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1. Introduction

The Genocchi numbers Gn, n = 0,1,2, . . . , which can be defined by the generating func-
tion

2t
et + 1

=
∞∑

n=0

Gn
tn

n!
, |t| < π, (1.1)

have numerous important applications in number theory, combinatorics, and numerical
analysis, among other areas, [1–13]. It is easy to find the values G1 = 1, G3 = G5 = G7 =
··· = 0, and even coefficients are given by G2m = 2(1− 22n)B2n = 2nE2n−1(0), where Bn

is a Bernoulli number and En(x) is an Euler polynomial. The first few Genocchi numbers
for n= 2,4, . . . are −1,−3,17,−155,2073, . . . . The Euler polynomials are well known as

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!

(
see [1, 3, 7–9]

)
. (1.2)

By (1.1) and (1.2) we easily see that

En(x)=
n∑

k=0

(
n

k

)
Gk+1

k+ 1
xn−k, where

(
n

k

)
= n(n− 1)···(n− k+ 1)

k!

(
cf. [4–6]

)
.

(1.3)
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For m,n≥ 1 and, m odd, we have

(
nm−n

)
Gm =

m−1∑

k=1

(
m

k

)
nkGkZm−k(n− 1), (1.4)

where Zm(n)= 1m− 2m + 3m−···+ (−1)n−1nm, see [3, 13]. From (1.15) we derive

2t =
∞∑

n=0

(
(G+ 1)n +Gn

) tn

n!
, (1.5)

where we use the technique method notation by replacing Gm by Gm(m ≥ 0), symboli-
cally. By comparing the coefficients on both sides in (1.5), we see that

G0 = 0, (G+ 1)n +Gn =
⎧
⎨
⎩

2 if n= 1,

0 if n > 1.
(1.6)

Let p be a fixed odd prime, and let Cp denote the p-adic completion of the algebraic
closure ofQp(= p-adic number field ). For d is a fixed positive integer with (p,d)= 1, let

X = Xd = lim←−
N

Z
dpNZ

,

X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a+dpZp

)
,

a+dpNZp =
{
x ∈ X | x ≡ a (mod d)pN

}
,

(1.7)

where a∈ Z lies in 0≤ a < dpN .
Ordinary q-calculus is now very well understood from many different points of view.

Let us consider a complex number q ∈ Cwith |q| < 1 (or q ∈ Cp with |1− q|p < p−1/(p−1))
as an indeterminate. The q-basic numbers are defined by

[x]q = qx − 1
q− 1

, [x]−q = −(−q)x + 1
q+ 1

, for x ∈R. (1.8)

We say that f is a uniformly differentiable function at a point a∈ Zp and denote this
property by f ∈UD(Zp), if the difference quotients

F f (x, y)= f (x)− f (y)
x− y

(1.9)

have a limit l = f ′(a) as (x, y)→ (a,a).
For f ∈UD(Zp), let us start with the expression

1[
pN
]
q

∑

0≤ j<pN
q j f ( j)=

∑

0≤ j<pN
f ( j)μq

(
j + pNZp

)
(1.10)
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representing a q-analogue of Riemann sums for f , (cf. [5]). The integral of f on Zp will
be defined as limit (n→∞) of those sums, when it exists. The p-adic q-integral of the
function f ∈UD(Zp) is defined by

Iq( f )=
∫

Zp

f (x)dμq(x)= lim
N→∞

1[
pN
]
q

∑

0≤x<pN
f (x)qx,

(
see [5, 10–12]

)
. (1.11)

In the previous paper [4, 9], the author constructed the q-extension of Euler polynomials
by using p-adic q-fermionic integral on Zp as follows:

En,q(x)=
∫

Zp

[t+ x]nqdμ−q(t), where μ−q
(
x+ pNZp

)= (−q)x[
pN
]
−q

. (1.12)

From (1.12), we note that

En,q(x)= [2]q
(1− q)n

n∑

l=0

(
n

l

)
(−1)l

1 + ql+1
qlx, see [4]. (1.13)

The q-extension of Genocchi numbers is defined as

g∗q (t)= [2]qt
∞∑

n=0

(−1)nqne[n]qt =
∞∑

n=0

G∗n,q
tn

n!
, see [4]. (1.14)

The following formula is well known in [4, 7]:

En,q(x)=
n∑

k=0

(
n

k

)
[x]n−kq qkx

G∗k+1,q

k+ 1
. (1.15)

The modified q-Euler numbers are defined as

ξ0,q =
[2]q

2
, (qξ + 1)k + ξk,q =

⎧
⎨
⎩

[2]q if k = 0,

0 if k �= 0,
(1.16)

with the usual convention of replacing ξi by ξi,q, see [10]. Thus, we derive the generating
function of ξn,q as follows:

Fq(t)= [2]q
∞∑

k=0

(−1)ke[k]qt =
∞∑

n=0

ξn,q
tn

n!
. (1.17)

Now we also consider the q-Euler polynomials ξn,q(x) as

Fq(t,x)= [2]q
∞∑

k=0

(−1)ke[k+x]qt =
∞∑

n=0

ξn,q(x)
tn

n!
. (1.18)

From (1.18) we note that

ξn,q(x)=
n∑

l=0

(
n

l

)
ξl,qq

lx[x]n−lq , see [10]. (1.19)
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In the recent, several authors studied the q-extension of Genocchi numbers and polyno-
mials (see [1, 2, 5–7, 12]). In this paper we discuss the new concept of the q-extension of
Genocchi numbers and give the same relations between q-Genocchi numbers and q-Euler
numbers.

