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We established a new Hermit-Hadamard type inequality for GA-convex functions. As applica-
tions, we obtain two new Gautschi type inequalities for gamma function.

1. Introduction

Let f be a convex (concave) function on [a,b] C R; the well-known Hermite-Hadamard’s
inequality [1] can be expressed as

a+b

1 (° b
1(550) < 0 [ om0, (1)

Recently, Hermite-Hadamard’s inequality has been the subject of intensive research.
In particular, many improvements, generalizations, and applications for the Hermite-
Hadamard’s inequality can be found in the literature [2-20].

Let I C (0, o0) be an interval; a real-valued function f : I — R is said to be GA-convex
(concave) on I if f(x*y'™*) < (>)af(x) + (1 -a)f(y) forallx,y € [ and a € [0, 1].

In [21], Anderson et al. discussed the GA and related kinds of convexity; some
applications to special functions were presented.

For b > a > 0, let G(a,b) = Vab, L(a,b) = (b - a)/(logb - loga), I(a,b) = 1/
e(b?/ a“)l/(b_a), and A(a,b) = (a+b)/2 be the geometric, logarithmic, identric, and arithmetic
means of a and b, respectively. Then

min{a, b} < G(a,b) < L(a,b) < I(a,b) < A(a,b) <max{a,b}. (1.2)
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The first purpose of this paper is to establish the following new Hermite-Hadamard
type inequality for GA-convex (concave) functions.

Theorem 1.1. If b > a > Oand f : [a,b] — R is a differentiable GA-convex (concave) function,
then

b- L(a, b) L(a, b)

f(a,b)) < (>)—f fBdt < (2) f(b) + “f(a). (1.3)

For real and positive values of x, the Euler gamma function I' and its logarithmic
derivative ¢, the so-called digamma function, are defined by

T(x) = f;wtx‘le‘tdt, w(x) = F'((x; (14)

The ratio I'(s) /T'(r) (s > r > 0) has attracted the attention of many mathematicians and
physicists. Gautschi [22] first proved that

s F(n+1)
n S“Tmn+s)

<exp[(1-s)gn+1)] (1.5)

forO<s<landn=1,2,3....
A strengthened upper bound was given by Erber [23]:

[(n+1) _4(n+s)(n+ 1)t

[(n+s) dn+ (s+1)2 (16)

In [24], Kec¢ki¢ and Vasi¢ established the following double inequality for b > a > 0:

bb—l b § F(b) bb—1/2 b

ga-1 [(a) = ge1/2 (17)
In [25], Kershaw obtained
F(x+1) s+1
_ 1/2 -
exp[(l s)(;r<x+s >] < Tt exp[(l s)(p<x+ 5 >],
1.8
(xe5) TEEED _1+< +1>1/2 B )
) Tx+s) |7 27\°"1
forx>0and 0 <s < 1.
In [26], Zhang and Chu proved
logT'(b) —logI'(a) b-L(a,b L(a,b)—a
B0 87D, b)) HEDI 28, 19)

forallb > a>0.
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In [27], Zhang and Chu presented

p(L(a b)) < BLOZIBTD o) (g 1)) 4105 L&D

Lab) (1.10)

forallb>a>0.
The second purpose of this paper is to establish the following two new Gautschi type
inequalities by using Theorem 1.1.

Theorem 1.2. Ifb > a > 0, then

I(a,b) - L(a,b) I*(a,b) - G*(a,b) B logT'(b) —logT'(a)

v D) = S e b) ~ 12I%(a,b)Gia,b) b-a -
<li(a,b) - Greled).
Theorem 1.3. Ifb > a > 0, then
ST e
g Lt S S e Sin
(1.12)
2. Lemmas

In order to establish our main results we need several lemmas, which we present in this
section.

Lemma 2.1. One hasy, >, 1/n® < 1.203.

Proof. Simple computations lead to

=) 1 20 1 e 1 20 1 o 1
— =) —+ — <) —+ [ —
§n3 ;;ﬁ ;1:2211"3 nZ:ln3 S (n-n(n+1)
20 o 20
1 1 1 1 1 2.1
= Z— + Z [ - = Z— + — ( )
“nd S |2n(n-1) 2n(n+1)] “Snd 2x20x21

1.202--- < 1.203. O
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Lemma 2.2 (see [28, Lemma 2.1]). If x > O, then

! 1 1 S n-1 Bn m Bm+1
' (JC) = ; + ﬁ + Zl(—l) x2”+1 + (—1) 91 W’ (22)
n=

1 L, (2n+1)B,

" 1 & m+ 2m + 3)B,,.
¢ (x) =_P_F+Z(_1) W“‘(—l) 192¥
n=1

x2m+4 4 (23)

where0< 01,00 <1, m>1, meN,B;=1/6, B,=1/30, B3 =1/42, B, =1/30,....

