Research Article
 Schur-Convexity of Two Types of One-Parameter
 Mean Values in n Variables

Ning-Guo Zheng, Zhi-Hua Zhang, and Xiao-Ming Zhang
Received 10 July 2007; Revised 9 October 2007; Accepted 9 November 2007
Recommended by Simeon Reich

We establish Schur-convexities of two types of one-parameter mean values in n variables. As applications, Schur-convexities of some well-known functions involving the complete elementary symmetric functions are obtained.

Copyright © 2007 Ning-Guo Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Throughout the paper, \mathbb{R} denotes the set of real numbers and \mathbb{R}_{+}denotes the set of strictly positive real numbers. Let $n \geq 2, n \in \mathbb{N}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}$, and $\mathbf{x}^{1 / r}=\left(x_{1}^{1 / r}, x_{2}^{1 / r}, \ldots\right.$, $x_{n}^{1 / r}$), where $r \in \mathbb{R}, r \neq 0$; let $E_{n-1} \subset \mathbb{R}^{n-1}$ be the simplex

$$
\begin{equation*}
E_{n-1}=\left\{\left(u_{1}, \ldots, u_{n-1}\right): u_{i}>0(1 \leq i \leq n-1), \sum_{i=1}^{n-1} u_{i} \leq 1\right\} \tag{1.1}
\end{equation*}
$$

and let $d \mu=d u_{1}, \ldots, d u_{n-1}$ be the differential of the volume in E_{n-1}.
The weighted arithmetic mean $A(\mathbf{x}, \mathbf{u})$ and the power mean $M_{r}(\mathbf{x}, \mathbf{u})$ of order r with respect to the numbers $x_{1}, x_{2}, \ldots, x_{n}$ and the positive weights $u_{1}, u_{2}, \ldots, u_{n}$ with $\sum_{i=1}^{n} u_{i}=1$ are defined, respectively, as $A(\mathbf{x}, \mathbf{u})=\sum_{i=1}^{n} u_{i} x_{i}, M_{r}(\mathbf{x}, \mathbf{u})=\left(\sum_{i=1}^{n} u_{i} x_{i}^{r}\right)^{1 / r}$ for $r \neq 0$, and $M_{0}(\mathbf{x}, \mathbf{u})=\prod_{i=1}^{n} x_{i}^{u_{i}}$. For $\mathbf{u}=(1 / n, 1 / n, \ldots, 1 / n)$, we denote $A(\mathbf{x}, \mathbf{u}) \stackrel{\Delta}{\triangleq} A(\mathbf{x}), M_{r}(\mathbf{x}, \mathbf{u}) \stackrel{\Delta}{\triangleq} M_{r}(\mathbf{x})$.

The well-known logarithmic mean $L\left(x_{1}, x_{2}\right)$ of two positive numbers x_{1} and x_{2} is

$$
L\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}-x_{2}}{\ln x_{1}-\ln x_{2}}, & x_{1} \neq x_{2} \tag{1.2}\\ x_{1}, & x_{1}=x_{2}\end{cases}
$$

As further generalization of $L\left(x_{1}, x_{2}\right)$, Stolarsky [1] studied the one-parameter mean, that is,

$$
L_{r}\left(x_{1}, x_{2}\right)= \begin{cases}\left(\frac{x_{1}^{r+1}-x_{2}^{r+1}}{(r+1)\left(x_{1}-x_{2}\right)}\right)^{1 / r}, & r \neq-1,0, x_{1} \neq x_{2} \tag{1.3}\\ \frac{x_{1}-x_{2}}{\ln x_{1}-\ln x_{2}}, & r=-1, x_{1} \neq x_{2} \\ \frac{1}{e}\left(\frac{x_{1}^{x_{1}}}{x_{2}^{x_{2}}}\right)^{1 /\left(x_{1}-x_{2}\right)}, & r=0, x_{1} \neq x_{2} \\ x_{1}, & x_{1}=x_{2}\end{cases}
$$

Alzer [2, 3] obtained another form of one-parameter mean, that is,

$$
F_{r}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{r}{r+1} \cdot \frac{x_{1}^{r+1}-x_{2}^{r+1}}{x_{1}^{r}-x_{2}^{r}}, & r \neq-1,0, x_{1} \neq x_{2} \tag{1.4}\\ x_{1} x_{2} \cdot \frac{\ln x_{1}-\ln x_{2}}{x_{1}-x_{2}}, & r=-1, x_{1} \neq x_{2} \\ \frac{x_{1}-x_{2}}{\ln x_{1}-\ln x_{2}}, & r=0, x_{1} \neq x_{2} \\ x_{1}, & x_{1}=x_{2}\end{cases}
$$

