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Our aim is to extend some trigonometric inequalities to Bessel functions. Moreover, we
deduce the hyperbolic analogue of these trigonometric inequalities, and we extend these
inequalities to modified Bessel functions.
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1. Introduction and main results

In 1957, Ogilvy et al. [1] (or see [2, page 238]) asked the following question: for each
a1 > 0, there is a greatest a2 and a least a3 such that for all x ∈ [0,π/2], the inequality

a2
sin x

1 + a1cos x
≤ x ≤ a3

sin x

1 + a1cos x
(1.1)

holds. Determine a2 and a3 as functions of a1.
In 1958, Oppenheim and Carver [3] (or see [2, page 238]) gave a partial solution to

Oppenheim’s problem by showing that, for all a1 ∈ (0,1/2] and x ∈ [0,π/2], (1.1) holds
when a2 = a1 + 1 and a3 = π/2. Recently, Zhu [4, Theorem 7] solved, completely, this
problem of Oppenheim, proving that (1.1) holds in the following cases:

(i) if a1 ∈ (0,1/2), then a2 = a1 + 1 and a3 = π/2;
(ii) if a1 ∈ [1/2,π/2− 1), then a2 = 4a1(1− a2

1) and a3 = π/2;
(iii) if a1 ∈ [π/2− 1,2/π), then a2 = 4a1(1− a2

1) and a3 = a1 + 1;
(iv) if a1 ≥ 2/π, then a2 = π/2 and a3 = a1 + 1,

where a2 and a3 are the best constants in (i) and (iv), while a3 is also the best constant in
(ii) and (iii).

Recently, Baricz [5, Theorem 2.20] extended the Carver solution to Bessel functions
(see also [6] for further results). In this note, our aim is to extend the above-mentioned
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Zhu solution to Bessel functions too. For this, let us consider the function �p :R→(−∞,
1], defined by

�p(x) := 2pΓ(p+ 1)x−pJp(x)=
∑

n≥0

(−1/4)n

(p+ 1)nn!
x2n, (1.2)

where

Jp(x) :=
∑

n≥0

(−1)n

n!·Γ(p+n+ 1)

(
x

2

)2n+p

∀ x ∈R (1.3)

is the Bessel function of the first kind [7], and

(p+ 1)n = (p+ 1)(p+ 2)···(p+n)= Γ(p+n+ 1)/Γ(p+ 1) (1.4)

is the well-known Pochhammer (or Appell) symbol defined in terms of Euler gamma
function. It is worth mentioning here that, in particular, we have

�1/2(x) :=
√
π/2·x−1/2J1/2(x)= sin x

x
,

�−1/2(x) :=
√
π/2·x1/2J−1/2(x)= cos x.

(1.5)

Now, the extension of Zhu solution reads as follows.

Theorem 1.1. Let p ≥ − 1/2, |x| ≤ π/2 and a1,a2,a3 such that
(i) if a1 ∈ (0,1/2), then a2 = a1 + 1 and a3 = π/2;

(ii) if a1 ∈ [1/2,π/2− 1), then a2 = 4a1(1− a2
1) and a3 = π/2;

(iii) if a1 ∈ [π/2− 1,2/π), then a2 = 4a1(1− a2
1) and a3 = a1 + 1;

(iv) if a1 ≥ 2/π, then a2 = π/2 and a3 = a1 + 1.
Then the following inequality holds true:

[
a1(2p+ 1) + a2

]
�p+1(x)≤ 1 + 2a1(p+ 1)�p(x)≤ [a1(2p+ 1) + a3

]
�p+1(x), (1.6)

where a2 and a3 are the best constants in (i) and (iv), while a3 is also the best constant in (ii)
and (iii).

We note that, in particular, we have

�3/2(x) := 3
√
π/2·x−3/2J3/2(x)= 3

(
sin x

x3
− cos x

x2

)
, (1.7)

thus, choosing p = 1/2 in Theorem 1.1, we obtain the following interesting result.

Corollary 1.2. If a1,a2,a3 are as in Theorem 1.1, then, for all |x| ≤ π/2,

3
(
2a1 + a2

)
(sin x/x− cos x)

1 + 3a1 (sin x/x)
≤ x2 ≤ 3

(
2a1 + a3

)
(sin x/x− cos x)

1 + 3a1 (sin x/x)
. (1.8)

The hyperbolic analogue of (1.1) is the following result.
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Theorem 1.3. Let x ≥ 0 and a1,a2 such that
(i) if a1 ≥ 1/2, then a2 = a1 + 1;

(ii) if a1 ∈ (0,1/2), then a2 = 4a1(1− a2
1).

