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Let E be a real Banach space, K a closed convex nonempty subset of E, and T1,T2, . . . ,Tm :
K → K asymptotically quasi-nonexpansive mappings with sequences (resp.) {kin}∞n=1 sat-
isfying kin → 1 as n→∞, and

∑∞
n=1(kin − 1) <∞, i = 1,2, . . . ,m. Let {αn}∞n=1 be a se-

quence in [ε, 1− ε], ε ∈ (0,1). Define a sequence {xn} by x1 ∈ K , xn+1 = (1− αn)xn +
αnT

n
1 yn+m−2, yn+m−2 = (1− αn)xn + αnT

n
2 yn+m−3, . . . , yn = (1− αn)xn + αnTn

mxn, n ≥ 1,
m≥ 2. Let

⋂m
i=1F(Ti) �=∅. Necessary and sufficient conditions for a strong convergence

of the sequence {xn} to a common fixed point of the family {Ti}mi=1 are proved. Under
some appropriate conditions, strong and weak convergence theorems are also proved.

Copyright © 2007 C. E. Chidume and B. Ali. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let K be a nonempty subset of a real normed space E. A self-mapping T : K → K is
called nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for every x, y ∈ K , and quasi-nonexpansive
if F(T) := {x ∈ K : Tx = x} �= ∅ and ‖Tx− p‖ ≤ ‖x− p‖ for every x ∈ K and p ∈ F(T).
The mapping T is called asymptotically nonexpansive if there exists a sequence {kn} ⊂
[1,∞) with kn→ 1 as n→∞ such that for every n∈N,

∥
∥Tnx−Tny

∥
∥≤ kn‖x− y‖ for every x, y ∈ K. (1.1)

If F(T) �= ∅ and there exists a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→∞ such that for
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n∈N,

∥
∥Tnx− p

∥
∥≤ kn‖x− p‖ for every x ∈ K , (1.2)

and p ∈ F(T), then T is called asymptotically quasi-nonexpansive mapping.
Iterative methods for approximating fixed points of nonexpansive mappings and their

generalisations have been studied by numerous authors (see, e.g., [1–9] and the references
contained therein).

Petryshyn and Williamson [4] proved necessary and sufficient conditions for the Pi-
card and Mann [10] iterative sequences to strongly converge to a fixed point of a quasi-
nonexpansive map T in a real Banach space.

Ghosh and Debnath [3] extended the results in [4] and proved necessary and suf-
ficient conditions for strong convergence of Ishikawa-type [11] iteration process to a
fixed point of a quasi-nonexpansive mapping T in a real Banach space. Furthermore,
they proved strong convergence theorem of the Ishikawa-type iteration process for quasi-
nonexpansive mappings in a uniformly convex Banach space.

Qihou [5] extended the results of Ghosh and Debnath to asymptotically quasi-non-
expansive mappings. In some other papers, Qihou [6, 7] studied the convergence of
Ishikawa-type iteration process with errors for asymtotically quasi-nonexpansive map-
pings.

Recently, Sun [12] studied the convergence of an implicit iteration process (see [12] for
definition) to a common fixed point of finite family of asymptotically quasi-nonexpansive
mappings. He proved the following theorems.

Theorem 1.1 (see [12]). Let K be a nonempty closed convex subset of a Banach space E.
Let {Ti, i ∈ I} be m asymptotically quasi-nonexpansive self-mappings of K with sequences
{1 + uin}n, i = 1,2, . . . ,m, respectively. Suppose that F :=⋂m

i=1F(Ti) �= ∅ and that x0 ∈ K ,
{αn} ⊂ (s,1− s) for some s ∈ (0,1),

∑∞
n=1uin <∞ for all i ∈ I . Then the implicit iterative

sequence {xn} generated by

xn = αnxn−1 +
(
1−αn

)
Tk
i xn, n≥ 1, n= (k− 1)m+ i, i= 1,2, . . . ,m, (1.3)

converges to a common fixed point in F if and only if liminfn→∞d(xn,F) = 0, where
d(xn,F)= infx∗∈F ‖xn− x∗‖.

