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The difference sequence space m(φ, p,Δ(r)), which is a generalization of the space m(φ)
introduced and studied by Sargent (1960), was defined by Çolak and Et (2005). In this
paper we establish some geometric inequalities for this space.
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1. Introduction and preliminaries

Let � denote the space whose elements are finite sets of distinct positive integers. Given
an element σ ∈�, we write c(σ) for the sequence (cn(σ)) such that cn(σ) = 1 for n ∈ σ ,
and cn(σ)= 0, otherwise. Further

�s =
{
σ ∈� :

∞∑
n=1

cn(σ)≤ s
}

, (1.1)

that is, �s is the set of those σ whose support has cardinality at most s, where s is a natural
number.

Let w be the set of all real sequences and

Φ=
{
φ = (φn

)∈w : φ1 > 0,∇φk ≥ 0, ∇
(
φk

k

)
≤ 0 (k = 1,2, . . .)

}
, (1.2)

where∇φk = φk −φk−1. For φ ∈Φ, Sargent [1] introduced the following sequence space:

m(φ)=
{
x = (xn)∈w : sup

s≥1
sup
σ∈�s

(
1
φs

∑
n∈σ
|xn|

)
<∞

}
. (1.3)
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In [2], the space m(φ) has been considered for matrix transformations and in [3] some
of its geometric properties have been considered. Tripathy and Sen [4] extended m(φ) to
m(φ, p),1≤ p <∞. Recently, Çolak and Et [5] defined the space m(φ, p,Δ(r)) by using the
idea of difference sequences (see [6–8]).

Let r be a positive integer throughout. The operators Δ(r),Σ(r) : w→w are defined by
(
Δ(1)x

)
k = (Δx)k = xk − xk+1,

(
Σ(1)x

)
k = (Σx)k =

∞∑
j=k

xj (k = 1,2, . . .),

Δ(r) = Δ(1) ◦Δ(r−1), Σ(r) = Σ(1) ◦Σ(r−1), (r ≥ 2),

Σ(r) ◦Δ(r) = Δ(r) ◦Σ(r) = id, the identity onw.

(1.4)

For 0≤ p <∞, the space m(φ, p,Δ(r)) is defined as follows:

m
(
φ, p,Δ(r))=

{
x ∈w : sup

s≥1,σ∈�s

(
1
φs

∑
n∈σ

∣∣Δ(r)xn
∣∣p) <∞

}
, (1.5)

which is a Banach space (1≤ p <∞) with the norm

‖x‖m(φ,p,Δ(r)) =
r∑

i=1

|xi|+ sup
s≥1,σ∈�s

1
φs

(∑
n∈σ

∣∣Δ(r)xn
∣∣p
)1/p

, (1.6)

and a complete p-normed space (0 < p < 1) with the p-norm

‖x‖mp(φ,Δ(r)) =
r∑

i=1

|xi|p + sup
s≥1,σ∈�s

1
φs

∑
n∈σ

∣∣Δ(r)xn
∣∣p. (1.7)

In this paper, we will consider the case 1 < p <∞ to study some geometric properties of
m(φ, p,Δ(r)). We will examine the Banach-Saks property of type p, strict convexity and
uniform convexity. The space m(φ, p),1 ≤ p <∞ was defined by Tripathy and Sen [4]
which is in fact m(φ, p,Δ) with Δ replaced by id.

Let 1 < p <∞. A Banach space X is said to have the Banach-Saks property of type p or
property (BS)p if every weakly null-sequence (xk) has a subsequence (xki) such that for
some C > 0, the inequality

∥∥∥∥∥
n∑
i=0

xki

∥∥∥∥∥
X

≤ c(n+ 1)1/p, n= 1,2,3, . . . , (1.8)

holds.
The property (BS)p for a Cesàro sequence space was considered in [9].
We find uniform convexity and strict convexity of our space through the Gurarii’s

modulus of convexity (see [10, 11]).
For a normed linear space X , the modulus of convexity defined by

βX(ε)= inf
{

1− inf
0≤α≤1

‖αx+ (1−α)y‖ : x, y ∈ S(X),‖x− y‖ = ε
}

, (1.9)
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is called the Gurarii’s modulus of convexity, where S(X) denotes the unit sphere in X and
0 < ε ≤ 2. If 0 < βX(ε) < 1, then X is uniformly convex and if βX(ε)≤ 1, then X is strictly
convex.

2. Main results

Theorem 2.1. The space m(φ, p,Δ(r)) has the Banach-Saks property of type p.

Proof. We will prove the case r = 1 and the general case can be followed on the same
lines. �

Let (εn) be a sequence of positive numbers for which
∑∞

n=1εn ≤ 1/2. Let (xn) be a
weakly null sequence in B(m(φ, p,Δ)), the unit ball in m(φ, p,Δ). Set x0 = 0 and z1 =
xn1 = Δx1. Then there exists s1 ∈N such that

∥∥∥∥∥
∑
i∈τ1

z1(i)ei

∥∥∥∥∥
m(φ,p,Δ)

< ε1, (2.1)

where τ1 consists of the elements of σ which exceed s1. Since xn
w−→ 0⇒ xn→0 coordinate-

wise, there is n2 ∈N such that

∥∥∥∥∥
s1∑
i=1

xn(i)ei

∥∥∥∥∥
m(φ,p,Δ)

< ε1, when n≥ n2. (2.2)

Set z2 = xn2 = Δx2. Then there exists s2 > s1 such that

∥∥∥∥∥
∑
i∈τ2

z2(i)ei

∥∥∥∥∥
m(φ,p,Δ)

