
∣
∣, if x ∈Ai, ai <− ε

2
,

0, if x ∈Ai, − ε

2
≤ ai ≤ ε

2
,

∣
∣
∣
∣ai−

ε

2

∣
∣
∣
∣, if x ∈Ai, ai >

ε

2
.

(3.11)

Then a direct computation shows that

ϕ(x)≤ ∣∣ f (x)
∣
∣≤ ϕε(x), ϕ(x)≤ ∣∣s(x)

∣
∣≤ ϕε(x), (3.12)

for all x ∈Ω\A, where ϕε = |ϕ|+ ε. Put h(x) = (max |ai|)χA(x) and k(x) = | f (x)|χA(x).
Then ϕ≤ | f |+ h and | f | ≤ ϕε + k. As h and k are both η-null functions, from the prop-
erty (iv) of Proposition 2.8 it follows that ϕ∗ ≤ f ∗ ≤ ϕ∗ε μ-a.e., and analogously ϕ∗ ≤
s∗ ≤ ϕ∗ε μ-a.e., hence | f ∗ − s∗|∞ ≤ |ϕ∗ε −ϕ∗|∞ = ε. �

Theorem 3.6. Let f ,g ∈ L∞. Then | f ∗ − g∗|∞ ≤ ‖ f − g‖∞.

Proof. Let ε > 0. By Lemma 3.5 we can find s,u∈ S(Ω,�) such that

‖ f − s‖∞ ≤ ε

4
, ‖g −u‖∞ ≤ ε

4
,

∣
∣ f ∗ − s∗

∣
∣∞ ≤

ε

2
,

∣
∣g∗ −u∗

∣
∣∞ ≤

ε

2
.

(3.13)

We have that

‖s−u‖∞ ≤ ‖ f − s‖∞ +‖ f − g‖∞ +‖g −u‖∞ ≤ ‖ f − g‖∞ +
ε

2
. (3.14)

Then the last inequality and Lemma 3.4 imply |s∗ −u∗|∞ ≤ ‖ f − g‖∞ + ε/2.
Consequently we have

∣
∣ f ∗ − g∗

∣
∣∞ ≤

∣
∣ f ∗ − s∗

∣
∣∞ +

∣
∣s∗ −u∗

∣
∣∞ +

∣
∣g∗ −u∗

∣
∣∞ ≤ ‖ f − g‖∞ + ε, (3.15)

and by the arbitrariness of ε the theorem follows. �

Remark 3.7. We observe that Theorem 3.6 does not hold in every space L0. In fact, let
L0 =M([0,1]) (see Example 2.1) and set

sn =
n−1∑

i=0

(n− i)χ[i/n,(i+1)/n), tn =
n−1∑

i=1

(n− i)χ[i/n,(i+1)/n), (3.16)
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for n= 2,3, . . .. Then for each n we have tn = snχ[1/n,1), sn− tn = nχ[0,1/n), and |sn− tn|0 =
1/n. On the other hand, since s∗n = sn and t∗n =

∑n−1
i=0 (n− 1− i)χ[i/n,(i+1)/n), we have that

s∗n − t∗n = χ[0,1) and then |s∗n − t∗n |0 = 1.

Throughout for a set M in L0, we put M∗ = { f ∗ : f ∈M}. The following inequality
between the Hausdorff measure of noncompactness of a bounded subset M of L∞ and
that of M∗ is an immediate consequence of nonexpansivity of rearrangement on L∞.

Corollary 3.8. Let M be a bounded subset of L∞. Then

γB([0,+∞))
(
M∗)≤ γL∞(M). (3.17)

The following example shows that there is not any constant c such that γL∞(M) ≤
cγB([0,+∞))(M∗).

Example 3.9. Let M = {χI : I ⊆ [0,1], μ(I)= 1/2}. Then M∗ = {χ[0,1/2)} and we have that
γB([0,+∞))(M∗)= 0 while γL∞(M) > 0.

In order to obtain a precise formula for the Hausdorff measure of noncompactness in
the space L∞, we consider for any bounded subset M of L∞ the following parameter:

ωL∞(M)= inf
{
ε > 0 : there exists a finite partition

{
A1, . . . ,An

}

of Ω in � such that for all f ∈M there is Af ⊆Ω

with η(Af )= 0 and sup
x,y∈Ai\Af

∣
∣ f (x)− f (y)

∣
∣≤ ε for all i= 1, . . . ,n

}
.

