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smooth Banach spaces. In this paper Kamimura and Takahashi’s algorithm is extended
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type methods applied to finding the zeroes of maximal monotone operators in the setting
of Hilbert spaces or Banach spaces.
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1. Introduction

In this paper, we investigate a broad class of inexact proximal-type methods for solv-
ing the generalized variational inequality problem with maximal monotone operator in
a reflexive Banach space. Let E be a real reflexive Banach space with dual E∗. The nota-
tion 〈x, f 〉 stands for the duality pairing f (x) of f ∈ E∗ and x ∈ E. Given T : E→ 2E

∗
,

a maximal monotone operator, and Ω ⊂ E, a nonempty closed and convex subset, the
generalized variational inequality for T and Ω, GVI (T ,Ω), is as follows. Find x∗ such
that

x∗ ∈Ω, ∃u∗ ∈ T
(
x∗
)

:
〈
u∗,x− x∗

〉≥ 0 ∀x ∈Ω. (1.1)
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The set Ω will be called the feasible set for problem (1.1). In the particular case, in which
T is the subdifferential of a proper convex and lower semicontinuous function ϕ : E→
(−∞,∞], (1.1) reduces to the convex optimization problem

min
x∈Ω

ϕ(x). (1.2)

It is well known that one of the most significant and important problems in the varia-
tional inequality theory is the development of an efficient iterative algorithm to compute
approximate solutions. In 2005, Burachik et al. [1] studied the following generic outer
approximation scheme for solving GVI (T ,Ω).

Algorithm 1.1 (BLS).

Initialization. Take Ω1 ⊃Ω.

Iterations. For n = 1,2, . . . , find xn ∈Ωn, a solution of the approximated problem (Pn),
defined as

∃un ∈ T
(
xn
)

with
〈
un,x− xn

〉≥ − εn ∀x ∈Ωn, (1.3)

where there hold the following conditions:
(i) {εn} ⊂ [0,∞) satisfies limn→∞εn = 0;

(ii) {Ωn} ⊂ E is a sequence of closed convex subsets such that Ω⊂Ωn for all n.

The goal of their work in [1] is twofold. First, they developed a convergence analysis
which can be applied to a more general and flexible Algorithm BLs for successive approx-
imation of GVI (T ,Ω), under the standard boundedness assumptions. They proved that
Algorithm BLs generates a bounded sequence and that all weak accumulation points are
solutions of GVI (T ,Ω). Second, they obtained the same convergence results in the ab-
sence of boundedness assumptions. For doing this, they considered subproblems (Pn),
where the original operator is replaced by a suitable coercive regularization. Their work
was built around the above generic outer approximation algorithm for solving GVI
(T ,Ω).

To present a convergence analysis of Algorithm BLs, they assumed that the solution set
S∗ of GVI (T ,Ω) is nonempty and that the sequence {xn} generated by Algorithm BLs is
asymptotically feasible.

We recall that {xn} is called asymptotically feasible when all weak accumulation points
of {xn} belong to Ω.

In 2003, Kamimura and Takahashi [2] introduced and studied the following proximal-
type algorithm in a smooth Banach space E.

Algorithm 1.2 (KT).

x0 ∈ E,

0= vn +
1
rn

(
J yn− Jxn

)
, vn ∈ Tyn,

Hn =
{
z ∈ E :

〈
vn,z− yn

〉≤ 0
}

,
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Wn =
{
z ∈ E :

〈
Jx0− Jxn,z− xn

〉≤ 0
}

,

xn+1 =QHn∩Wnx0, n= 0,1,2, . . . ,

(1.4)

where {rn} is a sequence of positive real numbers and xn+1 = QHn∩Wnx0 is the unique
point such that

φ
(
xn+1,x0

)= inf
{
φ
(
z,x0

)
: z ∈Hn∩Wn

}
. (1.5)

They derived a strong convergence theorem which extends and improves Solodov and
Svaiter results [3].

In this paper, Kamimura and Takahashis convergence analysis [2] is extended to de-
velop a generic convergence analysis which unifies a wide class of proximal-type methods
applied to finding the zeroes of maximal monotone operators in the setting of Hilbert
spaces or Banach spaces. Our work is built around a generic inexact proximal point al-
gorithm (see Section 3, Algorithm (I)). First, by virtue of Burachik et al. technique [1,
Lemma 3.2], we prove that all weak accumulation points of the iterative sequence {xn}
are solutions of GVI (T ,Ω). Second, utilizing Kamimura and Takahashi technique [2,
Theorem 3.1], we prove that the whole sequence {xn} converges strongly to a solution of
GVI (T ,Ω).