These two means can be written also as

$$
\begin{align*}
& L_{r}\left(x_{1}, x_{2}\right)= \begin{cases}\left(\int_{0}^{1}\left(x_{1} u+x_{2}(1-u)\right)^{r} d u\right)^{1 / r}, & r \neq 0 \\
\exp \left(\int_{0}^{1} \ln \left(x_{1} u+x_{2}(1-u)\right) d u\right), & r=0\end{cases} \tag{1.5}\\
& F_{r}\left(x_{1}, x_{2}\right)= \begin{cases}\int_{0}^{1}\left(x_{1}^{r} u+x_{2}^{r}(1-u)\right)^{1 / r} d u, & r \neq 0 \\
\int_{0}^{1} x_{1}^{u} x_{2}^{1-u} d u, & r=0\end{cases}
\end{align*}
$$

Correspondingly, Pittenger [4] and Pearce et al. [5] investigated the means above in n variables, respectively,

$$
\begin{align*}
& L_{r}(\mathbf{x})= \begin{cases}\left((n-1)!\int_{E_{n-1}}(A(\mathbf{x}, \mathbf{u}))^{r} d \mu\right)^{1 / r}, & r \neq 0 \\
\exp \left((n-1)!\int_{E_{n-1}} \ln A(\mathbf{x}, \mathbf{u}) d \mu\right), & r=0\end{cases} \tag{1.6}\\
& F_{r}(\mathbf{x})=(n-1)!\int_{E_{n-1}} M_{r}(\mathbf{x}, \mathbf{u}) d \mu
\end{align*}
$$

where $u_{n}=1-\sum_{i=1}^{n-1} u_{i}$.

Expressions (1.3) and (1.4) can be also written by using 2-order determinants, that is,

$$
\begin{align*}
& L_{r}\left(x_{1}, x_{2}\right)= \begin{cases}\left(\frac{1}{r+1} \cdot\left|\begin{array}{ll}
1 & x_{2}^{r+1} \\
1 & x_{1}^{r+1}
\end{array}\right| /\left|\begin{array}{ll}
1 & x_{2} \\
1 & x_{1}
\end{array}\right|\right)^{1 / r}, & r \neq-1,0, x_{1} \neq x_{2}, \\
\left|\begin{array}{ll}
1 & x_{2} \\
1 & x_{1}
\end{array}\right| /\left|\begin{array}{cc}
1 & \ln x_{2} \\
1 & \ln x_{1}
\end{array}\right|, & r=-1, x_{1} \neq x_{2}, \\
\exp \left\{\left(\left|\begin{array}{ll}
1 & x_{2} \ln x_{2} \\
1 & x_{1} \ln x_{1}
\end{array}\right| /\left|\begin{array}{ll}
1 & x_{2} \\
1 & x_{1}
\end{array}\right|\right)-1\right\}, & r=0, x_{1} \neq x_{2}, \\
x_{1}, & x_{1}=x_{2},\end{cases} \tag{1.7}
\end{align*}
$$

Utilizing higher-order generalized Vandermonde determinants, Xiao et al. [8, 7, 6, 9] gave the analogous definitions of $L_{r}(\mathbf{x})$ and $F_{r}(\mathbf{x})$.

Obviously, $L_{r}(\mathbf{x})$ and $F_{r}(\mathbf{x})$ are symmetric with respect to $x_{1}, x_{2}, \ldots, x_{n}, r \mapsto L_{r}(\mathbf{x})$ and $r \mapsto F_{r}(\mathbf{x})$ are continuous for any $\mathbf{x} \in \mathbb{R}_{+}^{n}$.

In $[4,5,10,11]$, the authors studied the Schur-convexities of $L_{r}\left(x_{1}, x_{2}\right)$ and $F_{r}\left(x_{1}, x_{2}\right)$. In this paper, we establish the Schur-convexities of two types of one-parameter mean values $L_{r}(\mathbf{x})$ and $F_{r}(\mathbf{x})$ for several positive numbers. As applications, Schur-convexities of some well-known functions involving the complete elementary symmetric functions are obtained.

2. Some definitions and lemmas

The Schur-convex function was introduced by Schur [12] in 1923, and has many important applications in analytic inequalities. The following definitions can be found in many references such as [12-17].

Definition 2.1. For $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right), \mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, without loss of generality, it is assumed that $u_{1} \geq u_{2} \geq \cdots \geq u_{n}$ and $v_{1} \geq v_{2} \geq \cdots \geq v_{n}$. Then \mathbf{u} is said to be majorized by $\mathbf{v}($ in symbols $\mathbf{u} \prec \mathbf{v})$ if $\sum_{i=1}^{k} u_{i} \leq \sum_{i=1}^{k} v_{i}$ for $k=1,2, \ldots, n-1$ and $\sum_{i=1}^{n} u_{i}=$ $\sum_{i=1}^{n} v_{i}$.