2. q-extension of Genocchi numbers

In this section we assume that q ∈ C with |q| < 1. Now we consider the q-extension of
Genocchi numbers as follows:

gq(t)= [2]qt
∞∑

k=0

(−1)ke[k]qt =
∞∑

n=0

Gn,q
tn

n!
. (2.1)

In (2.1), it is easy to show that limq→1 gq(t)= 2t/(et + 1)=∑∞n=0Gn(tn/n!). From (2.1) we
derive

gq(t)= [2]qt
∞∑

k=0

(−1)k
∞∑

m=0

[k]mq
tm

m!
= [2]q

∞∑

k=0

(−1)k
∞∑

m=1

m[k]m−1
q

tm

m!

= [2]q
∞∑

k=0

(−1)k
∞∑

m=0

m[k]m−1
q

tm

m!
.

(2.2)

By (2.2), we easily see that

gq(t)= [2]q
∞∑

m=0

(
m
(

1
1− q

)m−1 m−1∑

l=0

(
m− 1

l

)
(−1)l

1
1 + ql

)
tm

m!
. (2.3)

From (2.1) and (2.3) we note that

∞∑

m=0

Gm,q
tm

m!
=

∞∑

m=0

(
m[2]q

(
1

1− q

)m−1 m−1∑

l=0

(
m− 1

l

)
(−1)l

1 + ql

)
tm

m!
. (2.4)

By comparing the coefficients on both sides in (2.4), we have the following theorem.

Theorem 2.1. For m≥ 0,

Gm,q =m[2]q

(
1

1− q

)m−1 m−1∑

l=0

(
m− 1

l

)
(−1)l

1 + ql
. (2.5)

From Theorem 2.1, we easily derive the following corollary.

Corollary 2.2. For k ∈N,

G0,q = 0, (qG+ 1)k +Gk,q =
⎧
⎪⎨
⎪⎩

[2]2
q

2
if k = 1,

0 if k > 1,
(2.6)

with the usual convention of replacing Gi by Gi,q.
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Remark 2.3. We note that Corollary 2.2 is the q-extension of (1.6). By (1.15)–(1.19) and
Corollary 2.2, we obtain the following theorem.

Theorem 2.4. For n∈N

ξn,q =
Gn+1,q

n+ 1
. (2.7)

From (1.18) we derive

Fq(x, t)= [2]q
∞∑

n=0

(−1)ne[n+x]qt = qxt
[2]q
qxt

e[x]qt
∞∑

n=0

(−1)neq
x[n]qt

= e[x]qt
∞∑

n=0

qnx
Gn+1,q

n+ 1
tn

n!
=

∞∑

n=0

( n∑

k=0

(
n

k

)
[x]n−kq qkx

Gk+1,q

k+ 1

)
tn

n!
.

(2.8)

By (2.8), we easily see that

ξn,q(x)=
n∑

k=0

(
n

k

)
[x]n−kq qkx

Gk+1,q

k+ 1
. (2.9)

This formula can be considered as the q-extension of (1.3). Let us consider the q-analogue
of Genocchi polynomials as follows:

gq(x, t)= [2]qt
∞∑

k=0

(−1)ke[k+x]qt =
∞∑

n=0

Gn,q(x)
tn

n!
. (2.10)

Thus, we note that limq→1 gq(x, t)= (2t/(et + 1))ext =∑∞n=0Gn(x)(tn/n!). From (2.10), we
easily derive

Gn,q(x)= [2]qn
(

1
1− q

)n−1 n−1∑

l=0

(−1)l

1 + ql
qlx
(
n− 1
l

)
. (2.11)

By (2.10) we also see that

∞∑

n=0

Gn,q(x)
tn

n!
= [2]qt

∞∑

k=0

(−1)ke[k+x]qt = [2]qt
m−1∑

a=0

(−1)a
∞∑

k=0

(−1)ke[k+(a+x)/m]qm [m]qt

= [2]q
[m]q[2]qm

m−1∑

a=0

(−1)a
(

[m]qt[2]qm
∞∑

k=0

(−1)ke[m]qt[k+(a+x)/m]qm

)

=
∞∑

n=0

(
[2]q

[m]q[2]qm

m−1∑

a=0

(−1)a[m]nqGn,qm

(
x+ a

m

))
tn

n!