Theorem 1.2 (see [12]). Let K be a nonempty closed convex and bounded subset of a real
uniformly convex Banach space E. Let {Ti, i ∈ I} be m uniformly L-Lipschitzian asymp-
totically quasi-nonexpansive self-mappings of K with sequences {1 + uin}n, i = 1,2, . . . ,m,
respectively. Suppose that F :=⋂m

i=1F(Ti) �= ∅ and that x0 ∈ K , {αn} ⊂ (s,1− s) for some
s∈ (0,1),

∑∞
n=1uin <∞ for all i∈ I . If there exists one member T ∈ {Ti, i∈ I}which is semi-

compact, then the implicit iterative sequence {xn} generated by (1.3) converges strongly to a
common fixed point of the mappings {Ti, i∈ I}.

Very recently, Shahzad and Udomene [8] proved necessary and sufficient conditions
for the strong convergence of the Ishikawa-like iteration process to a common fixed point
of two uniformly continuous asymptotically quasi-nonexpansive mappings.

Their main results are the following theorems.
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Theorem 1.3 (see [8]). Let E be a real Banach space and let K be a nonempty closed convex
subset of E. Let S,T : K → K be two asymptotically quasi-nonexpansive mappings (S and T
need not be continuous) with sequences {un},{vn} ⊂ [0,∞) such that

∑
un <∞ and

∑
vn <

∞, and F := F(S)∩F(T)= {x ∈ K : Sx = Tx = x} �=∅. Let {αn} and {βn} be sequences in
[0,1]. From arbitrary x1 ∈ K define a sequence {xn} by

xn+1 =
(
1−αn

)
xn +αnS

n
[(

1−βn
)
xn +βnT

nxn
]
. (1.4)

Then, {xn} converges strongly to some common fixed point of S and T if and only if
liminfn→∞d(xn,F)= 0.

Theorem 1.4 (see [8]). Let E be a real uniformly convex Banach space and let K be a
nonempty closed convex subset of E. Let S,T : K → K be two uniformly continuous asymptot-
ically quasi-nonexpansive mappings with sequences {un},{vn} ⊂ [0,∞) such that

∑
un <∞,

∑
vn <∞, and F := F(S)∩ F(T) = {x ∈ K : Sx = Tx = x} �= ∅. Let {αn} and {βn} be se-

quences in [ε,1− ε] for some ε ∈ (0,1). From arbitrary x1 ∈ K define a sequence {xn} by
(1.4). Assume, in addition, that either T or S is compact. Then, {xn} converges strongly to
some common fixed point of S and T .

More recently, the authors [2] introduced a scheme defined by

x1 ∈ K ,

xn+1 = P
[(

1−α1n
)
xn +α1nT1

(
PT1

)n−1
yn+m−2

]
,

yn+m−2 = P
[(

1−α2n
)
xn +α2nT2

(
PT2

)n−1
yn+m−3

]
,

...

yn = P
[(

1−αmn
)
xn +αmnTm

(
PTm

)n−1
xn
]

, n≥ 1,

(1.5)

and studied the convergence of this sheme to a common fixed point of finite families of
nonself asymptotically nonexpansive mappings.

Let {αn} be a real sequence in [ε,1− ε], ε ∈ (0,1). Let T1,T2, . . . ,Tm : K → K be a
family of mappings. Define a sequence {xn} by

x1 ∈ K ,

xn+1 =
(
1−αn

)
xn +αnT

n
1 yn+m−2,

yn+m−2 =
(
1−αn

)
xn +αnT

n
2 yn+m−3,

...

yn =
(
1−αn

)
xn +αnT

n
mxn, n≥ 1.

