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We consider two Pythagorean modulus introduced by Gao (2005, 2006) recently. The
exact values concerning these modulus for some classical Banach spaces are determined.
Some applications in geometry of Banach spaces are also obtained.
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1. Introduction

Recently, Gao introduced some moduli from Pythagorean theorem. In terms of these
moduli, he got some sufficient conditions for a Banach space X to have uniform normal
structure, which plays an import role in fixed-point theory.

In this paper, we mainly discuss the moduli Eε(X) and fε(X). Let X be a Banach space.
By SX and BX we will denote the unit sphere and unit ball of X , respectively. For every
nonnegative number ε, the Pythagorean moduli are given by [1, 2]

Eε(X)= sup
{‖x+ εy‖2 +‖x− εy‖2 : x, y ∈ SX

}
,

fε(X)= inf
{‖x+ εy‖2 +‖x− εy‖2 : x, y ∈ SX

}
.

(1.1)

For simplicity, we will write E(ε) and f (ε) for Eε(X) and fε(X) provided no confusion
occurs. It is clear that 2≤ f (ε)≤ 2(1 + ε2)≤ E(ε)≤ 2(1 + ε)2. It is also worth noting that
the first moduli Eε(X) has been proved to be very useful in the study of the well-known
von Neumann-Jordan constant (see e.g., [3, 4]).

Following Gao, we study the further properties concerning the Pythagorean moduli.
We find that these moduli are connected with some geometric properties. They enable
us to distinguish several important classes of spaces such as uniformly convex, uniformly
smooth, or uniformly nonsquare.
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2. Pythagorean modulus

We can replace SX by BX in the definition of E(ε) by [4, Proposition 2.2]. Analogously,
we can deduce an alternative definition for the modulus f (ε).

Proposition 2.1. Let ε ≥ 0, then

f (ε)= inf
{‖x+ εy‖2 +‖x− εy‖2 : ‖x‖,‖y‖ ≥ 1

}
. (2.1)

Proof. First, consider the elements x, y of X to be fixed, and let ϕ(t) := ‖x+ ty‖2 + ‖x−
ty‖2 whenever t ∈R. Obviously ϕ(t) is convex, even, ϕ(0)= 2‖x‖2 and ϕ(1)= ϕ(−1)≥
2‖x‖2. This immediately yields ϕ(t)≥ ϕ(1) for every t ≥ 1, that is,

‖x+ ty‖2 +‖x− ty‖2 ≥ ‖x+ y‖2 +‖x− y‖2. (2.2)

Taking x, y ∈ X with min(‖x‖,‖y‖) ≥ 1, we may assume without loss of generality
that 1≤ ‖x‖ ≤ ‖y‖. By the inequality (2.2),

‖x+ εy‖2 +‖x− εy‖2 = ‖x‖2
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(2.3)

and the arbitrariness of x, y yields

inf
{‖x+ εy‖2 +‖x− εy‖2 : ‖x‖,‖y‖ ≥ 1

}≥ f (ε). (2.4)

This completes the proof since the converse inequality holds obviously. �

Proposition 2.2. Both
√
E(ε)/2 and

√
f (ε)/2 are convex on [0,+∞).

Proof. Let ε1,ε2 ≥ 0, λ∈ (0,1), and r1(t)= sgn(sin2πt) be the Rademacher function. We
have, for any x, y ∈ SX ,

(∫ 1

0

∥
∥x+ r1(t)

(
λε1 + (1− λ)ε2

)
y
∥
∥2
dt

)1/2

≤
(∫ 1

0
(λ
∥
∥x+ r1(t)ε1y

∥
∥+ (1− λ)

∥
∥x+ r1(t)ε2y

∥
∥)

2
dt

)1/2

≤ λ

(∫ 1

0

∥
∥x+ r1(t)ε1y

∥
∥2
dt

)1/2

+ (1− λ)

(∫ 1

0

∥
∥x+ r1(t)ε2y

∥
∥2
dt

)1/2

≤ λ
√
E
(
ε1
)
/2 + (1− λ)

√
E
(
ε2
)
/2,

(2.5)

where we have used, in succession, triangular and Minkowski inequalities. Thus,
√
E
(
λε1 + (1− λ)ε2

)
/2≤ λ

√
E
(
ε1
)
/2 + (1− λ)

√
E
(
ε2
)
/2. (2.6)

The proof for
√
f (ε)/2 is similar to that of E(ε). �
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Corollary 2.3. The following statements hold.
(1) Both E(ε) and f (ε) are nondecreasing on (0,+∞).
(2) Both E(ε) and f (ε) are continuous on (0,+∞).