Definition 2.2. Let $\Omega \subset \mathbb{R}^{n}$. A function $\varphi: \Omega \mapsto \mathbb{R}$ is said to be a Schur-convex (Schurconcave) function if $\mathbf{u} \prec \mathbf{v}$ implies $\varphi(\mathbf{u}) \leq(\geq) \varphi(\mathbf{v})$.

Every Schur-convex function is a symmetric function [18]. But it is not hard to see that not every symmetric function can be a Schur-convex function [15, page 258]. However, we have the following so-called Schur condition.

Lemma 2.3 [12, page 57]. Suppose that $\Omega \subset \mathbb{R}^{n}$ is symmetric with respect to permutations and convexset, and has a nonempty interior set Ω^{0}. Let $\varphi: \Omega \mapsto \mathbb{R}$ be continuous on Ω and continuously differentiable in Ω^{0}. Then, φ is a Schur-convex (Schur-concave) function if and only if it is symmetric and if

$$
\begin{equation*}
\left(u_{1}-u_{2}\right)\left(\frac{\partial \varphi}{\partial u_{1}}-\frac{\partial \varphi}{\partial u_{2}}\right) \geq(\leq) 0 \tag{2.1}
\end{equation*}
$$

holds for any $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \Omega^{0}$.
Lemma 2.4. Let $m \geq 1, n \geq 2, m, n \in \mathbb{N}, \Lambda \subset \mathbb{R}^{m}, \Omega \subset \mathbb{R}^{n}, \phi: \Lambda \times \Omega \mapsto \mathbb{R}, \phi(\mathbf{v}, \mathbf{x})$ be continuous with respect to $\mathbf{v} \in \Lambda$ for any $\mathbf{x} \in \Omega$. Let Δ be a set of all $\mathbf{v} \in \Lambda$ such that the function $\mathbf{x} \mapsto \phi(\mathbf{v}, \mathbf{x})$ is a Schur-convex (Schur-concave) function. Then Δ is a closed set of Λ.
Proof. Let $l \geq 1, l \in \mathbb{N}, \mathbf{v}_{l} \in \Delta, \mathbf{v}_{0} \in \Lambda, \mathbf{v}_{l} \rightarrow \mathbf{v}_{0}$ if $l \rightarrow+\infty$. According to Definition 2.2, $\phi\left(\mathbf{v}_{l}, \mathbf{y}\right) \geq(\leq) \phi\left(\mathbf{v}_{l}, \mathbf{z}\right)$ holds for any $\mathbf{y}, \mathbf{z} \in \Omega$ and $\mathbf{y} \succ \mathbf{z}$. Let $l \rightarrow+\infty$, then we have $\phi\left(\mathbf{v}_{0}, \mathbf{y}\right) \geq$ $(\leq) \phi\left(\mathbf{v}_{0}, \mathbf{z}\right)$. Hence $\mathbf{v}_{0} \in \Delta$, so Δ is a closed set of Λ.

3. Main results

Theorem 3.1. Given $r \in \mathbb{R}, L_{r}(\mathbf{x})$ is Schur-convex if $r \geq 1$ and Schur-concave if $r \leq 1$.
Proof. Denote $\widetilde{\mathbf{u}}=\left(u_{2}, u_{1}, u_{3}, \ldots, u_{n}\right)$.
If $r \neq 0$, owing to the symmetry of $L_{r}(x)$ with respect to $x_{1}, x_{2}, \ldots, x_{n}$, we have

$$
\begin{equation*}
g_{r}(\mathbf{x}) \triangleq \int_{E_{n-1}}(A(\mathbf{x}, \mathbf{u}))^{r} d \mu=\int_{E_{n-1}}(A(\mathbf{x}, \tilde{\mathbf{u}}))^{r} d \mu \tag{3.1}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& \frac{\partial g_{r}}{\partial x_{1}}=r \int_{E_{n-1}} u_{1}(A(\mathbf{x}, \mathbf{u}))^{r-1} d \mu=r \int_{E_{n-1}} u_{2}(A(\mathbf{x}, \tilde{\mathbf{u}}))^{r-1} d \mu, \tag{3.2}\\
& \frac{\partial g_{r}}{\partial x_{2}}=r \int_{E_{n-1}} u_{1}(A(\mathbf{x}, \tilde{\mathbf{u}}))^{r-1} d \mu=r \int_{E_{n-1}} u_{2}(A(\mathbf{x}, \mathbf{u}))^{r-1} d \mu .
\end{align*}
$$