We recall the main basic notions that will be used in the sequel. Let T : E→ 2E
∗

be a
multivalued operator.

D(T) := {x ∈ E | Tx �=∅} is the domain of T ; G(T) := {(x,u)∈ E×E∗ | u∈ Tx} and
R(T) := {u∈ E∗ | u∈ Tx for some x ∈ E} are the graph and the range of T , respectively;

T is monotone if for all x, y ∈ E, u∈ Tx, and v ∈ Ty,

〈u− v,x− y〉 ≥ 0; (1.6)

if this inequality holds strictly whenever x, y ∈ E, u ∈ Tx, v ∈ Ty, and x �= y, then T is
strictly monotone;

T is maximal monotone if it is monotone and for any monotone T̃ : E→ 2E
∗
, G(T)⊂

G(T̃)⇒ T = T̃ .

2. Preliminaries

To proceed, we establish some preliminaries. Let E be a real Banach space, and E∗ the
dual space of E. The notion of paramonotonicity was introduced in [4, 5] and further
studied in [6]. It is defined as follows.

Definition 2.1 [1, page 2075]. The operator T is paramonotone in Ω if it is monotone
and 〈v− u, y− z〉 = 0 with y,z ∈Ω,v ∈ T(y),u∈ T(z) implies that u ∈ T(y), v ∈ T(z).
The operator T is paramonotone if this property holds in the whole space.

Proposition 2.2 (see [6, Proposition 4]). Assume that T is paramonotone on Ω and x is
a solution of GVI (T ,Ω). Let x∗ ∈Ω be such that there exists an element u∗ ∈ T(x∗) with
〈u∗,x∗ − x〉 ≤ 0. Then x∗ also solves GVI (T ,Ω).
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Paramonotonicity can be seen in a condition which is weaker than strict monotonicity.
The remark below contains some examples of operators which are paramonotone.

Remark 2.3. If T is the subdifferential of a convex function ϕ : E→ (−∞,∞], then T is
paramonotone. When E = Rn, a condition which guarantees paramonotonicity of
T : E→ 2E, is when T is differentiable and the symmetrization of its Jacobian matrix has
the same rank as the Jacobian matrix itself. However, relevant operators fail to satisfy this
condition.

Recall the definition of pseudomonotonicity, which was taken from [7] and should
not be confused with other uses of the same word (see, e.g., [8]).

Definition 2.4 [1, page 2075]. Let E be a reflexive Banach space and the operator T such
that D(T) is closed and convex. T is said to be pseudomonotone if it satisfies the following
condition. If the sequence {(xn,un)} ⊂G(T) satisfies that

(a) {xn} converges weakly to x∗ ∈D(T),
(b) limsupn〈un,xn− x∗〉 ≤ 0,

then for every w ∈D(T) there exists an element u∗ ∈ T(x∗) such that

〈
u∗,x∗ −w

〉≤ lim inf
n

〈
un,xn−w

〉
. (2.1)

Remark 2.5. If T is the gradient of a Gâteaux differentiable convex function ϕ : Rn →
(−∞,∞], then T is pseudomonotone. Indeed, T ≡∇ϕ is hemicontinuous according to
[9, page 94]. Thus T ≡∇ϕ is pseudomonotone according to [9, page 107]. Combining
the latter statement with Remark 2.3, we conclude that every T of this kind is both para-
and pseudomonotone. An example of a nonstrictly monotone operator, which is both
para- and pseudomonotone, is the subdifferential of the function ϕ : (−∞,∞)→ (−∞,∞)
defined by ϕ(t)= |t| for all t.

On the other hand, recall that E is said to be smooth if

lim
t→0

‖x+ ty‖−‖x‖
t

(2.2)

exists for each x, y ∈ SE, where SE := {x ∈ E : ‖x‖ = 1} is the unit sphere of E. If E is
smooth, then the normalized duality mapping J : E→ 2E

∗
is single valued, and continu-

ous from the norm topology of E to the weak∗ topology of E∗, that is, norm-to-weak∗

continuous. In general, the normalized duality mapping J has the following well-known
property:

‖x‖2−‖y‖2 ≥ 2〈 j y,x− y〉 (2.3)

for all x, y ∈ E and j y ∈ J y. Recall also that E is said to be uniformly smooth if E is smooth
and the limit (2.2) is attained uniformly for x, y ∈ SE.