(1.6)

It is our purpose in this paper to prove necessary and sufficient conditions for the
strong convergence of the scheme defined by (1.6) to a common fixed point of finite
family T1,T2, . . . ,Tm of asymptotically quasi-nonexpansive mappings. We also prove strong
and weak convergence theorems for the family in a uniformly convex Banach spaces. Our
results generalize and improve some recent important results (see Remark 3.9).
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2. Preliminaries

Let E be a real normed linear space. The modulus of convexity of E is the function δE :
(0,2]→ [0,1] defined by

δE(ε)= inf
{

1−
∥
∥
∥
∥
x+ y

2

∥
∥
∥
∥ : ‖x‖ = ‖y‖ = 1, ε = ‖x− y‖

}

. (2.1)

E is called uniformly convex if and only if δE(ε) > 0∀ε ∈ (0,2].
A mapping T with domain D(T) and range R(T) in E is said to be demiclosed at p

if whenever {xn} is a sequence in D(T) such that xn ⇀ x∗ ∈ D(T) and Txn → p then
Tx∗ = p.

A mapping T : K → K is said to be semicompact if, for any bounded sequence {xn} in
K such that ‖xn−Txn‖ → 0 as n→∞, there exists a subsequence say {xnj} of {xn} such
that {xnj} converges strongly to some x∗ in K .

A Banach space E is said to satisfy Opial’s condition if for any sequence {xn} in E,
xn⇀ x implies that

liminf
n→∞

∥
∥xn− x

∥
∥ < liminf

n→∞
∥
∥xn− y

∥
∥ ∀y ∈ E, y �= x. (2.2)

We will say that a mapping T satisfies condition (P) if it satisfies the weak version of
demiclosedness at origin as defined in [4] (i.e., if {xnj} is any subsequence of a sequence
{xn} with xnj ⇀ x∗ and (I −T)xnj → 0 as j →∞, then x∗ −Tx∗ = 0).

In what follows we will use the following results.

Lemma 2.1 (see [9]). Let {λn} and {σn} be sequences of nonnegative real numbers such
that λn+1 ≤ λn + σn for all n≥ 1, and

∑∞
n=1 σn <∞, then limn→∞ λn exists. Moreover, if there

exists a subsequence {λnj} of {λn} such that λnj → 0 as j →∞, then λn→ 0 as n→∞.

Lemma 2.2 (see [13]). Let p > 1 and r > 1 be two fixed numbers and E a Banach space.
Then E is uniformly convex if and only if there exists a continuous, strictly increasing, and
convex function g : [0,∞)→ [0,∞) with g(0)= 0 such that

∥
∥λx+ (1− λ)y

∥
∥p ≤ λ‖x‖p + (1− λ)‖y‖p−Wp(λ)g

(‖x− y‖) (2.3)

for all x, y ∈ Br(0)= {z ∈ E : ‖z‖ ≤ r}, λ∈ [0,1] and Wp(λ)= λ(1− λ)p+ λp(1− λ).

3. Main results

In this section, we state and prove the main results of this paper. In the sequel, we desig-
nate the set {1,2, . . . ,m} by I and we always assume F :=⋂m

i=1F(Ti) �= ∅.

Lemma 3.1. Let E be a real normed linear space and let K be a nonempty, closed convex
subset of E. Let T1,T2, . . . ,Tm : K → K be asymptotically quasi-nonexpansive mappings with
sequence {kin}∞n=1 satisfying kin→ 1 as n→∞ and

∑∞
n=1(kin− 1) <∞, i∈ I . Let {αn}∞n=1 be
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a sequences in [ε,1− ε], ε ∈ (0,1). Let {xn} be a sequence defined iteratively by

x1 ∈ K ,

xn+1 =
(
1−αn

)
xn +αnT

n
1 yn+m−2,

yn+m−2 =
(
1−αn

)
xn +αnT

n
2 yn+m−3,

...

yn =
(
1−αn

)
xn +αnT

n
mxn, n≥ 1, m≥ 2.

(3.1)

Let x∗ ∈ F. Then, {xn} is bounded and the limits limn→∞ ‖xn − x∗‖ and limn→∞d(xn,F)
exist, where d(xn,F)= infx∗∈F ‖xn− x∗‖.