It follows that

$$
\begin{align*}
& \frac{\partial g_{r}}{\partial x_{1}}-\frac{\partial g_{r}}{\partial x_{2}}=r \int_{E_{n-1}} u_{1}\left[(A(\mathbf{x}, \mathbf{u}))^{r-1}-(A(\mathbf{x}, \tilde{\mathbf{u}}))^{r-1}\right] d \mu \tag{3.3}\\
& \frac{\partial g_{r}}{\partial x_{1}}-\frac{\partial g_{r}}{\partial x_{2}}=r \int_{E_{n-1}} u_{2}\left[(A(\mathbf{x}, \tilde{\mathbf{u}}))^{r-1}-(A(\mathbf{x}, \mathbf{u}))^{r-1}\right] d \mu .
\end{align*}
$$

By combining (3.3) with (3.2), we have

$$
\begin{equation*}
\frac{\partial g_{r}}{\partial x_{1}}-\frac{\partial g_{r}}{\partial x_{2}}=\frac{r}{2} \int_{E_{n-1}}\left(u_{1}-u_{2}\right)\left[(A(\mathbf{x}, \mathbf{u}))^{r-1}-(A(\mathbf{x}, \tilde{\mathbf{u}}))^{r-1}\right] d \mu . \tag{3.4}
\end{equation*}
$$

By Lagrange's mean value theorem, we find that

$$
\begin{align*}
(A(\mathbf{x}, \mathbf{u}))^{r-1}-(A(\mathbf{x}, \tilde{\mathbf{u}}))^{r-1} & =(r-1)\left(x_{1} u_{1}+x_{2} u_{2}-x_{2} u_{1}-x_{1} u_{2}\right)\left(\xi+\sum_{i=3}^{n} u_{i} x_{i}\right)^{r-2} \\
& =(r-1)\left(u_{1}-u_{2}\right)\left(x_{1}-x_{2}\right)\left(\xi+\sum_{i=3}^{n} u_{i} x_{i}\right)^{r-2} \tag{3.5}
\end{align*}
$$

where ξ is between $x_{1} u_{1}+x_{2} u_{2}$ and $x_{2} u_{1}+x_{1} u_{2}$.
From (3.4) and (3.5), we have

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(\frac{\partial g_{r}}{\partial x_{1}}-\frac{\partial g_{r}}{\partial x_{2}}\right)=\frac{r(r-1)}{2}\left(x_{1}-x_{2}\right)^{2} S_{r}(\mathbf{x}) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{r}(\mathbf{x})=\int_{E_{n-1}}\left(u_{1}-u_{2}\right)^{2}\left(\xi+\sum_{i=3}^{n} u_{i} x_{i}\right)^{r-2} d \mu \geq 0 . \tag{3.7}
\end{equation*}
$$

Hence, for $r \neq 0$, we get

$$
\begin{align*}
\left(x_{1}-x_{2}\right)\left(\frac{\partial L_{r}}{\partial x_{1}}-\frac{\partial L_{r}}{\partial x_{2}}\right) & =(n-1)!\cdot \frac{1}{r} \cdot\left(L_{r}\right)^{1-r} \cdot\left(x_{1}-x_{2}\right)\left(\frac{\partial g_{r}}{\partial x_{1}}-\frac{\partial g_{r}}{\partial x_{2}}\right) \tag{3.8}\\
& =(n-1)!\cdot \frac{r-1}{2} \cdot\left(L_{r}\right)^{1-r} \cdot\left(x_{1}-x_{2}\right)^{2} S_{r}(\mathbf{x}) .
\end{align*}
$$

From Lemma 2.3, it is clear that L_{r} is Schur-convex for $r>1$ and Schur-concave for $r<1$ and $r \neq 0$.

According to Lemma 2.4 and the continuity of $r \mapsto L_{r}(\mathbf{x})$, let $r \rightarrow 0,1-$, or $1+$ in $L_{r}(\mathbf{x})$, we know that $L_{0}(\mathbf{x})$ is a Schur-concave function, and $L_{1}(\mathbf{x})$ is both a Schur-concave function and a Schur-convex function.