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ SE with
x �= y. It is also said to be uniformly convex if for any given ε > 0, there exists some δ > 0
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such that for each x, y ∈ SE,

‖x+ y‖ > 2− δ =⇒ ‖x− y‖ < ε. (2.4)

It is known that a uniformly convex Banach space is reflexive and strictly convex.
Next, we recall some propositions involving the function φ : E×E→ (−∞,∞) defined

by

φ(x, y)= ‖x‖2− 2〈J y,x〉+‖y‖2 ∀x, y ∈ E, (2.5)

where E is a smooth Banach space. When {xn} is a sequence in E, we denote the strong
convergence of {xn} to x ∈ E by xn → x, and the weak convergence of {xn} to x ∈ E by
xn→ x weakly.

Proposition 2.6 [2]. Let E be a uniformly convex and smooth Banach space, and let {yn}
and {zn} be two sequences of E. If φ(yn,zn)→ 0 and either {yn} or {zn} is bounded, then
yn− zn→ 0.

Proposition 2.7 [10]. Let E be a reflexive, strictly convex, and smooth Banach space. Let
C be a nonempty closed convex subset of E and x ∈ E. Then there exists a unique element
x0 ∈ C such that

φ
(
x0,x

)= inf
{
φ(z,x) : z ∈ C

}
. (2.6)

For each nonempty closed convex subset C of a reflexive, strictly convex, and smooth
Banach space E and x ∈ E, we defined the mapping QC of E onto C by QCx = x0 where x0

is defined by (2.6). It is easy to see that, in a Hilbert space, the mapping QC is coincident
with the metric projection. In our discussion, instead of the metric projection, we make
use of the mapping QC. Finally, we recall two results concerning Proposition 2.7 and the
mapping QC.

Proposition 2.8 [2]. Let E be a smooth Banach space and C a convex subset of E. Let x ∈ E
and x ∈ C. Then

φ(x,x)= inf
{
φ(z,x) : z ∈ C

}
(2.7)

if and only if

〈
Jx− Jx,z− x

〉≥ 0 ∀z ∈ C. (2.8)

Proposition 2.9 [2]. Let E be a reflexive, strictly convex, and smooth Banach space. Let C
be a nonempty closed convex subset of E and x ∈ E. Then

φ
(
y,Qcx

)
+φ
(
Qcx,x

)≤ φ(y,x) ∀y ∈ C. (2.9)

3. Inexact proximal-type method and its convergence

In the remainder of this paper, we always assume that E is a real smooth Banach space,
Ω⊂ E a nonempty closed and convex set, and T : E→ 2E

∗
a maximal monotone operator.
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To present a convergence analysis for the GVI (T ,Ω) (1.1) which can be applied to a
wide family of proximal point schemes, we fix a sequence {Ωn} of closed convex subsets
of E, and a sequence {εn} ⊂ [0,∞) verifying

(i) Ω⊆Ωn for all n≥ 0, where Ω0 =Ω,
(ii) limn εn = 0.

Let A : E→ E∗ be monotone such that

R(J +A+ rT)= E∗ ∀r > 0. (3.1)

We will make the following assumptions:
(H1) D(T)∩ int(Ω) �=∅ or int(D(T))∩Ω �=∅;
(H2) T paramonotone and pseudomonotone with closed domain;
(H3) the solution set S∗ of GVI (T ,Ω) is nonempty.

Now, we introduce the following inexact proximal point algorithm.

Algorithm 3.1 (I).

x0 ∈ E,

∃vn ∈ Tyn with
〈
vn +

1
rn

(
J yn− Jxn

)
+

1
rn

(
Ayn−Axn

)
+

1
rn
·en, y− yn



≥ − εn

∀y ∈Ωn,

Hn =
{
z ∈Ωn :

〈
vn,z− yn

〉≤ 0
}

,

Wn =
{
z ∈Ωn :

〈
Jx0− Jxn,z− xn

〉≤ 0
}

,

xn+1 =QHn∩Wnx0, n= 0,1,2, . . . ,

(3.2)

where {rn} is a sequence of positive real numbers and {en} is regarded as an error se-
quence in E∗.