Then the following inequality holds true:

a2
sinhx

1 + a1 coshx
≤ x, (1.9)

where a2 is the best constant in (i). Moreover, when x ≤ 0, the above inequality is reversed.

For p >−1, let us consider the function �p :R→[1,∞), defined by

�p(x) := 2pΓ(p+ 1)x−pIp(x)=
∑

n≥0

(1/4)n

(p+ 1)nn!
x2n, (1.10)

where

Ip(x) :=
∑

n≥0

1
n!·Γ(p+n+ 1)

(
x

2

)2n+p

∀ x ∈R (1.11)

is the modified Bessel function of the first kind [7]. On the other hand, it is worth men-
tioning that, in particular, we have

�1/2(x) :=
√
π/2·x−1/2I1/2(x)= sinhx

x
,

�−1/2(x) :=
√
π/2·x1/2I−1/2(x)= coshx,

(1.12)

respectively.
The following inequality for a1 = 1 was proved recently by Baricz [6, Theorem 4.9],

and provides the extension of Theorem 1.3 to modified Bessel functions.

Theorem 1.4. Let p ≥ − 1/2, x ∈ R, and a1,a2 be as in Theorem 1.3. Then the following
inequality holds true:

[
a1(2p+ 1) + a2

]
�p+1(x)≤ 1 + 2a1(p+ 1)�p(x), (1.13)

where a2 is the best constant in (i).

Finally, observe that, in particular, we have

�3/2(x) := 3
√
π/2·x−3/2I3/2(x)=−3

(
sinhx
x3

− coshx
x2

)
, (1.14)

thus, choosing p = 1/2 in Theorem 1.4, we obtain the following interesting result.

Corollary 1.5. If a1,a2 are as in Theorem 1.4, then, for all x ∈R,

3
(
2a1 + a2

)(
coshx− sinhx/x

)

1 + 3a1 (sinhx/x)
≤ x2. (1.15)
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2. Proof of main results

Proof of Theorem 1.1. First, observe that each (1.6) is even, thus we can suppose that x ∈
[0,π/2]. On the other hand, when p =−1/2 from (1.5), it follows that (1.6) reduces to

a2�1/2(x)≤ 1 + a1�−1/2(x)≤ a3�1/2(x), (2.1)

which is equivalent to (1.1), and was proved by Zhu [4, Theorem 7], as we mentioned
above. Recall the well-known Sonine integral formula [7, page 373] for Bessel functions:

Jq+p+1(x)= xp+1

2pΓ(p+ 1)

∫ π/2

0
Jq(x sinθ) sinq+1 θ cos2p+1 θ dθ, (2.2)

where p,q >−1 and x ∈R. From this, we obtain the following formula

�q+p+1(x)= 2
B(p+ 1,q+ 1)

∫ π/2

0
�q(x sinθ) sin2q+1 θ cos2p+1 θ dθ, (2.3)

which will be useful in the sequel. Here, B(p,q) = Γ(p)Γ(q)/Γ(p + q) is the well-known
Euler beta function. Changing, in (2.3), p with p− 1/2, and taking q = −1/2 (q = 1/2,
resp.) one has, for all p >−1/2,x ∈R,

�p(x)= 2
B(p+ 1/2,1/2)

∫ π/2

0
�−1/2(x sinθ) cos2p θ dθ,

�p+1(x)= 2
B(p+ 1/2,3/2)

∫ π/2

0
�1/2(x sinθ) sin2 θ cos2p θ dθ.

(2.4)

Now, changing x with x sinθ in (2.1), multiplying (2.1) with sin2θ cos2pθ and integrating,
it follows that the expression (using (2.4))

Δp(x) :=
∫ π/2

0
sin2 θ cos2pθ dθ + a1

∫ π/2

0
�−1/2(x sinθ)

(
1− cos2 θ

)
cos2p θ dθ

= 1
2
B
(
p+

1
2

,
3
2

)
+
a1

2
B
(
p+

1
2

,
1
2

)
�p(x)− a1

2
B
(
p+

3
2

,
1
2

)
�p+1(x)

(2.5)

satisfies

a2

2
B
(
p+

1
2

,
3
2

)
�p+1(x)≤ Δp(x)≤ a3

2
B
(
p+

1
2

,
3
2

)
�p+1(x). (2.6)

After simplifications, we obtain that (1.6) holds. �

Proof of Theorem 1.3. Let us consider the functions f ,g,Q :R→R defined by f (x) := (1 +
a1 coshx)x, g(x) := sinhx and Q(x) := f (x)/g(x). Clearly, we have

Q(x)= f (x)
g(x)

= f (x)− f (0)
g(x)− g(0)

,

ϕ(x) := f ′(x)
g′(x)

= 1 + a1 coshx+ a1x sinhx
coshx

.