=
∞∑

n=0

(
[2]q
[2]qm

[m]n−1
q

m−1∑

a=0

(−1)aGn,qm

(
x+ a

m

))
tn

n!
, where m∈N odd.

(2.12)

Therefore, we obtain the following theorem.
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Theorem 2.5. Let m(= odd)∈N. Then the distribution of the q-Genocchi polynomials will
be as follows:

Gn,q(x)= [2]q
[2]qm

[m]n−1
q

m−1∑

a=0

(−1)aGn,qm

(
x+ a

m

)
, (2.13)

where n is positive integer.

Theorem 2.5 will be used to construct the p-adic q-Genocchi measures which will
be treated in the next section. Let χ be a primitive Dirichlet character with a conductor
d(= odd)∈N. Then the generalized q-Genocchi numbers attached to χ are defined as

gχ,q(t)= [2]qt
d−1∑

a=0

χ(n)(−1)ne[n]qt =
∞∑

n=0

Gn,χ,q
tn

n!
. (2.14)

From (2.14), we derive

Gn,χ,q =
[2]q
[2]qd

[d]n−1
q

d−1∑

a=0

(−1)aχ(a)Gn,qd

(
a

d

)
. (2.15)

3. p-adic q-Genocchi measures

In this section we assume that q ∈ Cp with |1− q|p < p−1/(p−1) so that qx = exp(x logq).
Let χ be a primitive Dirichlet’s character with a conductor d(= odd)∈N. For any positive
integers N ,k, and d(= odd), let μk = μk,q;G be defined as

μk
(
a+dpNZp

)= (−1)a
[
dpN

]k−1
q

[2]q
[2]qdpN

Gk,qdpN

(
a

dpN

)
. (3.1)

By using Theorem 2.5 and (3.1), we show that

p−1∑

i=0

μk
(
a+ idpN +dpN+1Zp

)= μk
(
a+dpNZp

)
. (3.2)

Therefore, we obtain the following theorem.

Theorem 3.1. Let d be an odd positive integer. For any positive integers N ,k, and let μk =
μk,q;G be defined as

μk
(
a+dpNZp

)= (−1)a
[
dpN

]k−1
q

[2]q
[2]qdpN

Gk,qdpN

(
a

dpN

)
. (3.3)

Then μk can be extended to a distribution on X .

From the definition of μk and (2.15) we note that
∫

X
χ(x)dμk(x)=Gk,χ,q. (3.4)
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By (2.1) and (2.3), it is not difficult to show that

Gn,q(x)=
n∑

k=0

(
n

k

)
[x]n−kq qkxGk,q. (3.5)

From (3.1) and (3.5) we derive

dμk(a)= lim
N→∞

μk
(
a+dpNZp

)= k[a]k−1
q dμ−q(a). (3.6)

Therefore, we obtain the following corollary.

Corollary 3.2. Let k be a positive integer. Then,

Gk,χ,q =
∫

X
χ(x)dμk(x)= k

∫

X
χ(x)[x]k−1

q dμ−q(x). (3.7)

Moreover,

Gk,q = k
∫

X
[x]k−1

q dμ−q(x). (3.8)

Remark 3.3. In the recent paper (see [1]), Cenkci et al. have studied q-Genocchi num-
bers and polynomials and p-adic q-Genocchi measures. Starting from T. Kim, L.-C. Jang,
and H. K. Pak’s construction of q-Genocchi numbers [7], they employed the method de-
veloped in a series of papers by Kim [see, e.g., [5, 14–16]] and they considerd another
q-analogue of Genocchi numbers Gk(q) as

Gk(q)= q(1 + q)
(1− q)k−1

k∑

m=0

(
k

m

)
m(−1)m+1

1 + qm
, (3.9)

which is easily derived from the generating function

F(G)
q (t)=

∞∑

k=0

Gk(q)
tk

k!
= q(1 + q)t

∞∑

n=0

(−1)nqne[n]t . (3.10)

However, these q-Genocchi numbers and generating function do not seem to be natural
ones; in particular, these numbers cannot be represented as a nice Witt’s type formula for
the p-adic invariant integral on Zp and the generating function does not seems to be sim-
ple and useful for deriving many interesting identities related to q-Genocchi numbers. By
this reason, we consider q-Genocchi numbers and polynomials which are different. Our
q-Genocchi numbers and polynomials to treat in this paper can be represented by p-adic
q-fermionic integral on Zp [9, 13] and this integral representation also can be consid-
ered as Witt’s type formula for q-Genocchi numbers. These formulae are useful to study
congruences and worthwhile identities for q-Genocchi numbers. By using the generating
function of our q-Genocchi numbers, we can derive many properties and identities as
same as ordinary Genocchi numbers which were well known.
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