First, we investigate the conditions under which Algorithm (I) is well defined.

Proposition 3.2. Let E be a reflexive, strictly convex, and smooth Banach space. If D(T)⊂
Ω such that (H3) holds, then the sequences {xn} and {yn} generated by Algorithm (I) are
both well defined.

Proof. It is obvious that both Hn and Wn are closed convex sets. Let x̂ ∈ S∗. Then there
exists û∈ Tx̂ such that

〈û,x− x̂〉 ≥ 0 ∀x ∈Ω. (3.3)

From the assumption (∗), there exists (yn,vn)∈ E×E∗ such that vn ∈ Tyn and

〈
vn +

1
rn

(
J yn− Jxn

)
+

1
rn

(
Ayn−Axn

)
+

1
rn
·en, y− yn



≥ − εn ∀y ∈Ωn. (3.4)

Since x̂ ∈Ω⊂Ωn for all n≥ 1 and yn ∈D(T)⊂Ω, the monotonicity of T implies that

〈
vn, yn− x̂

〉≥ 〈û, yn− x̂
〉≥ 0. (3.5)
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Hence x̂ ∈ Hn for each n ≥ 0. It is clear that x̂ ∈ H0 ∩W0. Thus it follows from
Proposition 2.8 that

〈
Jx0− Jx1, x̂− x1

〉= 〈Jx0− JQH0∩W0x0, x̂−QH0∩W0x0
〉≤ 0. (3.6)

Therefore, x̂ ∈H1∩W1. By induction, we obtain

〈
Jx0− Jxn, x̂− xn

〉= 〈Jx0− JQHn−1∩Wn−1x0, x̂−QHn−1∩Wn−1x0
〉≤ 0 (3.7)

which implies x̂ ∈Hn ∩Wn and hence xn+1 = QHn∩Wnx0 is well defined. Thus by induc-
tion again, the sequence {xn} generated by Algorithm (I) is well defined for each n ≥ 0.
Furthermore, it is clear that the sequence {yn} is also well defined. �

Remark 3.3. From the above proof, it follows that S∗ ⊂Hn∩Wn for all n≥ 0 under the
assumption of Proposition 3.2.

Definition 3.4. Fix {Ωn} and {εn} as in (i) and (ii).
(a) A sequence {xn} generated by Algorithm (I) will be called an orbit for GVI (T ,Ω).
(b) An orbit {xn} will be called asymptotically feasible (AF) for GVI (T ,Ω) when all

weak accumulation points of {xn} belong to Ω.

A relevant question regarding AF orbits for GVI (T ,Ω) is which extra conditions guar-
antee optimality of all weak accumulation points. In our analysis, we use the assumption
of para- and pseudomonotonicity.

We are now in a position to prove the main theorem in this paper.

Theorem 3.5. Let E be a uniformly convex and uniformly smooth Banach space. Let T :
E→ 2E

∗
be a maximal monotone operator with D(T) ⊂Ω and A : E→ E∗ monotone and

uniformly norm-norm continuous on any bounded subset of E such that R(J +A+ rT)= E∗

for all r > 0. Suppose that (H2) and (H3) hold, and that for an arbitrary x0 ∈ E, {xn} and
{yn} are the sequences generated by Algorithm (I), where {rn} is a positive bounded sequence
with liminf n→∞rn > 0, and {en} is an error sequence of E∗ with limn→∞‖en‖ = 0. If {xn}
is an AF orbit for GVI (T ,Ω) such that {xn − yn} is bounded, then there holds one of the
following statements:

(a) limn→∞‖xn‖ = limn→∞‖yn‖ = +∞;
(b) both {xn} and {yn} converge strongly to QS∗x0.

Proof. It follows from the definition of Wn and Proposition 2.8 that QWnx0 = xn. Further,
from xn+1 ∈Wn and Proposition 2.9, we deduce that

φ
(
xn+1,QWnx0

)
+φ
(
QWnx0,x0

)≤ φ
(
xn+1,x0

)
, (3.8)

and hence

φ
(
xn+1,xn

)
+φ
(
xn,x0

)≤ φ
(
xn+1,x0

)
. (3.9)

Since φ(xn+1,xn)≥ 0 for all n≥ 0, from (3.9), we know that {φ(xn,x0)} is nondecreasing.
Consequently, we have limn→∞φ(xn,x0)= +∞ or limn→∞φ(xn,x0) < +∞.
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Next, we discuss the two possible cases.

