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1. Introduction

Let X and Y be metric spaces. A mapping f : X → Y is called an isometry if f satisfies

dY
(
f (x), f (y)

)= dX(x, y) (1.1)

for all x, y ∈ X , where dX(·,·) and dY (·,·) denote the metrics in the spaces X and Y ,
respectively. For some fixed number r > 0, suppose that f preserves distance r, that is, for
all x, y in X with dX(x, y)= r, we have dY ( f (x), f (y))= r. Then r is called a conservative
(or preserved) distance for the mapping f . Aleksandrov [1] posed the following problem.

Aleksandrov problem. Examine whether the existence of a single conservative distance for
some mapping T implies that T is an isometry.

The Aleksandrov problem has been investigated in several papers (see [2, 3, 6–9, 13–
15, 20, 23, 26, 28]). Rassias and Šemrl [25] proved the following theorem for mappings
satisfying the strong distance one preserving property (SDOPP), that is, for every x, y ∈ X
with ‖x− y‖ = 1 it follows that ‖ f (x)− f (y)‖ = 1 and conversely.

Theorem 1.1 [25]. Let X and Y be real normed linear spaces such that one of them has di-
mension greater than one. Suppose that f : X → Y is a Lipschitz mapping with Lipschitz con-
stant κ≤ 1. Assume that f is a surjective mapping satisfying SDOPP. Then f is an isometry.
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Definition 1.2 [4]. Let X be a real linear space with dimX ≥N and ‖·, . . . ,·‖ : XN →R a
function. Then (X ,‖·, . . . ,·‖) is called a linear N-normed space if

(N1) ‖x1, . . . ,xN‖ = 0⇔ x1, . . . ,xN are linearly dependent;
(N2) ‖x1, . . . ,xN‖ = ‖xj1 , . . . ,xjN‖ for every permutation ( j1, . . . , jN ) of (1, . . . ,N);
(N3) ‖αx1, . . . ,xN‖ = |α|‖x1, . . . ,xN‖;
(N4) ‖x+ y,x2, . . . ,xN‖ ≤ ‖x,x2, . . . ,xn‖+‖y,x2, . . . ,xN‖

for all α∈R and all x, y,x1, . . . ,xN ∈ X . The function ‖·, . . . ,·‖ is called the N-norm on X .

Note that the notion of 1-norm is the same as that of norm.
In [18], it was defined the notion of n-isometry and proved the Rassias and Šemrl’s

theorem in linear N-normed spaces.

Definition 1.3 [18]. f : X → Y is called an N-Lipschitz mapping if there is a κ ≥ 0 such
that

∥
∥ f
(
x1
)− f

(
y1
)
, . . . , f

(
xN
)− f

(
yN
)∥∥≤ κ

∥
∥x1− y1, . . . ,xN − yN

∥
∥ (1.2)

for all x1, . . . ,xN , y1, . . . , yN ∈ X . The smallest such κ is called the N-Lipschitz constant.

Definition 1.4 [18]. Let X and Y be linear N-normed spaces and f : X → Y a mapping. f
is called an N-isometry if

∥
∥x1− y1, . . . ,xN − yN

∥
∥= ∥∥ f (x1

)− f
(
y1
)
, . . . , f

(
xN
)− f

(
yN
)∥∥ (1.3)

for all x1, . . . ,xN , y1, . . . , yN ∈ X .

For a mapping f : X → Y , consider the following condition which is called the N-
distance one preserving property: for x1, . . . ,xN , y1, . . . , yN ∈ X with ‖x1 − y1, . . . ,xN −
yN‖ = 1, ‖ f (x1)− f (y1), . . . , f (xN )− f (yN )‖ = 1.

Definition 1.5 [5]. The points x, y,z ∈ X are said to be colinear if x − y and x − z are
linearly dependent.

Theorem 1.6 [18, Theorem 2.7]. Let f : X → Y be an N-Lipschitz mapping with N-Lip-
schitz constant κ ≤ 1. Assume that if x, y,z are colinear, then f (x), f (y), f (z) are colin-
ear, and that if x1− y1, . . . ,xN − yN are linearly dependent, then f (x1)− f (y1), . . . , f (xN )−
f (yN ) are linearly dependent. If f satisfies the N-distance one preserving property, then f is
an N-isometry.