Proof. Set kin = 1 +uin so that
∑∞

n=1uin <∞ for each i∈ I . Let wn :=∑m
i=1uin. Let x∗ ∈ F.

Then we have, for some positive integer h, 2≤ h <m,

∥
∥xn+1− x∗

∥
∥= ∥∥(1−αn

)
xn +αnT

n
1 yn+m−2− x∗

∥
∥

≤ (1−αn
)∥
∥xn− x∗

∥
∥+αn

(
1 +u1n

)∥
∥yn+m−2− x∗

∥
∥

≤ (1−αn
)∥
∥xn− x∗

∥
∥

+αn
(
1 +u1n

)[(
1−αn

)∥
∥xn− x∗

∥
∥+αn

(
1 +u2n

)∥
∥yn+m−3− x∗

∥
∥
]

≤ (1−αn
)∥
∥xn− x∗

∥
∥+αn

(
1−αn

)(
1 +u1n

)∥
∥xn− x∗

∥
∥

+ ···+
(
αn
)h−1(

1−αn
)(

1 +u1n
)(

1 +u2n
)···(1 +uh−1n

)∥
∥xn− x∗

∥
∥

+ ···+
(
αn
)m(

1 +u1n
)(

1 +u2n
)···(1 +umn

)∥
∥xn− x∗

∥
∥

≤ ∥∥xn− x∗
∥
∥
[

1 +u1n +u2n
(
1 +u1n

)
+u3n

(
1 +u1n

)(
1 +u2n

)
+ ···

+umn
(
1 +u1n

)(
1 +u2n

)···(1 +um−1n
)]

≤ ∥∥xn− x∗
∥
∥

[

1 +

(
m

1

)

wn +

(
m

2

)

w2
n + ···+

(
m

m

)

wm
n

]

≤ ∥∥xn− x∗
∥
∥
(
1 + δmwn

)≤ ∥∥xn− x∗
∥
∥eδmwn

≤ ∥∥x1− x∗
∥
∥eδm

∑∞
n=1 wn <∞,

(3.2)

where δm is a positive real number defined by δm := [
(
m
1

)
+
(
m
2

)
+ ···+

(
m
m

)]
.

This implies that {xn} is bounded and so there exists a positive integer M such that

∥
∥xn+1− x∗

∥
∥≤ ∥∥xn− x∗

∥
∥+ δmMwn. (3.3)
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Since (3.3) is true for each x∗ in F, we have

d
(
xn+1,F

)≤ d
(
xn,F

)
+ δmMwn. (3.4)

By Lemma 2.1, limn→∞‖xn − x∗‖ and limn→∞d(xn,F) exist. This completes the proof of
Lemma 3.1. �

Theorem 3.2. Let K be a nonempty closed convex subset of a Banach space E. Let T1,T2, . . . ,
Tm : K → K be asymptotically quasi-nonexpansive mappings with sequences {kin}∞n=1 and
{αn}∞n=1 as in Lemma 3.1. Let {xn} be defined by (3.1). Then, {xn} converges to a common
fixed point of the family T1,T2, . . . ,Tm if and only if liminfn→∞d(xn,F)= 0.

Proof. The necessity is trivial. We prove the sufficiency. Let liminfn→∞d(xn,F)= 0. Since
limn→∞d(xn,F) exists by Lemma 3.1, we have that limn→∞d(xn,F)= 0. Thus, given ε > 0
there exist a positive integer N0 and b∗ ∈ F such that for all n ≥ N0 ‖xn − b∗‖ < ε/2.
Then, for any k ∈N, we have for n≥N0,

∥
∥xn+k − xn

∥
∥≤ ∥∥xn+k − b∗

∥
∥+

∥
∥b∗ − xn

∥
∥ <

ε
2

+
ε
2
= ε, (3.5)

and so {xn} is Cauchy. Let limn→∞ xn = b. We need to show that b ∈ F. LetTi ∈ {T1,T2, . . . ,
Tm}. Since limn→∞d(xn,F)= 0, there exists N ∈N sufficiently large and b∗ ∈ F such that
n≥N implies ‖b− xn‖ < ε/6(1 +w1), ‖b∗ − xn‖ < ε/6(1 +w1). Then, ‖b∗ − b‖ < ε/3(1 +
w1). Thus, we have the following estimates, for n≥N and arbitrary Ti, i= 1,2, . . . ,m,