(3) Both (
√
E(ε)/2− 1)/ε and (

√
f (ε)/2− 1)/ε are nondecreasing on (0,+∞).

It has been shown in [1, 4] that for the �p space and ε ∈ [0,1],

E(ε)= 2
(

(1 + ε)p + (1− ε)p

2

)2/p

(2.7)

with p ≥ 2 and

f (ε)= 2
(

(1 + ε)p + (1− ε)p

2

)2/p

(2.8)

with 1 ≤ p ≤ 2. Let us now discuss the remaining cases. The key to compute the
Pythagorean modulus is the well-known inequalities of Clarkson [5], in which x and
y are elements in �p(Lp):

(‖x+ y‖p′ +‖x− y‖p′)1/p′ ≤ 21/p′(‖x‖p +‖y‖p)1/p
for 1 < p ≤ 2, (2.9)

(‖x+ y‖p +‖x− y‖p)1/p ≤ 21/p
(‖x‖p′ +‖y‖p′)1/p′

for 2≤ p <∞. (2.10)

Here, as usual, p′ is the conjugate number of p. In the cases 2≤ p <∞ and 1 < p ≤ 2, the
inequalities in (2.9) and (2.10), respectively, hold in the reversed sense.

Theorem 2.4. Let ε ∈ [0,1]. Then for the �p space

(1) E(ε)= 2(1 + εp)2/p with 1 < p ≤ 2;
(2) f (ε)= 2(1 + εp)2/p with 2≤ p <∞.

Proof. (1) Let x, y in X with ‖x‖ = 1, ‖y‖ = ε. It follows from Clarkson’s inequality (2.9)
and Hölder inequality that

(‖x+ y‖2 +‖x− y‖2

2

)1/2

≤
(‖x+ y‖p′ +‖x− y‖p′

2

)1/p′

≤ (‖x‖p +‖y‖p)1/p , (2.11)

which gives that E(ε)≤ 2(1 + εp)2/p.
On the other hand, let us put x0 = (1,0, . . .), y0 = (0,ε,0, . . .). It is clear that ‖x0‖ =

1, ‖y0‖ = ε, and ‖x0 + y0‖ = ‖x0 − y0‖ = (1 + εp)1/p. This, together with the preceding
inequality, yields the equality as desired.

(2) By replacing x with x+ y and y with x− y, we get an equivalent form of Clarkson’s
inequality (2.10), that is,

(‖x+ y‖p′ +‖x− y‖p′)1/p′ ≥ 21/p′(‖x‖p +‖y‖p)1/p
. (2.12)

The rest proof is similar to that of (2.2). �

The inequality (2.9) is called, by Takahashi and Kato, the (p, p′) Clarkson inequality. It
is obvious that these inequalities (2.9) and (2.10) are equivalent. Moreover, Takahashi and
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Kato [6, Proposition 2] proved that the (p, p′) Clarkson inequality holds in X if and only
if it holds in the dual space X∗. Thus, we can generalize Theorem 2.4 as the following.

Theorem 2.5. Assume that X contains an isometric copy of �2
p with 1 < p ≤ 2. If the (p, p′)

Clarkson inequality holds, then Eε(X)= 2(1 + εp)2/p and fε(X∗)= 2(1 + εp′)2/p′ .

3. Geometric properties

The concepts of uniform convexity and its dual property, uniform smoothness, play an
important role in analysis. Recall that a Banach space X is called uniformly convex if and
only if dX(ε) > 0 for any 0 < ε ≤ 1 (see e.g., [7]), where the function

dX(ε)= inf
{

max
(‖x+ εy‖,‖x− εy‖)− 1 : x, y ∈ SX

}
(3.1)

is Milman’s modulus of convexity defined in [8]. A Banach space X is called uniformly
smooth if and only if limε→0ρX(ε)/ε = 0, where the function ρX(ε) is Lindenstrauss’s
modulus of smoothness defined by [9]

ρX(ε)= sup

{‖x+ εy‖+‖x− εy‖
2

− 1 : x, y ∈ SX

}

. (3.2)

It is convenient for us to assume that X is a Banach space of finite dimension through
the rest proofs of this paper. The extension of the results to the general case is immediate,
depending only on the formula

Eε(X)= sup
{
Eε(Y) : Y subspace of X , dim Y = 2

}
. (3.3)

The case for the modulus f (ε) is similar.