(3.18)

The proof of the following result is similar to that of [12, Theorem 2.1].

Theorem 3.10. Let M be a bounded subset of L∞. Then

γL∞ (M)= 1
2
ωL∞(M). (3.19)

Proof. Fix a > γL∞ (M). Then we can find s1, . . . ,sn ∈ S(Ω,�) such that for each f ∈M
there is i ∈ {1, . . . ,n} with ‖ f − si‖∞ ≤ a. Let {A1, . . . ,Am} be a partition of Ω in � such
that the restriction si|Aj

is constant for all i∈ {1, . . . ,n} and for all j ∈ {1, . . . ,m}. Let f ∈
M, i∈ {1, . . . ,n}, and Af ⊆Ω such that η(Af )= 0 and supΩ\Af

| f − si| ≤ a. For each j ∈
{1, . . . ,m}, we have that

sup
x,y∈Ai\Af

∣
∣ f (x)− f (y)

∣
∣≤ 2a, (3.20)

hence ωL∞(M)≤ 2γL∞ (M) and (1/2)ωL∞(M)≤ γL∞ (M).
Now fix a > ωL∞(M) and let c > 0 such that ‖ f ‖∞ ≤ c for each f ∈M. Then there is

a finite partition {A1, . . . ,An} of Ω in � such that for all f ∈M there is Af ⊆ Ω with
η(Af ) = 0 and supx,y∈Ai\Af

| f (x)− f (y)| ≤ a for all i= 1, . . . ,n. Moreover, for all f ∈M
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there is Bf ⊆Ω with η(Bf )= 0 such that supΩ\Bf
| f | ≤ c. Set Cf = Af ∪Bf for each f ∈

M. Fix ε > 0. Let k,m ∈ N such that 1/m < ε and −c + k/m > c. Set X = {−c + i/m : i =
0, . . . ,k} and F = {∑n

i=1 aiχAi : ai ∈ X}. Then for each f ∈M there is a function s ∈ F
such that supΩ\Cf

| f − s| ≤ a/2 + 1/m≤ a/2 + ε. Since F is finite it follows that γL∞ (M)≤
(1/2)ωL∞(M). This completes the proof. �

Observe that as a particular case of [12, Theorem 2.1], for a bounded subset T of
B([0,+∞)) we have

γB([0,+∞)) (T)= 1
2
ωB([0,+∞))(T), (3.21)

where

ωB([0,+∞))(T)= inf

{

ε > 0 : there exists a finite partition
{
A1, . . . ,An

}

of [0,+∞) of Lebesgue measurable sets such that for all f ∈ T

sup
x,y∈Ai\Af

∣
∣ f (x)− f (y)

∣
∣≤ ε for all i= 1, . . . ,n

}

.

(3.22)

In view of the formulas we have obtained, by Corollary 3.8 we have the following.

Corollary 3.11. Let M be a bounded subset of L∞. Then

ωB([0,+∞))
(
M∗)≤ ωL∞ (M). (3.23)

4. Nonexpansivity of rearrangement in Orlicz spaces LN

In this section, as a particular case of [6] (see also [13]), we consider Orlicz spaces LN of
finitely additive extended real-valued set functions defined on algebras of sets. The space
LN has been introduced in [6] in the same way as Dunford and Schwartz [9, page 112]
define the space of integrable functions and the integral for integrable functions, and
generalize the Orlicz spaces of σ-additive measures defined on σ-algebras of sets.

As in the previous sections, Ω is a nonempty set and � is an algebra in �(Ω). Let ν :
�→ [0,+∞] be a finitely additive set function. Throughout we assume that each simple
function s∈ S(Ω,�) is ν-integrable, that is, s=∑n

i=1 aiχAi with ai ∈R, Ai ∈� and ai = 0
if ν(Ai)=∞ (with 0 ·∞ = 0). Denote by (L1(Ω,�,ν),‖ · ‖1) the Lebesgue space defined
in [9], then ‖ f ‖1 =

∫
Ω | f |dν is a Riesz pseudonorm in the sense of [14]. Let η = ν∗ and

N : [0,+∞)→ [0,+∞) be a continuous, strictly increasing function such that N(0) = 0
and N(s+ t) ≤ k(N(s) +N(t)) (k ∈ N) for all s, t ≥ 0. The latter condition holds if and
only if N satisfies the Δ2-condition, that is, there is a constant c ∈ [0,+∞[ with N(2t)≤
cN(t) for all t ≥ 0 (see [6, page 90]).