∥
∥b−Tib

∥
∥≤ ∥∥b− xn

∥
∥+

∥
∥xn− b∗

∥
∥+

∥
∥b∗ −Tib

∥
∥

≤ ∥∥b− xn
∥
∥+

∥
∥xn− b∗

∥
∥+

(
1 +w1

)∥
∥b∗ − b

∥
∥

<
ε

3
(
1 +w1

) +
ε

3
(
1 +w1

) +
ε
3
≤ ε.

(3.6)

This implies that b ∈ Fix(Ti) for all i = 1,2, . . . ,m and thus b ∈ F. This completes the
proof. �

Corollary 3.3. Let K be a nonempty closed convex subset of a Banach space E. Let T1,
T2, . . . ,Tm : K → K be quasi-nonexpansive mappings. Let the sequence {αn}∞n=1 be as in
Lemma 3.1. Let {xn} be defined by

x1 ∈ K ,

xn+1 =
(
1−αn

)
xn +αnT1yn+m−2,

yn+m−2 =
(
1−αn

)
xn +αnT2yn+m−3,

...

yn =
(
1−αn

)
xn +αnTmxn, n≥ 1.

(3.7)

Then, {xn} converges to a common fixed point of the family T1,T2, . . . ,Tm if and only if
liminfn→∞d(xn,F)= 0.
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For our next theorems, we start by proving the following lemma which will be needed
in the sequel.

Lemma 3.4. Let E be a real uniformly convex Banach space and let K be a closed convex
nonempty subset of E. Let T1,T2, . . . ,Tm : K → K be uniformly continuous asymptotically
quasi-nonexpansive mappings with sequences {kin}∞n=1 satisfying kin → 1 as n → ∞ and
∑∞

n=1(kin− 1) <∞, i = 1,2, . . . ,m. Let {αn}∞n=1 be a sequence in [ε,1− ε], ε ∈ (0,1). Let
{xn} be a sequence defined iteratively by (3.1). Then,

lim
n→∞

∥
∥xn−T1xn

∥
∥= lim

n→∞
∥
∥xn−T2xn

∥
∥= ··· = lim

n→∞
∥
∥xn−Tmxn

∥
∥= 0. (3.8)

Proof. Since {xn} is bounded, for some x∗ ∈ F, there exists a positive real number γ such
that ‖xn − x∗‖2 ≤ γ for all n ≥ 1. By using Lemma 2.2 and the recursion formula (3.1),
we have
∥
∥yn− x∗

∥
∥2 = ∥∥(1−αn

)(
xn− x∗

)
+αn

(
Tn
mxn− x∗

)∥
∥2

≤ (1−αn
)∥
∥xn− x∗

∥
∥2

+αn
(
1 +umn

)2∥∥xn− x∗
∥
∥2−αn

(
1−αn

)
g
(∥
∥xn−Tn

mxn
∥
∥
)

≤ ∥∥xn− x∗
∥
∥2

+αn
(
2umn +u2

mn

)∥
∥xn− x∗

∥
∥2− ε2g

(∥
∥xn−Tn

mxn
∥
∥
)

≤ ∥∥xn− x∗
∥
∥2

+ 3wnγ− ε2g
(∥
∥xn−Tn

mxn
∥
∥
)
.