Case 1. limn→∞φ(xn,x0)= +∞. Observe that

φ
(
xn,x0

)= ∥∥xn
∥
∥2− 2

〈
Jx0,xn

〉
+
∥
∥x0
∥
∥2 ≤ (∥∥xn

∥
∥+

∥
∥x0
∥
∥)2

. (3.10)

Hence we have
√
φ(xn,x0)− ‖x0‖ ≤ ‖xn‖. This implies that limn→∞‖xn‖ = +∞. Since

‖xn‖ ≤ ‖xn− yn‖+‖yn‖, it follows that limn→∞‖yn‖ = +∞.

Case 2. limn→∞φ(xn,x0) < +∞. In this case, it is clear that {φ(xn,x0)} is bounded. Also, it
follows from (3.9) that as n→∞,

0≤ φ
(
xn+1,xn

)≤ φ
(
xn+1,x0

)−φ
(
xn,x0

)−→ 0, (3.11)

that is, limn→∞φ(xn+1,xn)= 0. Now, observe that

(∥∥xn
∥
∥−∥∥x0

∥
∥)2 ≤ ∥∥xn

∥
∥2− 2

〈
Jx0,xn

〉
+
∥
∥x0
∥
∥2 = φ

(
xn,x0

)
. (3.12)

This shows that ‖xn‖ ≤ ‖x0‖+
√
φ(xn,x0), and so {xn} is bounded. Thus from Proposition

2.6, we derive xn+1− xn→ 0 as n→∞.

On the other hand, observe that

φ
(
QHnxn,xn

)−φ
(
yn,xn

)= ∥∥QHnxn
∥
∥2−∥∥yn

∥
∥2

+ 2
〈
Jxn, yn−QHnxn

〉

≥ 2
〈
J yn,QHnxn− yn

〉
+ 2
〈
Jxn, yn−QHnxn

〉

= 2
〈
Jxn− J yn, yn−QHnxn

〉
.

(3.13)

Moreover, utilizing Algorithm (I), we have
〈
Jxn− J yn, yn−QHnxn

〉≥ 〈rnvn +Ayn−Axn + en, yn−QHnxn
〉− rnεn. (3.14)

Note that from xn+1 ∈Hn, we have φ(xn+1,xn)≥ φ(QHnxn,xn). Thus we deduce that

φ
(
QHnxn,xn

)≤ φ
(
xn+1,xn

)−→ 0 as n−→∞. (3.15)

Further, it follows from the boundedness of {xn} and Proposition 2.6 that QHnxn− xn →
0. This immediately implies that {QHnxn} is bounded. Since QHnxn ∈Hn and A is mono-
tone, it follows from (3.13), (3.14), and the definition of Hn that

φ
(
xn+1,xn

)−φ
(
yn,xn

)

≥ φ
(
QHnxn,xn

)−φ
(
yn,xn

)

≥ 2
〈
Jxn− J yn, yn−QHnxn

〉

≥ 2rn
〈
vn, yn−QHnxn

〉
+ 2
〈
Ayn−Axn, yn−QHnxn

〉

+ 2
〈
en, yn−QHnxn

〉− 2rnεn

= 2rn
〈
vn, yn−QHnxn

〉
+ 2
〈
Ayn−AQHnxn, yn−QHnxn

〉

+ 2
〈
AQHnxn−Axn, yn−QHnxn

〉
+ 2
〈
en, yn−QHnxn

〉− 2rnεn

≥ 2
〈
AQHnxn−Axn, yn−QHnxn

〉
+ 2
〈
en, yn−QHnxn

〉− 2rnεn

(3.16)
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which yields

φ
(
yn,xn

)≤ φ
(
xn+1,xn

)− 2
〈
en, yn−QHnxn

〉

− 2
〈
AQHnxn−Axn, yn−QHnxn

〉
+ 2rnεn.