Let X and Y be Banach spaces with norms ‖ · ‖ and ‖ · ‖, respectively. Consider
f : X → Y to be a mapping such that f (tx) is continuous in t ∈ R for each fixed x ∈ X .
Rassias [19] introduced the following inequality: assume that there exist constants θ ≥ 0
and p ∈ [0,1) such that

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ θ

(‖x‖p +‖y‖p) (∗)
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for all x, y ∈ X . Rassias [19] showed that there exists a unique R-linear mapping T : X →
Y such that

∥
∥ f (x)−T(x)

∥
∥≤ 2θ

2− 2p ‖x‖p (1.4)

for all x ∈ X . The inequality (∗) has provided a lot of influence in the development of
what is known as generalized Hyers–Ulam stability of functional equations. Beginning
around the year 1980, the topic of approximate homomorphisms, or the stability of the
equation of homomorphism, was studied by a number of mathematicians (see [10–12,
16, 21, 22, 24]).

Trif [27] proved that, for vector spaces X and Y , a mapping f : X → Y with f (0)= 0
satisfies the functional equation

dd−2Cl−2 f
(
x1 + ···+ xd

d

)
+d−2 Cl−1

d∑

i=1

f
(
xi
)= d

∑

1≤i1<···<il≤d
f
(
xi1 + ···+ xil

l

)
(T)

for all x1, . . . ,xd ∈ X if and only if the mapping f : X → Y satisfies the Cauchy additive
equation f (x + y)= f (x) + f (y) for all x, y ∈ X . Here dCl := d!/l!(d− l)!. He proved the
stability of the functional equation (T) (see [27, Theorems 3.1 and 3.2]).

In [17], it was proved that, for vector spaces X and Y , a mapping f : X → Y with
f (0)= 0 satisfies the functional equation

mnmn−2Ck−2 f
(
x1 + ···+ xmn

mn

)
+mmn−2Ck−1

n∑

i=1

f
(
xmi−m+1 + ···+ xmi

m

)

= k
∑

1≤i1<···<ik≤mn

f
(
xi1 + ···+ xik

k

) (P)

for all x1, . . . ,xmn ∈ X if and only if the mapping f : X → Y satisfies the Cauchy additive
equation f (x+ y)= f (x) + f (y) for all x, y ∈ X .

In this paper, we introduce the concept of linear N-normed Banach space, and we
prove the generalized Hyers-Ulam stability of additive N-isometries on linear N-normed
Banach spaces.

2. Generalized Hyers-Ulam stability of additive N-isometries
on linear N-normed Banach spaces

We define the notion of linear N-normed Banach space.

Definition 2.1. A linear N-normed and normed space X with N-norm ‖·, . . . ,·‖X and
norm ‖ · ‖ is called a linear N-normed Banach space if (X ,‖ · ‖) is a Banach space.

In this section, assume that X is a linear N-normed Banach space with N-norm
‖·, . . . ,·‖X and norm ‖ · ‖, and that Y is a linear N-normed Banach space with N-norm
‖·, . . . ,·‖Y and norm ‖ · ‖.
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Assume that 1 ≤ N ≤ d. Note that the notion of “1-isomery” is the same as that of
“isometry.”

Let q = l(d− 1)/(d− l) and r =−l/(d− l) for positive integers l, d with 2≤ l ≤ d− 1.