Then, for s ∈ S(Ω,�), ‖s‖N is defined by ‖s‖N = ‖N ◦ |s|‖1, and the space EN is de-
fined as follows.
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Definition 4.1 (see [6, page 92]). The space LN := LN (Ω,�,η) is the space of all functions
f ∈ L0, for which there is a ‖ · ‖N - Cauchy sequence (sn) in S(Ω,�) converging to f with
respect to ‖ · ‖0, and ‖ f ‖N = limn‖sn‖N , the sequence (sn) is said to determine f .

Proposition 4.2 (see [6, Proposition 2.6 (c)]). If (sn) is a sequence in S(Ω,�) determining
f ∈ LN , then (sn) converges to f with respect to ‖ · ‖N .

We will call convergence in N-mean the convergence with respect to ‖ · ‖N .

Proposition 4.3 (see [6, Proposition 2.10 (b)]). For all f ∈ LN , ‖ f ‖N = ‖N ◦ | f |‖1.

In the following if Ω= [0,+∞), � is the σ-algebra of all Lebesgue measurable subsets
of [0,+∞) and η = μ∗, we will write LN ([0,+∞)) instead of LN . For f ∈ LN ([0,+∞)), we
denote ‖ f ‖N by | f |N .

In order to consider rearrangements of functions of LN to any function s=∑n
i=1 aiχAi

in S(Ω,�), we associate the simple function s : [0,+∞)→R defined by

s=
n∑

i=1

aiχ[
∑n−1

i=1 ν(Ai),
∑n

i=1 ν(Ai)). (4.1)

We immediately find ‖s‖N = |s|N and s∗ = (s)∗.

Lemma 4.4. Let s∈ S(Ω,�). Then ‖s‖N = |s∗|N .

Proof. An easy computation shows that
∫

[0,+∞)N(|s(t)|)dμ= ∫[0,+∞)N((s)∗(t))dμ. There-
fore, we obtain

‖s‖N =
∫

[0,+∞)
N
(∣∣s(t)

∣
∣)dμ=

∫

[0,+∞)
N
(
(s)∗(t)

)
dμ=

∫

[0,+∞)
N
(
s∗(t)

)
dμ= ∣∣s∗∣∣N .

(4.2)
�

Lemma 4.5. Let s1,s2 ∈ S(Ω,�). Then |s∗1 − s∗2 |N ≤ ‖s1− s2‖N .

Proof. By [3, (6), page 24] we have
∫

[0,+∞)
N
(∣∣(s1

)∗
(t)− (s2

)∗
(t)
∣
∣)dμ≤

∫

[0,+∞)
N
(∣∣
∣
∣s1(t)

∣
∣−∣∣s2(t)

∣
∣
∣
∣)dμ. (4.3)

Since
∫

[0,+∞)
N
(∣∣
∣
∣s1(t)

∣
∣−∣∣s2(t)

∣
∣
∣
∣)dμ=

∫

Ω
N
(∣∣
∣
∣s1
∣
∣−∣∣s2

∣
∣
∣
∣)dν, (4.4)

we get

∣
∣s∗1 − s∗2

∣
∣
N ≤

∫

Ω
N
(∣∣
∣
∣s1
∣
∣−∣∣s2

∣
∣
∣
∣)dν≤ ∥∥s1− s2

∥
∥
N . (4.5)

�

Lemma 4.6. Let (sn) be a sequence in S(Ω,�) such that ‖sn− f ‖N → 0. Then

∣
∣s∗n − f ∗

∣
∣
N −→ 0,‖ f ‖N = | f ∗|N . (4.6)
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Proof. Since ‖sn − f ‖N → 0 by [6, Theorem 2.7], we have ‖sn − f ‖0 → 0. Then by
Theorem 2.14 it follows that |s∗n − f |0 → 0, and so we can choose a subsequence (s∗nk )
of (s∗n ) which converges to f ∗ μ-a.e. On the other hand by Lemma 4.4 since (sn) is
a ‖ · ‖N -Cauchy sequence we have that (s∗n ) is a | · |N -Cauchy. Then there is a func-
tion g ∈ LN ([0,+∞)) such that |s∗n − g|N → 0. Therefore |s∗n − g|0 → 0 and so we can
find a subsequence (s∗nl) of (s∗n ) which converges to g μ-a.e. Then f ∗ = g μ-a.e. and
|s∗n − f ∗|N → 0. Finally
∣
∣‖ f ‖N −