Theorem 3.2. Given $r \in \mathbb{R}, F_{r}(\mathbf{x})$ is Schur-convex if $r \geq 1$ and Schur-concave if $r \leq 1$.
Proof. Denote $\tilde{\mathbf{u}}=\left(u_{2}, u_{1}, u_{3}, \ldots, u_{n}\right)$. For $r \neq 0$,

$$
\begin{align*}
F_{r}(\mathbf{x}) & =(n-1)!\int_{E_{n-1}} M_{r}(\mathbf{x}, \mathbf{u}) d \mu=(n-1)!\int_{E_{n-1}} M_{r}(\mathbf{x}, \tilde{\mathbf{u}}) d \mu \tag{3.9}\\
\frac{\partial F_{r}}{\partial x_{1}} & =(n-1)!\int_{E_{n-1}} x_{1}^{r-1} u_{1}\left(M_{r}(\mathbf{x}, \mathbf{u})\right)^{1-r} d \mu=(n-1)!\int_{E_{n-1}} u_{1}\left[\frac{M_{r}(\mathbf{x}, \mathbf{u})}{x_{1}}\right]^{1-r} d \mu \tag{3.10}\\
\frac{\partial F_{r}}{\partial x_{2}} & =(n-1)!\int_{E_{n-1}} x_{2}^{r-1} u_{1}\left(M_{r}(\mathbf{x}, \tilde{\mathbf{u}})\right)^{1-r} d \mu=(n-1)!\int_{E_{n-1}} u_{1}\left[\frac{M_{r}(\mathbf{x}, \tilde{\mathbf{u}})}{x_{2}}\right]^{1-r} d \mu . \tag{3.11}
\end{align*}
$$

6 Journal of Inequalities and Applications
Combination of (3.10) with (3.11) yields

$$
\begin{equation*}
\frac{\partial F_{r}}{\partial x_{1}}-\frac{\partial F_{r}}{\partial x_{2}}=(n-1)!\int_{E_{n-1}} u_{1}\left\{\left[\frac{M_{r}(\mathbf{x}, \mathbf{u})}{x_{1}}\right]^{1-r}-\left[\frac{M_{r}(\mathbf{x}, \tilde{\mathbf{u}})}{x_{2}}\right]^{1-r}\right\} d \mu . \tag{3.12}
\end{equation*}
$$

By using the mean value theorem, we find

$$
\begin{align*}
& {\left[\frac{M_{r}(\mathbf{x}, \mathbf{u})}{x_{1}}\right]^{1-r}-\left[\frac{M_{r}(\mathbf{x}, \tilde{\mathbf{u}})}{x_{2}}\right]^{1-r}} \\
& \quad=\left(u_{1}+\frac{u_{2} x_{2}^{r}+\sum_{i=3}^{n} u_{i} x_{i}^{r}}{x_{1}^{r}}\right)^{(1-r) / r}-\left(u_{1}+\frac{u_{2} x_{1}^{r}+\sum_{i=3}^{n} u_{i} x_{i}^{r}}{x_{2}^{r}}\right)^{(1-r) / r} \\
& \quad=\frac{1-r}{r}\left(\frac{u_{2} x_{2}^{r}+\sum_{i=3}^{n} u_{i} x_{i}^{r}}{x_{1}^{r}}-\frac{u_{2} x_{1}^{r}+\sum_{i=3}^{n} u_{i} x_{i}^{r}}{x_{2}^{r}}\right)\left(u_{1}+\theta_{1}\right)^{(1-2 r) / r} \tag{3.13}\\
& \quad=\frac{1-r}{r} \cdot \frac{u_{2} x_{2}^{2 r}+x_{2}^{r} \sum_{i=3}^{n} u_{i} x_{i}^{r}-u_{2} x_{1}^{2 r}-x_{1}^{r} \sum_{i=3}^{n} u_{i} x_{i}^{r}}{x_{1}^{r} x_{2}^{r}} \cdot\left(u_{1}+\theta_{1}\right)^{(1-2 r) / r} \\
& \quad=(1-r)\left(x_{2}-x_{1}\right)\left(u_{1}+\theta_{1}\right)^{(1-2 r) / r} T\left(\mathbf{x}, \mathbf{u} ; \theta_{2}\right),
\end{align*}
$$

where θ_{1} is between $\left(u_{2} x_{2}^{r}+\sum_{i=3}^{n} u_{i} x_{i}^{r}\right) / x_{1}^{r}$ and $\left(u_{2} x_{1}^{r}+\sum_{i=3}^{n} u_{i} x_{i}^{r}\right) / x_{2}^{r}, \theta_{2}$ is between x_{1} and x_{2}, and $T\left(\mathbf{x}, \mathbf{u} ; \theta_{2}\right)=\left(2 u_{2} \theta_{2}^{2 r-1}+\theta_{2}^{r-1} \sum_{i=3}^{n} u_{i} x_{i}^{r}\right) / x_{1}^{r} x_{2}^{r} \geq 0$.