Theorem 2.2. Let f : X → Y be a mapping with f (0)= 0 for which there exists a function
ϕ : Xd → [0,∞) such that

ϕ̃
(
x1, . . . ,xd

)
:=

∞∑

j=0

1
q j ϕ

(
q jx1, . . . ,q jxd

)
<∞, (2.1)

∥
∥
∥
∥dd−2Cl−2 f

(
x1 + ···+ xd

d

)
+ d−2Cl−1

d∑

j=1

f
(
xj
)

− l
∑

1≤ j1<···<jl≤d
f
(
xj1 + ···+ xjl

l

)∥∥
∥
∥≤ ϕ

(
x1, . . . ,xd

)
,

(2.2)

∣
∣
∥
∥ f
(
x1
)
, . . . , f

(
xN
)∥∥

Y −
∥
∥x1, . . . ,xN

∥
∥
X

∣
∣≤ ϕ

⎛

⎜
⎝x1, . . . ,xN , 0, . . . ,0

︸ ︷︷ ︸
d−N times

⎞

⎟
⎠ (2.3)

for all x1, . . . ,xd ∈ X . Then there exists a unique additive N-isometry U : X → Y such that

∥
∥ f (x)−U(x)

∥
∥≤ 1

ld−1Cl−1
ϕ̃

⎛

⎜
⎝qx,rx, . . . ,rx

︸ ︷︷ ︸
d− 1 times

⎞

⎟
⎠ (2.4)

for all x ∈ X .

Proof. By the Trif ’s theorem [27, Theorem 3.1], it follows from (2.1) and (2.2) that there
exists a unique additive mapping U : X → Y satisfying (2.4). The additive mapping
U : X → Y is given by

U(x)= lim
b−→∞

1
qb

f
(
qbx
)

(2.5)

for all x ∈ X .
It follows from (2.3) that

∣
∣
∣
∣

∥
∥
∥
∥

1
qb

f
(
qbx1

)
, . . . ,

1
qb

f
(
qbxN

)
∥
∥
∥
∥
Y
−∥∥x1, . . . ,xN

∥
∥
X

∣
∣
∣
∣

= 1
qbN

∣
∣
∥
∥ f
(
qbx1

)
, . . . , f

(
qbxN

)∥∥
Y −

∥
∥qbx1, . . . ,qbxN

∥
∥
X

∣
∣

≤ 1
qbN

ϕ

⎛

⎜
⎝qbx1, . . . ,qbxN , 0, . . . ,0

︸ ︷︷ ︸
d−N times

⎞

⎟
⎠

≤ 1
qb

ϕ

⎛

⎜
⎝qbx1, . . . ,qbxN , 0, . . . ,0

︸ ︷︷ ︸
d−N times

⎞

⎟
⎠ ,

(2.6)
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which tends to zero as b→∞ for all x1, . . . ,xN ∈ X by (2.1). By (2.5),

∥
∥U
(
x1
)
, . . . ,U

(
xN
)∥∥

Y = lim
b−→∞

∥
∥
∥
∥

1
qb

f
(
qbx1

)
, . . . ,

1
qb

f
(
qbxN

)
∥
∥
∥
∥
Y
= ∥∥x1, . . . ,xN

∥
∥
X (2.7)

for all x1, . . . ,xN ∈ X . Since U : X → Y is additive,
∥
∥U
(
x1
)−U

(
y1
)
, . . . ,U

(
xN
)−U

(
yN
)∥∥

Y

= ∥∥U(x1− y1
)
, . . . ,U

(
xN − yN

)∥∥
Y =

∥
∥x1− y1, . . . ,xN − yN

∥
∥
X

(2.8)

for all x1, y1, . . . ,xN , yN ∈ X . So the additive mapping U : X → Y is an N-isometry, as
desired. �

Corollary 2.3. Let f : X → Y be a mapping with f (0)= 0 for which there exist constants
θ ≥ 0 and p ∈ [0,1) such that

∥
∥
∥
∥dd−2Cl−2 f

(
x1 + ···+ xd

d

)
+ d−2Cl−1

d∑

j=1

f
(
xj
)

−l
∑

1≤ j1<···<jl≤d
f
(
xj1 + ···+ xjl

l

)∥∥
∥
∥≤ θ

d∑

j=1

∥
∥xj
∥
∥p,

∣
∣
∥
∥ f
(
x1
)
, . . . , f

(
xN
)∥∥

Y −
∥
∥x1, . . . ,xN

∥
∥
X

∣
∣≤ θ

N∑

j=1

∥
∥xj
∥
∥p

(2.9)

for all x1, . . . ,xd ∈ X . Then there exists a unique additive N-isometry U : X → Y such that

∥
∥ f (x)−U(x)

∥
∥≤ q1−p(qp + (d− 1)r p

)
θ

l d−1Cl−1
(
q1−p− 1

)
∥
∥x
∥
∥p (2.10)

for all x ∈ X .