∣
∣ f ∗

∣
∣
N

∣
∣≤ ∣∣‖ f ‖N −

∥
∥sn
∥
∥
N

∣
∣+

∣
∣
∥
∥sn
∥
∥
N −

∣
∣s∗n
∣
∣
N

∣
∣+

∣
∣
∣
∣s∗n
∣
∣
N −

∣
∣ f ∗

∣
∣
N

∣
∣

≤ ∥∥sn− f
∥
∥
N +

∣
∣s∗n − f ∗

∣
∣
N .

(4.7)

Hence ‖ f ‖N = | f ∗|N and this proves the lemma. �

We omit the proof of nonexpansivity of rearrangement on LN , which is analogous to
that of Theorem 3.6, when we use the above lemma.

Theorem 4.7. Let f ,g ∈ LN . Then | f ∗ − g∗|N ≤ ‖ f − g‖N .

Corollary 4.8. Let M be a bounded set in LN . Then

γLN ([0,+∞))
(
M∗)≤ γLN (M). (4.8)

Now let Ω be an open bounded subset of the n-dimensional Euclidean space Rn (with
norm ‖ · ‖n), and let � be the σ-algebra of all Lebesgue measurable subsets of Ω and
η = μ∗. Now we assume that Φ is a Young function and we consider the space EΦ of
finite elements of the Orlicz space LΦ generated by Φ. In this situation, we introduce a
parameter ωEΦ to estimate the Hausdorff measure of noncompactness.

Recall thatΦ is a Young function ifΦ(t)= ∫ t0 ϕ(s)ds (t ≥ 0), where ϕ : [0,+∞)→ [0,+∞)
is such that

(i) ϕ(0)= 0;
(ii) ϕ(s) > 0, s > 0;

(iii) ϕ is right continuous at any point s≥ 0;
(iv) ϕ is nondecreasing on [0,+∞);
(v) lims→+∞ϕ(s)= +∞.

In particular, Φ is continuous, nonnegative, strictly increasing, convex on [0,+∞) and
Φ(0)= 0.

By LΦ(Ω) we denote the Orlicz space generated by Φ, that is,

LΦ(Ω)=
{
f ∈ L0 : lim

λ→0+

∥
∥Φ◦ (λ| f |)∥∥1 = 0

}
. (4.9)

We equip LΦ(Ω) with the Luxemburg norm

|‖ f |‖Φ = inf
{
k > 0 :

∥
∥
∥
∥Φ◦

( | f |
k

)∥∥
∥
∥

1
≤ 1
}
. (4.10)

By EΦ(Ω) we denote the space of finite elements, that is,

EΦ(Ω)= { f ∈ L0 :
∥
∥Φ◦ (λ| f |)∥∥1 < +∞, for any λ > 0

}
. (4.11)
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The space EΦ(Ω) is a closed subspace of LΦ(Ω) and EΦ(Ω)= LΦ(Ω) if the Δ2-condition
holds. For details on Orlicz spaces see [15, 16].

We recall that the convergence with respect to the Luxemburg norm |‖ · |‖Φ implies
Φ-mean convergence, for Φ∈ Δ2 the two types of convergence are equivalent.

For r > 0, x ∈ Rn, and f ∈ LΦ(Ω) let us put f (y) = 0 if y /∈Ω. The so called Steklow
function Sr( f ) corresponding to f is defined as follows:

Sr( f )(x)= 1
μ
(
B(x,r)

)
∫

B(x,r)
f (y)dμ= 1

μ
(
B(x,r)

)
∫

‖y‖n<r
f (x+ y)dμ. (4.12)

Sr( f ) is continuous on Rn, has compact support and |‖Sr( f )|‖Φ ≤ |‖ f |‖Φ (cfr., [16,
Theorem 9.10]).

Theorem 4.9 (see [15, (ii) page 173]). Let M be a bounded subset of LΦ(Ω). Set Mr =
{Sr( f ) : f ∈M}. Then

(1) Mr ⊂ C∞o (Rn);
(2) Mr is relatively compact in C(Ω) with respect to ‖ · ‖∞.