(3.17)

Note that {xn− yn} is bounded. Hence {yn} is bounded. Since ‖en‖→ 0, {rn} is bounded
and A is uniformly norm-to-norm continuous on any bounded subset of E, from (3.17),
we derive

limsup
n→∞

φ
(
yn,xn

)

≤ limsup
n→∞

{
φ
(
xn+1,xn

)− 2
〈
en, yn−QHnxn

〉− 2
〈
AQHnxn−Axn, yn−QHnxn

〉
+ 2rnεn

}

≤ limsup
n→∞

φ
(
xn+1,xn

)
+ 2 limsup

n→∞

∥
∥en
∥
∥
∥
∥yn−QHnxn

∥
∥

+ 2 limsup
n→∞

∥
∥AQHnxn−Axn

∥
∥
∥
∥yn−QHnxn

∥
∥+ 2 limsup

n→∞
rnεn = 0,

(3.18)

and hence limn→∞φ(yn,xn)= 0. From Proposition 2.6, we obtain yn− xn→ 0.
To prove the strong convergence of {xn} to QS∗x0, we will proceed in the following two

steps.
Firstly, we claim that ωw(xn)⊂ S∗ where ωw(xn) denote the weak ω-limit set of {xn},

that is,

ωw
(
xn
)= {y ∈ E : y =weak-lim

i→∞
xni for some ni ↑ ∞

}
. (3.19)

Indeed, since E is reflexive, it follows from the boundedness of {xn} that ωw(xn) �= ∅.
Let x∗ be an arbitrary element of ωw(xn). Then there exists a subsequence {xni} of {xn}
such that xni → x∗ weakly as i→∞. Note that yn− xn→ 0 as n→∞. Hence it is clear that
yni → x∗ weakly as i→∞. Since A, J : E→ E∗ are uniformly norm-to-norm continuous
on any bounded subset of E, we conclude that ‖J yn− Jxn‖ → 0 and ‖Ayn−Axn‖ → 0 as
n→∞. Note that for each i, there exists vni ∈ Tyni such that
〈
vni +

1
rni

(
J yni − Jxni

)
+

1
rni

(
Ayni −Axni

)
+

1
rni

eni , y− yni



≥ − εni ∀y ∈Ωni , ∀nni .

(3.20)

Then by (i), we have

〈
vni , yni − y

〉≤ εni +
1
rni

〈(
J yni − Jxni

)
+
(
Ayni −Axni

)
+ eni , y− yni

〉 ∀y ∈Ω, ∀ni.
(3.21)

Since {xn} is AF, x∗ ∈Ω and hence

〈
vni , yni − x∗

〉≤ εni +
1
rni

〈(
J yni − Jxni

)
+
(
Ayni −Axni

)
+ eni ,x

∗ − yni
〉 ∀ni.

(3.22)
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Using also (ii) and the conditions that limn→∞‖en‖ = 0 and liminf n→∞rn > 0, we have

limsup
i

〈
vni , yni − x∗

〉

≤ limsup
i

εni + limsup
i

{
1
rni

〈(
J yni − Jxni

)
+
(
Ayni −Axni

)
+ eni ,x

∗ − yni
〉
}

≤ limsup
i

1
rni
·limsup

i

∥
∥(J yni − Jxni

)
+
(
Ayni −Axni

)
+ eni

∥
∥
∥
∥x∗ − yni

∥
∥= 0.

(3.23)

Take x ∈ S∗. By pseudomonotonicity of T , we conclude that there exists u∗ ∈ T(x∗) such
that

liminf
i

〈
vni , yni − x

〉≥ 〈u∗,x∗ − x
〉
. (3.24)

Since x ∈Ω, (3.21) implies that

liminf
i

〈
vni , yni − x

〉

≤ liminf
i

εni + liminf
i

1
rni

〈(
J yni − Jxni

)
+
(
Ayni −Axni

)
+ eni ,x− yni

〉

≤ limsup
i

1
rni

∥
∥(J yni − Jxni

)
+
(
Ayni −Axni

)
+ eni

∥
∥
∥
∥x− yni

∥
∥= 0.

(3.25)

Combining the last two inequalities, we have that

〈
u∗,x∗ − x

〉≤ 0. (3.26)

Finally, by paramonotonicity of T and Proposition 2.2, we conclude that x∗ is a solution
of the GVI (T ,Ω), that is, x∗ ∈ S∗. This shows that ωw(xn)⊂ S∗.