Proof. Define ϕ(x1, . . . ,xd)= θ
∑d

j=1

∥
∥xj
∥
∥p, and apply Theorem 2.2. �

From now on, let q = l(d− 1)/(d− l) and r =−1/(d− 1) for positive integers l, d with
2≤ l ≤ d− 1.

Theorem 2.4. Let f : X → Y be a mapping with f (0)= 0 for which there exists a function
ϕ : Xd → [0,∞) satisfying (2.2) and (2.3) such that

∞∑

j=0

qN jϕ
(
x1

q j , . . . ,
xd
q j

)
<∞ (2.11)

for all x1, . . . ,xd ∈ X . Then there exists a unique additive N-isometry U : X → Y such that

∥
∥ f (x)−U(x)

∥
∥≤ 1

d−2Cl−1
ϕ̃

⎛

⎜
⎝x,rx, . . . ,rx

︸ ︷︷ ︸
d−1 times

⎞

⎟
⎠ (2.12)
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for all x ∈ X , where

ϕ̃
(
x1, . . . ,xd

)
:=

∞∑

j=0

q jϕ
(
x1

q j , . . . ,
xd
q j

)
(2.13)

for all x1, . . . ,xd ∈ X .

Proof. Note that

q jϕ
(
x1

q j , . . . ,
xd
q j

)
≤ qN jϕ

(
x1

q j , . . . ,
xd
q j

)
(2.14)

for all x1, . . . ,xd ∈ X and all positive integers j. By the Trif ’s theorem [27, Theorem 3.2],
it follows from (2.2), (2.11), and (2.14) that there exists a unique additive mapping U :
X → Y satisfying (2.12). The additive mapping U : X → Y is given by

U(x)= lim
b→∞

qb f
(
x

qb

)
(2.15)

for all x ∈ X .
It follows from (2.3) that

∣
∣
∣
∣

∥
∥
∥
∥q

b f
(
x1

qb

)
, . . . ,qb f

(
xN
qb

)∥∥
∥
∥
Y
−∥∥x1, . . . ,xN

∥
∥
X

∣
∣
∣
∣

= qbN
∣
∣
∣
∣

∥
∥
∥
∥ f
(
x1

qb

)
, . . . , f

(
xN
qb

)∥∥
∥
∥
Y
−
∥
∥
∥
∥
x1

qb
, . . . ,

xN
qb

∥
∥
∥
∥
X

∣
∣
∣
∣

≤ qbNϕ

⎛

⎜
⎝
x1

qb
, . . . ,

xN
qb

, 0, . . . ,0
︸ ︷︷ ︸
d−N times

⎞

⎟
⎠ ,

(2.16)

which tends to zero as b→∞ for all x1, . . . ,xN ∈ X by (2.11). By (2.15),

∥
∥U
(
x1
)
, . . . ,U

(
xN
)∥∥

Y = lim
b−→∞

∥
∥
∥
∥q

b f
(
x1

qb

)
, . . . ,qb f

(
xN
qb

)∥∥
∥
∥
Y
= ∥∥x1, . . . ,xN

∥
∥
X (2.17)

for all x1, . . . ,xN ∈ X . Since U : X → Y is additive,
∥
∥U
(
x1
)−U

(
y1
)
, . . . ,U

(
xN
)−U

(
yN
)∥∥

Y

= ∥∥U(x1− y1
)
, . . . ,U

(
xN − yN

)∥∥
Y =

∥
∥x1− y1, . . . ,xN − yN

∥
∥
X

(2.18)

for all x1, y1, . . . ,xN , yN ∈ X . So the additive mapping U : X → Y is an N-isometry, as
desired. �
Corollary 2.5. Let f : X → Y be a mapping with f (0)= 0 for which there exist constants
θ ≥ 0 and p ∈ (N ,∞) satisfying (2.9). Then there exists a unique additive N-isometry U :
X → Y such that