Theorem 3.1. X is uniformly convex if and only if f (ε) > 2 for any 0 < ε ≤ 1.

Proof. Since
√
f (ε)/2 − 1 ≤ d(ε), it suffices to show that uniform convexity implies

√
f (ε)/2 > 1 for any 0 < ε ≤ 1. Suppose conversely that there is an ε ∈ (0,1] such that

√
f (ε)/2= 1. Thus, we can find two vectors x, y in SX such that ‖x+ εy‖2 +‖x− εy‖2 =

2. Therefore,

1≤ ‖x+ εy‖+‖x− εy‖
2

≤
√
‖x+ εy‖2 +‖x− εy‖2

2
= 1. (3.4)

It follows that the equality in (3.4) can occur only when ‖x + εy‖ = ‖x− εy‖ = 1. This
immediately yields dX(ε)= 0, a contradiction. �

Now, let us turn to the modulus E(ε), we will show that this modulus is actually a kind
of modulus of smoothness.

Theorem 3.2. X is uniformly smooth if and only if limε→0(
√
E(ε)/2− 1)/ε = 0.

Proof. The sufficiency is trivial since
√
E(ε)/2− 1 ≥ ρ(ε) holds for any ε ≥ 0. To see the

necessity, suppose, to get a contradiction, that limε→0(
√
E(ε)/2− 1)/ε > 0. Corollary 2.3
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shows that there is a c ∈ (0,1) such that
√
E(ε)/2− 1≥ cε for any ε > 0. In particular, let

0 < ε < 2c/(1− c2) and choose x, y with ‖x‖ = 1, ‖y‖ = ε such that

‖x+ y‖2 +‖x− y‖2 = E(ε)≥ 2(1 + cε)2. (3.5)

Assume without loss of generality that min(‖x + y‖,‖x− y‖) = ‖x− y‖ = t, and so t ∈
[1− ε,1 + cε]. It follows from the inequality (3.5) that

‖x+ y‖+‖x− y‖ ≥ t+
√

2(1 + cε)2− t2 =: ϕ(t). (3.6)

Note that ϕ(t) attains its minimum at t = 1− ε, or equivalently that

‖x+ y‖+‖x− y‖ ≥ ϕ(1− ε) (3.7)

which in view of the definition of ρ(ε) implies that

ρ(ε)
ε

≥ ϕ(1− ε)− 2
2ε

= 2c− (1− c2
)
ε

√
2(1 + cε)2− (1− ε)2 + 1 + ε

. (3.8)

Letting ε→0, we get

lim
ε→0

ρ(ε)/ε ≥ c > 0 (3.9)

which contradicts our hypothesis. �

Recall that a Banach space X is called uniformly nonsquare if there exists δ > 0, such
that if x, y ∈ SX , then ‖x + y‖/2≤ 1− δ or ‖x− y‖/2≤ 1− δ. In [1], Gao proved that X
is uniformly nonsquare provided there is an ε ∈ (0,1) such that f (ε) > 2. The following
is an improvement of such assertion.

Theorem 3.3. The following statements are equivalent.
(a) X is uniformly nonsquare.
(b) f (1) > 2.
(c) There is an ε ∈ (0,1) such that f (ε) > 2.

Proof. Since (b)⇒(c) follows directly from the continuity of f (ε) at ε = 1 and (c)⇒(a) is
proven by Gao in [1, Theorem 1], it suffices to show that (a)⇒(b).

(a)⇒(b) Suppose on the contrary that f (1) = 2 and choose two elements x, y ∈ SX
such that

√
‖x+ y‖2 +‖x− y‖2

2
− 1= 0. (3.10)

Therefore,

1≤ ‖x+ y‖+‖x− y‖
2

≤
√
‖x+ y‖2 +‖x− y‖2

2
= 1. (3.11)
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It follows that the equality in (3.11) can occur only when ‖x + y‖ = ‖x − y‖ = 1. Let
u= x+ y, v = x− y. Clearly, u,v ∈ SX and ‖u+ v‖ = ‖u− v‖ = 2, which contradicts our
hypothesis. �

Remark 3.4. For the modulus S(ε,X) [10], we can also obtain that X is uniformly non-
square if and only if there is an ε ∈ (0,1) such that S(ε,X) > 1.
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