Secondly, we claim that xn→QS∗x0 as n→∞. Indeed, set w∗ =: QS∗x0. Let {xni} be any
weakly convergent subsequence of {xn} such that xni → w weakly as i→∞ for some w ∈
ωw(xn). According to the above argument, we conclude that w ∈ S∗. Now, from xn+1 =
QHn∩Wnx0 and w∗ ∈ S∗ ⊂Hn∩Wn, we have

φ(xn+1,x0)≤ φ(w∗,x0). (3.27)

Then it is readily seen that

φ
(
xn,w∗

)= φ
(
xn,x0

)
+φ
(
x0,w∗

)− 2
〈
Jw∗ − Jx0,xn− x0

〉

≤ φ
(
w∗,x0

)
+φ
(
x0,w∗

)− 2
〈
Jw∗ − Jx0,xn− x0

〉
,

(3.28)

which yields

limsup
i→∞

φ
(
xni ,w

∗)≤ φ
(
w∗,x0

)
+φ
(
x0,w∗

)− 2
〈
Jw∗ − Jx0,w− x0

〉
. (3.29)
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From Proposition 2.8, it follows that

φ
(
w∗,x0

)
+φ
(
x0,w∗

)− 2
〈
Jw∗ − Jx0,w− x0

〉

= 2
(∥∥w∗

∥
∥2− 〈Jx0,w∗

〉− 〈Jw∗,w
〉

+
〈
Jx0,w

〉)

= 2
〈
Jx0− Jw∗,w−w∗

〉≤ 0.

(3.30)

Therefore, we obtain limsup i→∞φ(xni ,w
∗)≤ 0 and hence φ(xni ,w

∗)→ 0 as i→∞. It fol-
lows from Proposition 2.6 that xni → w∗ as i→∞. In view of the arbitrariness of the
subsequence {xni}, we know that any weakly convergent subsequence of {xn} converges
strongly to w∗, and also the whole sequence {xn} converges weakly to w∗. Therefore,
{xn} converges strongly to w∗ =: QS∗x0. Finally, it follows from yn − xn → 0 that {yn}
also converges strongly to QS∗x0. �

Theorem 3.6. Let E be a uniformly convex and uniformly smooth Banach space, and T :
E→ 2E

∗
a maximal monotone operator with D(T) ⊂Ω. Suppose that (H2) and (H3) hold

and that for an arbitrary x0 ∈ E, {xn} and {yn} are the sequences generated by Algorithm (I)
where we have put A≡ 0, {rn} a positive bounded sequence with liminf n→∞rn > 0, and {en}
an error sequence of E∗ with limn→∞‖en‖ = 0. If {xn} is an AF bounded orbit for GVI (T ,Ω)
and liminf n→∞〈en, yn〉 ≥ 0, then both {xn} and {yn} converge strongly to QS∗x0.

Proof. As in the proof of Theorem 3.5, we can conclude that limn→∞φ(xn,x0) = +∞ or
limn→∞φ(xn,x0) < +∞. Observe that for each n≥ 0,

0≤ φ
(
xn,x0

)= ∥∥xn
∥
∥2− 2

〈
xn, Jx0

〉
+
∥
∥x0
∥
∥2 ≤ 4 sup

n≥0

∥
∥xn
∥
∥2

< +∞, (3.31)

since {xn} is bounded. This shows that {φ(xn,x0)} is bounded. Therefore, limn→∞φ(xn,
x0) < +∞ and hence it follows from (3.9) that limn→∞φ(xn+1,xn)= 0. Also, observe that

φ
(
xn+1,xn

)−φ
(
yn,xn

)= ∥∥xn+1
∥
∥2−∥∥yn

∥
∥2

+ 2
〈
Jxn, yn− xn+1

〉

≥ 2
〈
J yn,xn+1− yn

〉
+ 2
〈
Jxn, yn− xn+1

〉

= 2
〈
Jxn− J yn, yn− xn+1

〉
.

(3.32)

Moreover, utilizing Algorithm (I), we have

〈
Jxn− J yn, yn− xn+1

〉≥ 〈rnvn + en, yn− xn+1
〉− rnεn. (3.33)

Since xn+1 ∈Hn, it follows from (3.32), (3.33), and the definition of Hn that

φ
(
xn+1,xn

)−φ
(
yn,xn

)≥ 2
〈
Jxn− J yn, yn− xn+1

〉

≥ 2rn
〈
vn, yn− xn+1

〉
+ 2
〈
en, yn− xn+1

〉

≥ 2
〈
en, yn− xn+1

〉
(3.34)
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and hence

φ
(
yn,xn

)≤ φ
(
xn+1,xn

)− 2
〈
en, yn− xn+1

〉

≤ φ
(
xn+1,xn

)− 2
〈
en, yn

〉
+ 2
〈
en,xn+1,

〉

≤ φ
(
xn+1,xn

)− 2
〈
en, yn

〉
+ 2
∥
∥xn+1

∥
∥
∥
∥en
∥
∥.