∥
∥ f (x)−U(x)

∥
∥≤

(
1 + (d− 1)r p

)
θ

d−2Cl−1
(
1− q1−p)

∥
∥x
∥
∥p (2.19)

for all x ∈ X .
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Proof. Define ϕ(x1, . . . ,xd)= θ
∑d

j=1‖xj‖p, and apply Theorem 2.4. �

Similarly, we can prove the corresponding results for the case N > d.
Now, assume that m, n, k are integers with 1 < m < k < mn, and that s, q are integers

with 1 ≤ s ≤ [n/2] and 1 < 2q ≤ m, where [·] denotes the Gauss symbol. Assume that
1≤N ≤mn.

Theorem 2.6. Let f : X → Y be a mapping with f (0)= 0 for which there exists a function
ϕ : Xmn→ [0,∞) such that

ϕ̃
(
x1, . . . ,xmn

)
:=

∞∑

j=0

1
2 j ϕ

(
2 jx1, . . . ,2 jxmn

)
<∞, (2.20)

∥
∥
∥
∥mnmn−2Ck−2 f

(
x1 + ···+ xmn

mn

)
+mmn−2Ck−1

n∑

i=1

f
(
xmi−m+1 + ···+ xmi

m

)

− k
∑

1≤i1<···<ik≤mn

f
(
xi1 + ···+ xik

k

)∥∥
∥
∥≤ ϕ

(
x1, . . . ,xmn

)
,

(2.21)

∣
∣
∥
∥ f
(
x1
)
, . . . , f

(
xN
)∥∥

Y −
∥
∥x1, . . . ,xN

∥
∥
X

∣
∣≤ ϕ

⎛

⎜
⎝x1, . . . ,xN , 0, . . . ,0

︸ ︷︷ ︸
mn-N times

⎞

⎟
⎠ (2.22)

for all x1, . . . ,xmn ∈ X . Then there exists a unique additive N-isometry U : X → Y such that

∥
∥ f (x)−U(x)

∥
∥

≤ 1
2msmn−2Ck−1

ϕ̃

⎛

⎜
⎜
⎜
⎜
⎝

0, . . . ,0
︸ ︷︷ ︸

m−2q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,0, . . . ,0
︸ ︷︷ ︸
q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

, 0, . . . ,0
︸ ︷︷ ︸
m−q times

, . . . ,

0, . . . ,0
︸ ︷︷ ︸

m−2q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,0, . . . ,0
︸ ︷︷ ︸
q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

, 0, . . . ,0
︸ ︷︷ ︸
m−q times

, 0, . . . ,0
︸ ︷︷ ︸

mn−2ms times

⎞

⎟
⎟
⎟
⎟
⎠

+
1

2msmn−2Ck−1
ϕ̃

⎛

⎜
⎜
⎜
⎜
⎝

0, . . . ,0
︸ ︷︷ ︸

m−2q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,0, . . . ,0
︸ ︷︷ ︸
q times

, 0, . . . ,0
︸ ︷︷ ︸
m−q times

, . . . ,

0, . . . ,0
︸ ︷︷ ︸

m−2q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,0, . . . ,0
︸ ︷︷ ︸
q times

, 0, . . . ,0
︸ ︷︷ ︸
m−q times

, 0, . . . ,0
︸ ︷︷ ︸

mn−2ms times

⎞

⎟
⎟
⎟
⎟
⎠

(2.23)

for all x ∈ X .
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Proof. From [17, Theorem 3.1], it follows from (2.20) and (2.21) that there exists a
unique additive mapping U : X → Y satisfying (2.23). The additive mapping U : X → Y is
given by

U(x)= lim
d→∞

1
2d

f
(
2dx
)