From (3.12) and (3.13), we have

$$
\begin{align*}
\left(x_{1}-\right. & \left.x_{2}\right)\left(\frac{\partial F_{r}}{\partial x_{1}}-\frac{\partial F_{r}}{\partial x_{2}}\right) \tag{3.14}\\
& =(r-1)\left(x_{1}-x_{2}\right)^{2}(n-1)!\int_{E_{n-1}} u_{1}\left(u_{1}+\theta_{1}\right)^{(1-2 r) / r} T\left(\mathbf{x}, \mathbf{u} ; \theta_{2}\right) d \mu .
\end{align*}
$$

It follows that F_{r} is Schur-convex for $r>1$ and Schur-concave for $r<1$ and $r \neq 0$ by Lemma 2.3.

According to Lemma 2.4 and the continuity of $r \mapsto F_{r}(\mathbf{x})$, let $r \rightarrow 0,1-$, or $1+$ in $F_{r}(\mathbf{x})$. We know that $F_{0}(\mathbf{x})$ is a Schur-concave function, and $F_{1}(\mathbf{x})$ is both a Schur-concave function and a Schur-convex function.

Theorem 3.3. $L_{r}\left(\mathbf{x}^{1 / r}\right)$ and $F_{r}\left(\mathbf{x}^{1 / r}\right)$ are Schur-concave functions if $r \geq 1$, and Schur-convex functions if $r \leq 1$ and $r \neq 0$.

Proof. We can easily obtain that

$$
\begin{gather*}
L_{r}\left(\mathbf{x}^{1 / r}\right)=\left[(n-1)!\int_{E_{n-1}} M_{1 / r}(\mathbf{x}, \mathbf{u}) d \mu\right]^{1 / r}=F_{1 / r}^{1 / r}(\mathbf{x}), \tag{3.15}\\
F_{r}\left(\mathbf{x}^{1 / r}\right)=(n-1)!\int_{E_{n-1}}[A(\mathbf{x}, \mathbf{u})]^{1 / r} d \mu=L_{1 / r}^{r}(\mathbf{x}), \\
\left(x_{1}-x_{2}\right)\left(\frac{\partial L_{r}\left(\mathbf{x}^{1 / r}\right)}{\partial x_{1}}-\frac{\partial L_{r}\left(\mathbf{x}^{1 / r}\right)}{\partial x_{2}}\right)=\frac{1}{r}\left(x_{1}-x_{2}\right)\left(\frac{\partial F_{1 / r}(\mathbf{x})}{\partial x_{1}}-\frac{\partial F_{1 / r}(\mathbf{x})}{\partial x_{2}}\right) \cdot F_{1 / r}^{(1-r) / r}(\mathbf{x}), \\
\left(x_{1}-x_{2}\right)\left(\frac{\partial F_{r}\left(\mathbf{x}^{1 / r}\right)}{\partial x_{1}}-\frac{\partial F_{r}\left(\mathbf{x}^{1 / r}\right)}{\partial x_{2}}\right)=r\left(x_{1}-x_{2}\right)\left(\frac{\partial L_{1 / r}(\mathbf{x})}{\partial x_{1}}-\frac{\partial L_{1 / r}(\mathbf{x})}{\partial x_{2}}\right) \cdot L_{1 / r}^{r-1}(\mathbf{x}) . \tag{3.16}
\end{gather*}
$$

From Theorems 3.1 and 3.2, we know that both $L_{1 / r}(\mathbf{x})$ and $F_{1 / r}(\mathbf{x})$ are Schur-concave functions if $r \geq 1$ and Schur-convex functions if $0<r \leq 1$ or $r<0$. According to Lemma 2.3 and (3.16), the required result of Theorem 3.3 is proved.

4. Applications

As applications of the theorems above, we have the following corollaries.
Corollary 4.1 (See [19, Theorem 3.1] and [12, page 82]). For $r \geq 1, r \in \mathbb{N}$, the complete elementary symmetric function

$$
\begin{equation*}
C_{r}(\mathbf{x})=\sum_{\substack{i_{1}+i_{2}+\ldots+i_{n}=r, r \\ i_{1}, \ldots, i_{n} \geq 0 \text { areintegers }}} x_{1}^{i_{1}} x_{2}^{i_{2}}, \ldots, x_{n}^{i_{n}} \tag{4.1}
\end{equation*}
$$

is Schur-convex.

Proof. If $r \geq 1, r \in \mathbb{N}$, then (see [20, page 164])

$$
\begin{equation*}
C_{r}(\mathbf{x})=\binom{n-1+r}{r} L_{r}^{r}(\mathbf{x}) \tag{4.2}
\end{equation*}
$$

By Theorem 3.1 and Lemma 2.3, it is easy to see that $L_{r}^{r}(\mathbf{x})$ is a Schur-convex function. Therefore, $C_{r}(\mathbf{x})$ is a Schur-convex function.