(3.9)

Also
∥
∥yn+1− x∗

∥
∥2 = ∥∥(1−αn

)(
xn− x∗

)
+αn

(
Tn
m−1yn− x∗

)∥
∥2

≤ (1−αn
)∥
∥xn− x∗

∥
∥2

+αn
(
1 +um−1n

)2∥∥yn− x∗
∥
∥2

−αn
(
1−αn

)
g
(∥
∥xn−Tn

m−1yn
∥
∥
)

≤ (1−αn
)∥
∥xn− x∗

∥
∥2

+αn
(
1 + 2um−1n +u2

m−1n

)∥
∥yn− x∗

∥
∥2

− ε2g
(∥
∥xn−Tn

m−1yn
∥
∥
)≤ (1−αn

)∥
∥xn− x∗

∥
∥2

+αn
(
1 + 3um−1n

)[∥
∥xn− x∗

∥
∥2

+ 3wnγ− ε2g
(∥
∥xn−Tn

mxn
∥
∥
)]

− ε2g
(∥
∥xn−Tn

m−1yn
∥
∥
)

≤ ∥∥xn− x∗
∥
∥2

+ 3wnγ− ε3g
(∥
∥xn−Tn

mxn
∥
∥
)

+ 3wnγ+
(
3wn

)2
γ

− 3wnε3g
(∥
∥xn−Tn

mxn
∥
∥
)− ε2g

(∥
∥xn−Tn

m−1yn
∥
∥
)

≤ ∥∥xn− x∗
∥
∥2

+ 33wnγ− ε3[g
(∥
∥xn−Tn

mxn
∥
∥
)

+ g
(∥
∥xn−Tn

m−1yn
∥
∥
)]
.

(3.10)

Continuing in this fashion we get, using xn+1 = (1−αn)xn +αnT1yn+m−2, that

∥
∥xn+1− x∗

∥
∥2 ≤ ∥∥xn− x∗

∥
∥2

+ 32m−1wnγ

− εm+1

(

g
(∥
∥xn−Tn

mxn
∥
∥
)

+
m−1∑

k=1

g
(∥
∥xn−Tn

m−k yn+k−1
∥
∥
)
)

,
(3.11)
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so that

εm+1

(

g
(∥
∥xn−Tn

mxn
∥
∥
)

+
m−1∑

k=1

g
(∥
∥xn−Tn

m−k yn+k−1
∥
∥
)
)

≤ ∥∥xn− x∗
∥
∥2−∥∥xn+1− x∗

∥
∥2

+ 32m−1wnγ.

(3.12)

This implies that

εm+1
∞∑

n=1

(

g
(∥
∥xn−Tn

mxn
∥
∥
)

+
m−1∑

k=1

g
(∥
∥xn−Tn

m−k yn+k−1
∥
∥
)
)

<∞, (3.13)

and by the property of g, we have

lim
n→∞

∥
∥xn−Tn

mxn
∥
∥= lim

n→∞
∥
∥xn−Tn

m−1yn
∥
∥

...

= lim
n→∞

∥
∥xn−Tn

h yn+m−h−1
∥
∥

...

= lim
n→∞

∥
∥xn−Tn

1 yn+m−2
∥
∥= 0

(3.14)

for 2≤ h <m.
Now,

∥
∥xn−Thxn

∥
∥≤ ∥∥xn−Tn

h yn+m−h−1
∥
∥+

∥
∥Tn

h yn+m−h−1−Thxn
∥
∥, (3.15)

but (Tn−1
h yn+m−h−1 − xn)→ 0 as n→∞, and since Th is uniformly continuous we have

that (Tn
h yn+m−1 − Thxn)→ 0 as n→∞. So, from inequality (3.15), we get limn→∞‖xn −

Thxn‖ = 0. Also for h=m, from (3.14) we have

lim
n−→∞

∥
∥xn−Tn

mxn
∥
∥= 0. (3.16)

Moreover,

∥
∥xn−Tmxn

∥
∥≤ ∥∥xn−Tn

mxn
∥
∥+

∥
∥Tn

mxn−Tmxn
∥
∥. (3.17)

Similarly, since ‖Tn−1
m xn − xn‖ → 0 as n→∞ and Tm is uniformly continuous, we have

(Tn
mxn−Tmxn)→ 0 as n→∞ hence from (3.17) we get limn→∞‖xn−Tmxn‖ = 0, and this

completes the proof. �

Theorem 3.5. Let E be a real uniformly convex Banach space and let K be a closed convex
nonempty subset of E. Let T1,T2, . . . ,Tm : K → K be uniformly continuous asymptotically
quasi-nonexpansive mappings with sequences {kin}∞n=1 and {αn}∞n=1 as in Lemma 3.4. If at
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least one member of {Ti}mi=1 is semicompact, then {xn} converges strongly to a common fixed
point of the family {Ti}mi=1.