Now for any bounded subset M of EΦ(Ω), generalizing an analogous parameter de-
fined in the case of Lebesgue spaces Lp[0,1], we put

ωEΦ(M)= lim
δ→0

sup
f∈M

max
0<r≤δ

∣
∣
∥
∥ f − Sr( f )

∣
∣
∥
∥
Φ. (4.13)

The following theorem gives an estimate of the Hausdorff measure of noncompactness
γEΦ

by means of the parameter ωEΦ . We observe that the theorem is an extension of the
compactness criterion given in [15, Theorem 3.14.6], which is the analogous in EΦ(Ω) of
the Kolmogorov compactness criterion in the Lebesgue spaces Lp[0,1].

Theorem 4.10. Let M be a bounded set of EΦ(Ω). Then

1
2
ωEΦ(M)≤ γEΦ

(M)≤ ωEΦ(M). (4.14)

Proof. Let α > ωEΦ(M). For some 0 < r ≤ δ we have that |‖ f − Sr( f )|‖Φ ≤ α for all f ∈M.
Since Mr is compact in C(Ω) with respect to ‖ · ‖∞, for all ε > 0 we can choose an ε-net
{Sr( f1),Sr( f2), . . . ,Sr( fn)} for Mr in Mr . Then for any f ∈M there exists i ∈ {1, . . . ,n}
such that |Sr( f )(t)− Sr( fi)(t)| ≤ ε for all t ∈Ω, so that |‖Sr( f )− Sr( fi)|‖Φ ≤ ε|‖χΩ|‖Φ.
Hence

∣
∣
∥
∥ f − Sr

(
fi
)∣∣
∥
∥
Φ ≤

∣
∣
∥
∥ f − Sr( f )

∣
∣
∥
∥
Φ +

∣
∣
∥
∥Sr( f )− Sr

(
fi
)∣∣
∥
∥
Φ ≤ α+ ε

∣
∣
∥
∥χΩ

∣
∣
∥
∥
Φ (4.15)

and consequently γEΦ
(M)≤ ωEΦ(M).

We now prove the left inequality. Let α > γEΦ
(M). Fix an α-net { f1, f2, . . . , fn} for M

in EΦ. Since M ⊂ EΦ we can assume that the functions fi (i= 1,2, . . . ,n) are in C(Ω). By
the uniform continuity of each fi on Ω, there is some δ > 0 such that | fi(t)− fi(x)| ≤ ε
holds for each i ∈ {1, . . . ,n} whenever t,x ∈Ω satisfy ‖x− t‖n < δ. Then, if 0 < r < δ we
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obtain | fi(t)− Sr( fi)(t)| ≤ ε for all t ∈Ω. The latter inequality implies |‖ fi− Sr( fi)|‖Φ ≤
ε|‖χΩ|‖Φ. Moreover |‖Sr( f )− Sr( fi)|‖Φ = |‖Sr( f − fi)|‖Φ ≤ |‖ f − fi|‖Φ. Therefore

∣
∣
∥
∥ f − Sr( f )

∣
∣
∥
∥
Φ ≤

∣
∣
∥
∥ f − fi

∣
∣
∥
∥
Φ +

∣
∣
∥
∥ fi− Sr

(
fi
)∣∣
∥
∥
Φ +

∣
∣
∥
∥Sr
(
fi
)− Sr( f )

∣
∣
∥
∥
Φ

≤ 2
∣
∣
∥
∥ f − fi

∣
∣
∥
∥
Φ +

∣
∣
∥
∥ fi− Sr

(
fi
)∣∣
∥
∥
Φ ≤ 2α+ ε|‖χΩ|‖Φ

(4.16)

holds for all f ∈M and 0 < r < δ. Hence ωEΦ(M)≤ 2γEΦ
(M). �

From the last result and Corollary 4.8 we get the following.

Corollary 4.11. Assume that the Young function Φ satisfies the Δ2-condition, and let M
be a bounded subset of LΦ(Ω). Then

ωLΦ[0,+∞)
(
M∗)≤ 2ωLΦ(M). (4.17)

Remark 4.12. We observe that in the Lebesgue space Lp[0,1] (1≤ p <∞)

ωp
(
f ∗;δ

)≤ 2ωp( f ;δ) (4.18)

for 0≤ δ ≤ 1/2, where ωp( f ;δ)= sup0≤h≤δ(
∫

[0,1−h] | f (x)− f (x+h)|pdμ)1/p is the modu-
lus of continuity of a given function f ∈ Lp[0,1] (see [5, Theorem 3.1]).
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