Corollary 4.2. The complete symmetric function of the first degree:

$$
\begin{equation*}
D_{r}(\mathbf{x})=\sum_{\substack{i_{1}+i_{2}+\cdots+i_{n}=r, i_{1}, \ldots, i_{n} \geq 0 \\ \text { are integers }}}\left(x_{1}^{i_{1}} x_{2}^{i_{2}}, \ldots, x_{n}^{i_{n}}\right)^{1 / r} \tag{4.3}
\end{equation*}
$$

(see [6, Theorem 5] and [9]), is Schur-concave for $r \geq 1, r \in \mathbb{N}$.

Proof. If $r \geq 1, r \in \mathbb{N}$, then we have (see [6, Theorem 5])

$$
\begin{equation*}
D_{r}(\mathbf{x})=\binom{n-1+r}{r} F_{1 / r}(\mathbf{x}) . \tag{4.4}
\end{equation*}
$$

By considering Theorem 3.2, we prove the required result.
Corollary 4.3. Let $r \neq 0, \mathbf{x}, \mathbf{y} \in \mathbb{R}_{+}^{n}, \mathbf{x}^{r} \succ \mathbf{y}^{r}$. Then $L_{r}(\mathbf{x}) \leq L_{r}(\mathbf{y})$ and $F_{r}(\mathbf{x}) \leq F_{r}(\mathbf{y})$ if $r \geq 1$. They are reversed if $r \leq 1$ and $r \neq 0$.

Proof. Suppose $r \geq 1(r \leq 1, r \neq 0) . L_{r}\left(\mathbf{x}^{1 / r}\right)$ is a Schur-concave (Schur-convex) function by Theorem 3.3. Then

$$
\begin{equation*}
L_{r}\left(\left(\mathbf{x}^{r}\right)^{1 / r}\right) \leq(\geq) L_{r}\left(\left(\mathbf{y}^{r}\right)^{1 / r}\right), \quad L_{r}(\mathbf{x}) \leq(\geq) L_{r}(\mathbf{y}) \tag{4.5}
\end{equation*}
$$

For $F_{r}\left(\mathbf{x}^{1 / r}\right)$, the proof is similar; we omit the details.
Corollary 4.4. If $r \geq 1$, then

$$
\begin{align*}
& A(\mathbf{x}) \leq L_{r}(\mathbf{x}) \leq M_{r}(\mathbf{x}), \\
& A(\mathbf{x}) \leq F_{r}(\mathbf{x}) \leq M_{r}(\mathbf{x}) . \tag{4.6}
\end{align*}
$$

Inequalities (4.6) are reversed if $r \leq 1$.
Proof. If $r \geq 1$, owing to Theorem 3.1 and

$$
\begin{equation*}
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \succ(A(\mathbf{x}), A(\mathbf{x}), \ldots, A(\mathbf{x})) \triangleq \bar{A}(\mathbf{x}), \tag{4.7}
\end{equation*}
$$

we have

$$
\begin{align*}
L_{r}(\mathbf{x}) \geq L_{r}(\bar{A}(\mathbf{x})) & =\left((n-1)!\int_{E_{n-1}}\left(\sum_{i=1}^{n} A(\mathbf{x}) u_{i}\right)^{r} d \mu\right)^{1 / r} \\
& =A(\mathbf{x})\left((n-1)!\int_{E_{n-1}}\left(\sum_{i=1}^{n} u_{i}\right)^{r} d \mu\right)^{1 / r}=A(\mathbf{x}) . \tag{4.8}
\end{align*}
$$

Obviously, if $r \leq 1, r \neq 0$, inequality (4.8) is reversed by Theorem 3.1. For $r=0$, because of the continuity of $r \mapsto L_{r}(\mathbf{x})$, we have $L_{0}(\mathbf{x}) \leq A(\mathbf{x})$.

By the same way, we find that $F_{r}(\mathbf{x}) \geq A(\mathbf{x})$ if $r \geq 1$, and $F_{r}(\mathbf{x}) \leq A(\mathbf{x})$ if $r \leq 1$. In addition,

$$
\begin{align*}
\mathbf{x}^{r} & =\left(x_{1}^{r}, x_{2}^{r}, \ldots, x_{n}^{r}\right) \succ\left(M_{r}^{r}(\mathbf{x}), M_{r}^{r}(\mathbf{x}), \ldots, M_{r}^{r}(\mathbf{x})\right) \\
& \triangleq\left(M_{r}(\mathbf{x}), M_{r}(\mathbf{x}), \ldots, M_{r}(\mathbf{x})\right)^{r} \triangleq\left(\bar{M}_{r}(\mathbf{x})\right)^{r} . \tag{4.9}
\end{align*}
$$