Proof. Assume Td ∈ {Ti}mi=1 is semicompact. Since {xn} is bounded and by Lemma 3.4
‖xn − Tdxn‖ → 0 as n → ∞, there exists a subsequence say {xnj} of {xn} converging
strongly to say x ∈ K . By the uniform continuity of Td, x = Tdx. Using xnj → x, ‖xnj −
Tixnj‖ → 0 as j →∞, and the continuity of Ti for each i ∈ {1,2, . . . ,m}, we have that
x ∈⋂m

i=1 Fix(Ti). By Lemma 3.1, lim‖xn − x‖ exists, hence, {xn} converges strongly to a
common fixed point of the family {Ti}mi=1. �

Corollary 3.6. Let E be a real uniformly convex Banach space and let K be a closed
convex nonempty subset of E. Let T1,T2, . . . ,Tm : K → K be uniformly continuous quasi-
nonexpansive mappings. Let {αn}∞n=1 be a sequence as in Corollary 3.3. If one of {Ti}mi=1 is
semicompact, then {xn} defined by (3.7) converges strongly to a common fixed point of the
family {Ti}mi=1.

We now prove weak convergence theorems.

Theorem 3.7. Let E be a real uniformly convex Banach space and let K be a closed convex
nonempty subset of E. Let T1,T2, . . . ,Tm : K → K be uniformly continuous asymptotically
quasi-nonexpansive mappings with sequences {kin}∞n=1 and {αn}∞n=1 as in Lemma 3.4. If E
satisfies Opial’s condition and each Ti, i ∈ I , satisfies condition P, then the sequence {xn}
defined by (3.1) converges weakly to a common fixed point of {Ti}mi=1.

Proof. Since {xn} is bounded and E is reflexive, there exists a subsequence say {xnk} of
{xn}, converging weakly to some point say p ∈ K . By Lemma 3.4, ‖xnk −Tixnk‖ → 0 as
k→∞. Condition (P) of each Ti guarantees that p ∈ ω({xn})

⋂⋂m
i=1 Fix(Ti). If we have

another subsequence of {xn} converging to another point say x′ ∈ K , by similar argument
we can easily show that x′ ∈ ω({xn})

⋂⋂m
i=1 Fix(Ti). Since E satisfies Opial’s condition,

using standard argument we get that x′ = p, completing the proof. �

The following corollary follows from Theorem 3.7.

Corollary 3.8. Let K be a nonempty closed convex subset of a real uniformly convex Ba-
nach space E. Let T1,T2, . . . ,Tm : K → K be uniformly continuous quasi-nonexpansive map-
pings. Let the sequence {αn}∞n=1 be as in Corollary 3.3. If E satisfies Opial’s condition and
at least one of the Ti’s i ∈ I satisfies condition P, then the sequence {xn} defined by (3.7)
converges weakly to a common fixed point of {Ti}mi=1.

Remark 3.9. Theorem 3.2 extends [8, Theorem 3.2]. In the same way, Theorem 3.5 ex-
tends [8, Theorem 3.4] to finite family of asymptotically quasi-nonexpansive mappings,
and includes as a special case [8, Theorem 3.7]. In addition, the condition of compactness
on the operators imposed in [8, Theorem 3.4] is weaken, replacing it by semicompactness
in Theorem 3.5. It is clear that if T is compact, then it is semicompact and satisfies con-
dition P. The scheme studied in [12] is implicit and not iterative. Our scheme is iterative.

Remark 3.10. Addition of bounded error terms to any of the recurrence relations in our
iteration methods leads to no further generalization.
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