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Let (X ,◦) be an Abelain semigroup, g : X → X , and let K be either R or C. We prove
superstability of the functional equation f (x ◦ g(y))= f (x) f (y) in the class of functions
f : X →K. We also show some stability results of the equation in the class of functions
f : X →Kn.
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Throughout this paper n is a positive integer, (X ,◦) is a commutative semigroup, K is
either the field of reals R or the field of complex numbers C, and g : X → X is an arbitrary
function. We study stability of the functional equation

f
(
x ◦ g(y)

)= f (x) f (y) for x, y ∈ X , (1)

in the class of functions f : X →Kn, where (a1,a2, . . . ,an)(b1,b2, . . . ,bn) = (a1b2,a2b2, . . . ,
anbn) for (a1,a2, . . . ,an),(b1,b2, . . . ,bn) ∈Kn. (For details concerning the problem of sta-
bility of functional equations we refer to, e.g., [1].)

Particular cases of (1) are the well-known multiplicative Cauchy equation f (xy) =
f (x) f (y), exponential equation f (x+ y)= f (x) f (y) (see, e.g., [2]) and the equation

f
(
x f (y)

)= f (x) f (y). (2)

The origin of (2) is in the averaging theory applied to turbulent fluid motion. This equa-
tion is connected with some linear operators, that is, the Reynolds operator (see [3] and
[4]), the averaging operator, the multiplicatively symmetric operator (see [2]).

Ger and Šemrl in [5] (cf. [6], [7]) considered the problem of stability for the exponen-
tial equation in the class of functions mapping X into a semisimple complex commutative
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Banach algebra �. They have shown that if a mapping f : X →� satisfies
∥
∥ f (x ◦ y)− f (x) f (y)

∥
∥≤ ε (3)

with some ε > 0, then there exist a commutative C∗-algebra � and a continuous mono-
morphism Λ of � into � such that � is represented as a direct sum � = I ⊕ J where I
and J are closed ideals and PΛ f is exponential, and QΛ f is norm-bounded where P and
Q are projections corresponding to the direct sum decomposition �= I ⊕ J . We present a
very short and simple proof that a similar result is valid for function F : X →Kn satisfying
(with any norm in Kn) the following more general condition:

∥
∥F
(
x ◦ g(y)

)−F(x)F(y)
∥
∥≤ ε for x, y ∈ X. (4)

Let us start with the following theorem, showing superstability of (1).

Theorem 1. Let f : X →K be a function satisfying
∣
∣ f
(
x ◦ g(y)

)− f (x) f (y)
∣
∣≤ ε for x, y ∈ X. (5)

Then either f is bounded or (1) holds.

Proof. Suppose that f is unbounded. Take a sequence (xn : n∈N) of elements of X with
| f (xn)| →∞. Replace in (5) x by x ◦ g(xn). Then for x, y ∈ X , we have

∣
∣ f
(
x ◦ g(xn

)◦ g(y)
)− f

(
x ◦ g(xn

))
f (y)

∣
∣≤ ε. (6)

Next (5) implies

f (x)= lim
n→∞

f
(
x ◦ g(xn

))

f
(
xn
) for x ∈ X. (7)

Thus from (6) and (7), for every x, y ∈ X , we obtain

f
(
x ◦ g(y)

)= lim
n→∞

f
(
x ◦ g(y)◦ g(xn

))

f
(
xn
)

= lim
n→∞

f
(
x ◦ g(xn

)◦ g(y)
)− f

(
x ◦ g(xn

))
f (y)

f
(
xn
) + lim

n→∞
f
(
x ◦ g(xn

))

f
(
xn
) f (y)

= f (x) f (y).
(8)

�

Remark 2. If f : X →K is a bounded function satisfying (5), then

∣
∣ f (x)

∣
∣≤ 1 +

√
1 + 4ε
2

for x ∈ X. (9)

In fact, suppose that f : X →K satisfies (5) and

M := sup
{∣∣ f (x)

∣
∣ : x ∈ X

}
>

1 +
√

1 + 4ε
2

. (10)
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There exists a sequence (xn : n∈N) of elements of X such that limn→∞ | f (xn)| =M. Then
for sufficiently large n∈N, we have

∣
∣ f
(
xn ◦ g

(
xn
))− f

(
xn
)2∣∣≥ ∣∣∣∣ f (xn

)∣∣2−∣∣ f (xn ◦ g
(
xn
))∣∣
∣
∣≥ ∣∣ f (xn

)∣∣2−M. (11)

Moreover

lim
n→∞

(∣∣ f
(
xn
)∣∣2−M

)=M2−M > ε. (12)

Thus | f (xn ◦ g(xn))− f (xn)2| > ε for some n∈N, which contradicts (5).

Theorem 3. Let F : X →Kn, F = ( f1, f2, . . . , fn) be a function satisfying (4). Then there exist
ideals I , J ⊂Kn such that Kn = I ⊕ J , PF is bounded, and QF satisfies (1) where P :Kn → I
and Q :Kn→ J are natural projections.

Proof. Since every two norms in Kn are equivalent, (4) implies that there is η > 0 such
that

n∑

i=1

∣
∣ fi
(
x ◦ g(y)

)− fi(x) fi(y)
∣
∣≤ η

∥
∥F
(
x ◦ g(y)

)−F(x)F(y)
∥
∥≤ ηε for x, y ∈ X. (13)

Let M := {i ∈ {1, . . . ,n} : fi is an unbounded solution of (1)} and L := {i ∈ {1, . . . ,n} : fi
is bounded}. By Theorem 1, L∪M = {1, . . . ,n}. Now it is enough to write I = {(a1, . . . ,
an)∈Kn : ai = 0 for i∈M} and J = {(a1, . . . ,an)∈Kn : ai = 0 for i∈ L}. �
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[5] R. Ger and P. Šemrl, “The stability of the exponential equation,” Proceedings of the American
Mathematical Society, vol. 124, no. 3, pp. 779–787, 1996.

[6] J. A. Baker, J. Lawrence, and F. Zorzitto, “The stability of the equation f (x + y) = f (x) f (y),”
Proceedings of the American Mathematical Society, vol. 74, no. 2, pp. 242–246, 1979.

[7] J. A. Baker, “The stability of the cosine equation,” Proceedings of the American Mathematical
Society, vol. 80, no. 3, pp. 411–416, 1980.

Adam Najdecki: Institute of Mathematics, University of Rzeszów, Rejtana 16A,
35-310 Rzeszów, Poland
Email address: najdecki@univ.rzeszow.pl

mailto:najdecki@univ.rzeszow.pl

	References