(3.35)

Since liminf n→∞〈en, yn〉 ≥ 0 and limn→∞‖en‖ = 0, from (3.35), we obtain

limsup
n→∞

φ
(
yn,xn

)≤ limsup
n→∞

φ
(
xn+1,xn

)− 2 liminf
n→∞

〈
en, yn

〉

+ 2 limsup
n→∞

∥
∥xn+1

∥
∥
∥
∥en
∥
∥≤ 0,

(3.36)

which implies that φ(yn,xn)→ 0 as n→∞. From Proposition 2.6, we have yn − xn → 0
as n→∞. Obviously, {yn} is bounded. Note that J : E→ E∗ is uniformly norm-to-norm
continuous on any bounded subset of E. Thus we conclude that J yn− Jxn → 0 as n→∞.
The remainder of the proof is similar to that in the proof of Theorem 3.5 which will be
omitted. This completes the proof. �

4. Application

Finally, we consider an application of Algorithm (I) to the minimization of a convex
function.

Fix a sequence {Ωn} of closed convex subsets of E and a sequence {εn} ⊂ [0,∞) verify-
ing (i) and (ii). Let ϕ : E→ (−∞,∞] be a proper convex lower semicontinuous function.
The subdifferential ∂ϕ (see [11]) of ϕ is defined by

∂ϕ(z)= {v ∈ E∗ : ϕ(y)≥ ϕ(z) +
〈
y− z,v

〉 ∀y ∈ E
}

(4.1)

for all z ∈ E. It is known that whenever T ≡ ∂ϕ, the convex optimization problem

min
x∈Ω

ϕ(x) (4.2)

is equivalent to GVI (T ,Ω). By means of Theorem 3.6, we obtain the following result for
finding a minimizer of the function ϕ.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space, and T :
E → 2E

∗
the subdifferential ∂ϕ of a proper convex lower semicontinuous function ϕ : E →

(−∞,∞] withD(T)⊂Ω. Suppose that (H2) and (H3) hold, and that for an arbitrary x0 ∈ E,
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{xn} and {yn} are the sequences generated from an arbitrary x0 ∈ E by

x0 ∈ E,

yn = arg min
{
ϕ(z) +

1
2rn
‖z‖2− 1

rn

〈
Jxn,z

〉
+

1
rn

〈
en,z

〉
: z ∈Ωn

}
,

∃vn ∈ ∂ϕ
(
yn
)

with
〈
vn +

1
rn

(
J yn− Jxn

)
+

1
rn
·en, y− yn



≥ − εn ∀y ∈Ωn,

Hn =
{
z ∈Ωn :

〈
z− yn,vn

〉≤ 0
}

,

Wn =
{
z ∈Ωn :

〈
z− xn, Jx0− Jxn

〉≤ 0
}

,

xn+1 =QHn∩Wnx0, n= 0,1,2, . . . ,1,

(4.3)

where {rn} is a positive bounded sequence with liminf n→∞rn > 0, and {en} is an error se-
quence of E∗ with limn→∞‖en‖ = 0. If {xn} is an AF bounded orbit for GVI (T ,Ω) and
liminf n→∞〈en, yn〉 ≥ 0, then both {xn} and {yn} converge strongly to QS∗x0, where S∗ is the
set of all minimizers of ϕ.

Proof. Since ϕ : E→ (−∞,∞] is a proper convex lower semicontinuous function, by Rock-
afellar [11], the subdifferential ∂ϕ of ϕ is a maximal monotone operator. Also, it is known
that

yn = arg min
{
ϕ(z) +

1
2rn
‖z‖2− 1

rn

〈
Jxn,z

〉
+

1
rn

〈
en,z

〉
: z ∈Ωn

}
(4.4)

implies that

∃vn ∈ ∂ϕ
(
yn
)

with
〈
vn +

1
rn

(
J yn− Jxn

)
+

1
rn
·en, y− yn



≥ − εn ∀y ∈Ωn. (4.5)

Thus the conclusion now follows from Theorem 3.6. �
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