If $r \geq 1$, according to Corollary 4.3, we get

$$
\begin{equation*}
L_{r}(\mathbf{x}) \leq L_{r}\left(\bar{M}_{r}(\mathbf{x})\right)=\left((n-1)!\int_{E_{n-1}}\left(\sum_{i=1}^{n} M_{r}(\mathbf{x}) u_{i}\right)^{r} d \mu\right)^{1 / r}=M_{r}(\mathbf{x}) . \tag{4.10}
\end{equation*}
$$

If $r \leq 1$, inequality (4.10) is obviously reversed by Corollary 4.3 again.
Similarly, we have $F_{r}(\mathbf{x}) \leq M_{r}(\mathbf{x})$ if $r \geq 1$, and $F_{r}(\mathbf{x}) \geq M_{r}(\mathbf{x})$ if $r \leq 1$.

Acknowledgments

This work was supported by the NSF of Zhejiang Broadcast and TV University under Grant no. XKT-07G19. The authors are grateful to the referees for their valuable suggestions.

References

[1] K. B. Stolarsky, "Generalizations of the logarithmic mean," Mathematics Magazine, vol. 48, pp. 87-92, 1975.
[2] H. Alzer, "Über eine einparametrige familie von mittelwerten [On a one-parameter family of means]," Bayerische Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte, pp. 1-9, 1987 (German).
[3] H. Alzer, "Über eine einparametrige Familie von Mittelwerten. II. [On a one-parameter family of mean values. II]," Bayerische Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. Sitzungsberichte, pp. 23-39, 1988 (German).
[4] A. O. Pittenger, "The logarithmic mean in n variables," The American Mathematical Monthly, vol. 92, no. 2, pp. 99-104, 1985.
[5] C. E. M. Pearce, J. Pečarić, and V. Šimić, "On weighted generalized logarithmic means," Houston Journal of Mathematics, vol. 24, no. 3, pp. 459-465, 1998.
[6] Z.-G. Xiao and Z.-H. Zhang, "The Heron mean of n positive numbers," Journal of YueYang Normal University, vol. 14, no. 2, pp. 1-5, 2001 (Chinese).
[7] Z.-G. Xiao, Z.-H. Zhang, and F. Qi, "A type of mean values of several positive numbers with two parameters," RGMIA Research Report Collection, vol. 9, no. 2, article 11, 2006.
[8] Z.-G. Xiao and Z.-H. Zhang, "The Stolarsky mean of n positive numbers," Journal of YueYang Normal University, vol. 14, no. 4, pp. 5-8, 2001 (Chinese).
[9] Z.-G. Xiao, Z.-H. Zhang, and V. Lokesha, "The weighted Heron mean of several positive numbers," RGMIA Research Report Collection, vol. 8, no. 3, article 6, 2005.
[10] N. Elezović and J. Pečarić, "A note on Schur-convex functions," The Rocky Mountain Journal of Mathematics, vol. 30, no. 3, pp. 853-856, 2000.
[11] F. Qi, "A note on Schur-convexity of extended mean values," The Rocky Mountain Journal of Mathematics, vol. 35, no. 5, pp. 1787-1793, 2005.
[12] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, vol. 143 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1979.
[13] J.-C. Kuang, Applied Inequalities, Shandong Science and Technology Press, Jinan, China, 3rd edition, 2004.
[14] D. S. Mitrinović, Analytic Inequalities, vol. 1965 of Die Grundlehren der mathematischen Wisenschaften, Springer, New York, NY, USA, 1970.
[15] A. W. Roberts and D. E. Varberg, Convex Functions. Pure and Applied Mathematics, vol. 57, Academic Press, New York, NY, USA, 1973.
[16] B.-Y. Wang, Foundations of Majorization Inequalities, Beijing Normal University Press, Beijing, China, 1990.
[17] X.-M. Zhang, Geometrically Convex Functions, An’hui University Press, Hefei, China, 2004.
[18] X.-M. Zhang, "Optimization of Schur-convex functions," Mathematical Inequalities \& Applications, vol. 1, no. 3, pp. 319-330, 1998.
[19] K. Guan, "Schur-convexity of the complete elementary symmetric function," Journal of Inequalities and Applications, vol. 2006, Article ID 67624, 9 pages, 2006.
[20] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, UK, 2nd edition, 1952.

Ning-Guo Zheng: Huzhou Broadcast and TV University, Huzhou, Zhejiang 313000, China
Email address: yczng@hzvtc.net
Zhi-Hua Zhang: Zixing Educational Research Section, Chenzhou, Hunan 423400, China
Email address: zxzh1234@163.com
Xiao-Ming Zhang: Haining College, Zhejiang Broadcast and TV University, Haining, Zhejiang 314400, China
Email address: zjzxm79@tom.com