(2.24)

for all x ∈ X .
It follows from (2.22) that

∣
∣
∣
∣

∥
∥
∥
∥

1
2d

f
(
2dx1

)
, . . . ,

1
2d

f
(
2dxN

)
∥
∥
∥
∥
Y
−∥∥x1, . . . ,xN

∥
∥
X

∣
∣
∣
∣

= 1
2dN

∣
∣
∥
∥ f
(
2dx1

)
, . . . , f

(
2dxN

)∥∥
Y −

∥
∥2dx1, . . . ,2dxN

∥
∥
X

∣
∣

≤ 1
2dN

ϕ

⎛

⎜
⎝2dx1, . . . ,2dxN , 0, . . . ,0

︸ ︷︷ ︸
mn−N times

⎞

⎟
⎠

≤ 1
2d

ϕ

⎛

⎜
⎝2dx1, . . . ,2dxN , 0, . . . ,0

︸ ︷︷ ︸
mn−N times

⎞

⎟
⎠ ,

(2.25)

which tends to zero for all x1, . . . ,xN ∈ X by (2.20). By (2.24),

∥
∥U
(
x1
)
, . . . ,U

(
xN
)∥∥

Y = lim
d→∞

∥
∥
∥
∥

1
2d

f
(
2dx1

)
, . . . ,

1
2d

f
(
2dxN

)
∥
∥
∥
∥
Y
= ∥∥x1, . . . ,xN

∥
∥
X (2.26)

for all x1, . . . ,xN ∈ X . Since U : X → Y is additive,

∥
∥U
(
x1
)−U

(
y1
)
, . . . ,U

(
xN
)−U

(
yN
)∥∥

Y

= ∥∥U(x1− y1
)
, . . . ,U

(
xN − yN

)∥∥
Y =

∥
∥x1− y1, . . . ,xN − yN

∥
∥
X

(2.27)

for all x1, y1, . . . ,xN , yN ∈ X . So the additive mapping U : X → Y is an N-isometry, as
desired. �

Corollary 2.7. Let f : X → Y be a mapping with f (0)= 0 for which there exist constants
θ ≥ 0 and p ∈ [0,1) such that

∥
∥
∥
∥mnmn−2Ck−2 f

(
x1 + ···+ xmn

mn

)
+mmn−2Ck−1

n∑

i=1

f
(
xmi−m+1 + ···+ xmi

m

)

− k
∑

1≤i1<···<ik≤mn

f
(
xi1 + ···+ xik

k

)∥∥
∥
∥≤ θ

mn∑

j=1

∥
∥xj
∥
∥p,

∣
∣
∥
∥ f
(
x1
)
, . . . , f

(
xN
)∥∥

Y −
∥
∥x1, . . . ,xN

∥
∥
X

∣
∣≤ θ

N∑

j=1

∥
∥xj
∥
∥p

(2.28)
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for all x1, . . . ,xmn ∈ X . Then there exists a unique additive N-isometry U : X → Y such that

∥
∥ f (x)−U(x)

∥
∥≤ 4mp−1q1−pθ

(
2− 2p

)
mn−2Ck−1

∥
∥x
∥
∥p (2.29)

for all x ∈ X .

Proof. Define ϕ(x1, . . . ,xmn)= θ
∑mn

j=1‖xj‖p, and apply Theorem 2.6. �

Theorem 2.8. Let f : X → Y be a mapping with f (0)= 0 for which there exists a function
ϕ : Xmn→ [0,∞) satisfying (2.21) and (2.22) such that

∞∑

j=1

2 jNϕ
(
x1

2 j , . . . ,
xmn

2 j

)
<∞ (2.30)

for all x1, . . . ,xmn ∈ X . Then there exists a unique additive N-isometry U : X → Y such that

∥
∥ f (x)−U(x)

∥
∥

≤ 1
2msmn−2Ck−1

ϕ̃

⎛

⎜
⎜
⎜
⎜
⎝

0, . . . ,0
︸ ︷︷ ︸

m− 2q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,0, . . . ,0
︸ ︷︷ ︸
q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

, 0, . . . ,0
︸ ︷︷ ︸
m− q times

, . . . ,

0, . . . ,0
︸ ︷︷ ︸

m−2q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,0, . . . ,0
︸ ︷︷ ︸
q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

, 0, . . . ,0
︸ ︷︷ ︸
m−q times

, 0, . . . ,0
︸ ︷︷ ︸

mn−2ms times

⎞

⎟
⎟
⎟
⎟
⎠

+
1

2msmn−2Ck−1
ϕ̃

⎛

⎜
⎜
⎜
⎜
⎝

0, . . . ,0
︸ ︷︷ ︸

m−2q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,0, . . . ,0
︸ ︷︷ ︸
q times