(2.7)
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Now, in what follows, we try to find the minimum values of Q using the monotone
form of l’Hospital’s rule discovered by Anderson et al. [8, Lemma 2.2]. Easy compu-
tations show that ϕ′(x) = u(x)/cosh 2x, where u : [0,∞)→R is defined by u(x) = a1x +
a1(sinhx)(coshx)− sinhx. Moreover, we have u′(x) = (coshx)(2a1 coshx− 1). For con-
venience, let us consider coshx = t and define the function v : [1,∞)→R by v(t) := t(2a1

t− 1).
There are two cases to consider.

Case 1 (a1 ≥ 1/2). Since t ≥ 1≥ 1/2a1, it follows that u′(x)= v(t)≥ 0 for all x ≥ 0, and,
consequently, the function u is increasing. This implies that u(x) ≥ u(0) = 0, that is,
the function ϕ is increasing on [0,∞). Using the monotone form of l’Hospital’s rule [8,
Lemma 2.2], we conclude that Q is increasing too on [0,∞), that is, Q(x)≥Q(0)= 1 + a1

for all x ≥ 0. Now, because Q is an even function, clearly, Q is decreasing on (−∞,0], that
is, Q(x)≥Q(0)= 1 + a1 for all x ≤ 0.

Case 2 (a1 ∈ (0,1/2)). Because Q is even, it is enough again to consider its restriction to
[0,∞). However, at this moment, the function Q is not fully monotone on [0,∞). Let α
be the minimum point of the function Q. We can obtain, by direct calculation,

(sinh 2x)Q′(x)= sinhx+ a1(sinhx)(coshx)− x coshx− a1x. (2.8)

Since Q′(α)= 0, we have sinhα+ a1(sinhα)(coshα)−αcoshα− a1α= 0, that is,

α

sinhα
= 1 + a1 coshα

a1 + coshα
. (2.9)

Using this relation, we deduce that

Q(α)=
(
1 + a1 coshα

)
α

sinhα
=
(
1 + a1 coshα

)2

a1 + coshα
. (2.10)

Finally, because the minimum of the function x 	→ (1 + a1x)2/(a1 + x) on [1,∞) is 4a1(1−
a2

1), we have Q(α)≥ 4a1(1− a2
1), and with this, the proof is complete. �

Proof of Theorem 1.4. In analogy to the proof of Theorem 1.1, we can prove Theorem 1.4
For this, let us recall that, recently, András and Baricz proved [9, Lemma 1] that if x ∈R
and p > q >−1, then

�p(x)= 2
B(q+ 1, p− q)

∫ 1

0
�q(tx)t2q+1(1− t2)p−q−1

dt. (2.11)

Taking, in the above relation, t = sinθ, we obtain the hyperbolic analogue of (2.3), that
is,

�p(x)= 2
B(q+ 1, p− q)

∫ π/2

0
�q(x sinθ) sin2q+1θ cos2p−2q−1θdθ. (2.12)
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In particular, taking, in the above relation, q = −1/2, changing p with p + 1 and taking
q = 1/2, respectively, we get that, for all p >−1/2 and x ∈R,

�p(x)= 2
B(p+ 1/2,1/2)

∫ π/2

0
�−1/2(x sinθ) cos2p θ dθ,

�p+1(x)= 2
B(p+ 1/2,3/2)

∫ π/2

0
�1/2(x sinθ) sin2 θ cos2p θ dθ.

(2.13)

Now, using Theorem 1.3, in view of relations (1.12), we deduce that the inequality
a2�1/2(x)≤ 1 + a1�−1/2(x) holds for all x real number. Thus changing, in this inequality,
x with x sinθ and multiplying both sides with sin2 θ cos2p θ, after integration, we obtain

a2

2
B
(
p+

1
2

,
3
2

)
�p+1(x)≤ 1

2
B
(
p+

1
2

,
3
2

)
+
a1

2
B
(
p+

1
2

,
1
2

)
�p(x)− a1

2
B
(
p+

3
2

,
1
2

)
�p+1(x),

(2.14)

where we have used (2.13). Finally, simplifying this inequality, we obtain the required
inequality. �

Remark 2.1. New, researches, which are concerned with Oppenheim’s problem, are in
active progress, readers can refer to [4, 10–13].
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