< ε2, (2.3)

where τ2 consists of the elements of σ which exceed s2. Again using the fact xn→0 coordi-
natewise, there exists n3 > n2 such that

∥∥∥∥∥
s2∑
i=1

xn(i)ei

∥∥∥∥∥
m(φ,p,Δ)

< ε2, when n≥ n3. (2.4)

Continuing this process, we can find two increasing sequences (si) and (ni) such that

∥∥∥∥∥
s j∑
i=1

xn(i)ei

∥∥∥∥∥
m(φ,p,Δ)

< εj , when n≥ nj+1,

∥∥∥∥∥
∑
i∈τ j

z j(i)ei

∥∥∥∥∥
m(φ,p,Δ)

< εj ,

(2.5)

where zj = xnj = Δxj and τ j consists of the elements of σ which exceed s j . Note that zj(i)
is a term in the sequence with fixed j and running i.
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Since ε j−1 + ε j < 1, we have

(
1
φs

∑
n∈σ

∣∣zj(n)
∣∣)≤ (ε j−1 + ε j

)
< 1, (2.6)

for all j ∈N and s≥ 1. Hence

∥∥∥∥∥
n∑
j=1

zj

∥∥∥∥∥
m(φ,p,Δ)

=
∥∥∥∥∥

n∑
j=1

(s j−1∑
i=1

zj(i)ei +
s j∑

i=s j−1+1

zj(i)ei +
∑
i∈τ j

z j(i)ei

)∥∥∥∥∥
m(φ,p,Δ)

≤
∥∥∥∥∥

n∑
j=1

(s j−1∑
i=1

zj(i)ei

)∥∥∥∥∥
m(φ,p,Δ)

+

∥∥∥∥∥
n∑
j=1

( s j∑
i=s j−1+1

zj(i)ei

)∥∥∥∥∥
m(φ,p,Δ)

+

∥∥∥∥∥
n∑
j=1

(∑
i∈τ j

z j(i)ei

)∥∥∥∥∥
m(φ,p,Δ)

≤
n∑
j=1

∥∥∥∥∥
( s j∑
i=s j−1+1

zj(i)ei

)∥∥∥∥∥
m(φ,p,Δ)

+ 2
n∑
j=1

ε j ,

n∑
j=1

∥∥∥∥∥
s j∑

i=s j−1+1

zj(i)ei

∥∥∥∥∥
p

m(φ,p,Δ)

=
n∑
j=1

sup
s≥1

sup
τ j−1∈�s

(
1
φs

∑
i∈τ j−1

∣∣zj(i)∣∣p
)

≤
n∑
j=1

sup
s≥1

sup
σ∈�s

(
1
φs

∑
i∈σ

∣∣zj(i)∣∣p
)
≤ n.

(2.7)

Therefore by (2.7)

∥∥∥∥∥
n∑
j=1

zj

∥∥∥∥∥
m(φ,p,Δ)

≤ n1/p + 1≤ 2n1/p (2.8)

since
∑n

j=1ε j ≤ 1/2.
Hence m(φ, p,Δ) has the Banach-Saks property of type p.

Remark 2.2. The above result can also be extended to the case when r �=1 and so the
proof should also work for a more general case with Δ replaced by a matrix operator
(transformation).

Theorem 2.3. The Gurarii’s modulus of convexity for the space X =m(φ, p,Δ) is

βX(ε)≤ 1−
[

1−
(
ε

2

)p]1/p

, (2.9)

where 0 < ε ≤ 2.
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Proof. Let x ∈m(φ, p,Δ). Then

‖x‖m(φ,p,Δ) = ‖Δx‖m(φ,p) =
∣∣x1
∣∣+ sup

s≥1,σ∈�s

1
φs

[∑
n∈σ

∣∣Δxn∣∣p
]1/p

. (2.10)

Let 0 < ε ≤ 2 and consider the sequences

u= (un)=
((∑(

1−
(
ε

2

)p))1/p

,
∑(

ε

2

)
,0,0, . . .

)
,

v = (vn)=
((∑(

1−
(
ε

2

)p))1/p

,
∑(

− ε

2

)
,0,0, . . .

)
.

(2.11)

Then ‖Δu‖m(φ,p)=‖u‖m(φ,p,Δ)=1,‖Δv‖m(φ,p)=‖v‖m(φ,p,Δ)=1, that is, u,v ∈ S(m(φ, p,Δ))
and ‖Δu−Δv‖m(φ,p) = ‖u− v‖m(φ,p,Δ) = ε.

For 0≤ α≤ 1,

∥∥αu+ (1−α)v
∥∥p
m(φ,p,Δ) =

∥∥αΔu+ (1−α)Δv
∥∥p
m(φ,p) = 1−

(
ε

2

)p

+ |2α− 1|
(
ε

2

)p

.

(2.12)

Hence

inf
0≤α≤1

∥∥αu+ (1−α)v
∥∥p
m(φ,p,Δ) = 1−

(
ε

2

)p

. (2.13)

Therefore, for p ≥ 1

βX(ε)≤ 1−
[

1−
(
ε

2

)p]1/p

. (2.14)

This completes the proof of the theorem. �

Corollary 2.4. (i) If ε= 2, then βX(ε)≤ 1 and hence m(φ, p,Δ) is strictly convex.
(ii) If 0 < ε < 2, then 0 < βX(ε) < 1 and hence m(φ, p,Δ) is uniformly convex.

Remark 2.5. Note that these results are best possible for the time being, that is, they
cannot be readily generalized to the general case because our results also hold for general
matrix transformation.
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