, 0, . . . ,0
︸ ︷︷ ︸
m−q times

, . . . ,

0, . . . ,0
︸ ︷︷ ︸

m−2q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,
mx

q
, . . . ,

mx

q
︸ ︷︷ ︸

q times

,0, . . . ,0
︸ ︷︷ ︸
q times

, 0, . . . ,0
︸ ︷︷ ︸
m−q times

, 0, . . . ,0
︸ ︷︷ ︸

mn−2ms times

⎞

⎟
⎟
⎟
⎟
⎠

(2.31)

for all x ∈ X , where

ϕ̃
(
x1, . . . ,xmn

)
:=

∞∑

j=1

2 jϕ
(
x1

2 j , . . . ,
xmn

2 j

)
(2.32)

for all x1, . . . ,xmn ∈ X .
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Proof. Note that

2 jϕ
(
x1

2 j , . . . ,
xmn

2 j

)
≤ 2 jNϕ

(
x1

2 j , . . . ,
xmn

2 j

)
(2.33)

for all x1, . . . ,xN ∈ X and all positive integers j. From [17, Theorem 3.3], it follows from
(2.21), (2.30), and (2.33) that there exists a unique additive mapping U : X → Y satisfying
(2.31). The additive mapping U : X → Y is given by

U(x)= lim
d→∞

2d f
(
x

2d

)
(2.34)

for all x ∈ X .
It follows from (2.22) that

∣
∣
∣
∣

∥
∥
∥
∥2l f

(
x1

2l

)
, . . . ,2l f

(
xN
2l

)∥∥
∥
∥
Y
−∥∥x1, . . . ,xN

∥
∥
X

∣
∣
∣
∣

= 2lN
∣
∣
∣
∣

∥
∥
∥
∥ f
(
x1

2l

)
, . . . , f

(
xN
2l

)∥∥
∥
∥
Y
−
∥
∥
∥
∥
x1

2l
, . . . ,

xN
2l

∥
∥
∥
∥
X

∣
∣
∣
∣

≤ 2lNϕ

⎛

⎜
⎝
x1

2l
, . . . ,

xN
2l

, 0, . . . ,0
︸ ︷︷ ︸

mn−N times

⎞

⎟
⎠ ,

(2.35)

which tends to zero l→∞ for all x1, . . . ,xN ∈ X by (2.30). By (2.34),

∥
∥U
(
x1
)
, . . . ,U

(
xN
)∥∥

Y = lim
l→∞

∥
∥
∥
∥2l f

(
x1

2l

)
, . . . ,2l f

(
xN
2l

)∥∥
∥
∥
Y
= ∥∥x1, . . . ,xN

∥
∥
X (2.36)

for all x1, . . . ,xN ∈ X . Since U : X → Y is additive,

∥
∥U
(
x1
)−U

(
y1
)
, . . . ,U

(
xN
)−U

(
yN
)∥∥

Y

= ∥∥U(x1− y1
)
, . . . ,U

(
xN − yN

)∥∥
Y =

∥
∥x1− y1, . . . ,xN − yN

∥
∥
X

(2.37)

for all x1, y1, . . . ,xN , yN ∈ X . So the additive mapping U : X → Y is an N-isometry, as
desired. �

Corollary 2.9. Let f : X → Y be a mapping with f (0)= 0 for which there exist constants
θ ≥ 0 and p ∈ (N ,∞) satisfying (2.28). Then there exists a unique additive N-isometry
U : X → Y such that

∥
∥ f (x)−U(x)

∥
∥≤ 4mp−1q1−pθ

(2p− 2)mn−2Ck−1

∥
∥x
∥
∥p p (2.38)

for all x ∈ X .

Proof. Define ϕ(x1, . . . ,xmn)= θ
∑mn

j=1‖xj‖p, and apply Theorem 2.8. �

Similarly, we can prove the corresponding results for the case N >mn.
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