Lemma 2.3. Suppose that I C (0, o) is an interval and f : I — R is a real-valued function. If f is
second-order differentiable on I, then f is GA-convex (concave) on I if and only if

f1(x) +xf"(x) 2 ()0 (2.4)

forallx € 1.
Proof. Lemma 2.3 follows easily from the basic properties of convex (concave) functions and
the fact that f is GA-convex (concave) on I if and only if g(x) = f(e*) is convex (concave) on

J={logx:xel}. 0

Lemma 2.4 (see [29, Theorem 3]). If x > 0, then
2, 1 3,0 1
0<xqr(x+1)+xqr(x+1)<§. (2.5)

Lemma 2.5. ¢(x) +1/2x is GA-concave on (0, o0).

Proof. Differentiating the well-known identity I'(x + 1) = xI'(x) we get

L,
¢ a+D) = -+ ¢ ),

5 (2.6)
§xD) = 5+ g ().
From inequalities (2.5) and (2.6) we have
X2y (x) + 3¢ (x) + % <0. (2.7)
Inequality (2.7) leads to
(‘P(x) + %) + x(qf(x) + %)H = % (xz(p’(x) + 3¢ (x) + %) <0. (2.8)
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Therefore, Lemma 2.5 follows from (2.8) and Lemma 2.3.
Lemma 2.6. ¢s(x) +1/2x + 1/12x? is GA-convex on (0, c0).

Proof. Simple computation leads to

1 1\ 1 1\ " 1 1
((p(x)+§+@> +x<(p(x)+ﬂ+ 12x2> = ¢’ (x) + xq (x)+ﬁ+§. (2.9)
From (2.9) and Lemma 2.3 we know that we need only to prove that

> 0. (2.10)

! n 1
¢ (x) + xg (x)"'@"'@_

We divide the proof into three cases.
Case 1. x € [/5/2, ). Taking m = 2 in (2.2) and m = 3 in (2.3) we get

1 1

= = 2.11
2 6x3  30x5’ 11)

, 1
(l’(x)>;+

¢(x)>—— - — - — . (2.12)
Inequalities (2.11) and (2.12) together with x > 1/5/2 lead to

, " 1 1 2 » b
(If(x)+x(lf (x)+@+§>w<x _Z>ZO (213)

Case 2. x € [1,4/5/2). It is well-known that

logI'(x) = —yx + Z

k=1

% - log(l + %)] - log x, (2.14)

where y = 0.577215- - - is Euler’s constant.
Differentiating (2.14) we get

R
' (x) = g(ﬂ)(k”)z, (2.15)
¢"(x) = - s 2 (2.16)

2k +x)°
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We clearly see that x2(k — x)/(k + x)? is increasing in [1,+/5/2) for k > 3; hence (2.15)
and (2.16) lead to

1 &x¥(k-x) x 1
Xy (x) + xte M)+ o= SO X2
¥'(x) () + 5 372 kexy 273
_1_f+x3—x4 x3(2-x) & x%(k - x)
3 2 (1+x)° @+x° 2 (k+x)’
3_x4 43 ) _
21_£+x x3+ 2-x) xZ k 13
3 2 (1+x) 2 +x)° —(k+1)
3_ 4 3 [e9)
=1_£+x x (2- x) Z 2 .
3 2 (1+x)° (2+x) = (k+1) C(k+1)°

(2.17)

It follows from inequality (2.17), Lemma 2.1, 352, 1/n? = x2/6,and x € [1,1/5/2) that

x*-xt xX*Q2-x)

s
2 1+x)P° @2+x)°

a? 1 1 1 1
+x|z—1—z—§— <1203 1_§_ﬁ>:|

3,1 4, 1 f 1 1
q,r(x)+x(pr(x)+2+3>3

1 3 _ 4 32_
= -4+ X x3+x( ’g) x x 0.2981

3 (1+x) (2+x) (2.18)
Ly S k. S+ 2-x .

3 1+1/x)” (1+2/x)

i5+ 1-+/5/2 +2—\/5/2
2 <1+2/\f5>3 27

=0.01524---> 0.

> % —-0.2982 x

Case 3. x € (0,1). Since (k—-x)/(k+x)%is decreasing in [0, 1] for k > 1, hence (2.15) and (2.16)
imply that

& 1 x
3o’ (%) + xto’ (x +—+—: -X 2_2
¢ (x) + x ¢ (x) k§ k+x) *373
1 x =
> =
>z-5+ § (k+1) (2.19)

wl»—\
NI><

® 2
;( (1+k)? (k+1)3>'
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From (2.19), Lemma 2.1, 352, 1/n? = x2/6,and x € (0,1) we get

5, 4 x 1 1 x L|a?
i2s2 2 2 1-2(1.203-1

xq,r(x)+x<p(x)+2+3>3 2+x[6 (1.203 )]

L X 0238934 (2:20)

3 2

1 x

- X 0238

>3 2+0 38x

It is not difficult to verify that

3
1 x 1 1 1 1
in(=-=+0238x°)==-=-4/— +0.2 — ) =0054390--->0. (221
xrgég]<3 2+0 38x> 3 2\/1.428+0 38<V1.428> 0.054390--->0. (2.21)

Therefore, inequality (2.10) follows from (2.20) and (2.21). O

3. Proof of Theorems 1.1, 1.2, and 1.3

Proof of Theorem 1.1. Suppose that f is a GA-convex function. For any fixed ¢ € (a,b), if x €
[c,b], then g(t) = f(e') is convex on [log ¢, log x] and

g(logx) — g(logc)
log x —logc

> ¢'(logc). (3.1)

Inequality (3.1) implies that
f(x) = f(c) > c(logx —1logc) f'(c). (3.2)

Let h(x) = fff(t)dt —(x—c)f(c)—c[x(logx—logc)— (x—-c)] f'(c), then inequality (3.2)
leads to that h'(x) = f(x) - f(c)—c(logx—logc) f'(c) > 0 for x € [¢,b]. Hence h(b) > h(c) =0,

namely,

b
J‘ ftdt > (b-c)f(c) +c(blogb-blogc—-b+c)f'(c) .

=(b-c)f(c)+c(logb-logc)(b-L(c,b))f (c).

Using a similar method we get

rf(t)dt > (c-a)f(c) - c(logc—loga)(L(a,c) - a)f'(c). (3.4)
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Table 1: Comparison of Mj3(a,b) and My(a,b) with M;(a,b) and M;(a, b) for some a and b.

(a,b) M (a,b) M;(a,b) M;(a, b) M,(a,b)

(1,20) 1.95847476- - - 1.76003014- - - 2.06182987- - - 2.03819859- - -
(2,30) 2.48099790- - - 2.27655813. - - 2.53158738- - - 2.51880271- - -
(3,10) 1.71034106- - - 1.66603361- - - 1.72366288- - - 1.72124442. - -
(5,20) 2.38826702- - - 2.32373887- - - 2.39918236- - - 2.39615827- - -
(10,20) 2.63689471- - - 2.61972436- - - 2.63920555- - - 2.63830472- - -
(15,40) 3.22695356- - - 3.19333175- - - 3.23147416- - - 3.22857750- - -
(1,50) 2.81088747- - - 2.47487539- - - 2.93055857- - - 2.89622376- - -
(50,80) 4.09342163- - - 4.08651410- - - 4.09511617- - - 4.09356690- - -
(100,200) 4.84411811- - - 4.83351060- - - 4.85077727- - - 4.84425912- - -
(1,1000) 5.23783238- - - 4.83563978- - - 5.59613902- - - 5.30668508- - -

Table 2: Comparison of N> (a,b) and N3(a, b) with Ni(a, b) for some a and b.

(a,b) Ni(a,b) N>(a,b) Ns(a,b)

(1,20) 2.06618225- - - 2.06487349- - - 2.05761307- - -
(2,30) 2.53521205- - - 2.53251160- - - 2.52368386- - -
(3,10) 1.72432365- - - 1.72424671- - - 1.72268730- - -
(5,20) 2.40015332- - - 2.39940479- - - 2.39674582- - -
(10,20) 2.63950581- - - 2.63923737- - - 2.63837307- - -
(15,40) 3.23247604- - - 3.23149444- - - 3.22862423- - -
(1,50) 2.93896993 - - 2.93201528- - - 2.91418376- - -
(50,80) 4.09566787- - - 4.09511692- - - 4.09356845- - -
(100,200) 4.85329204- - - 4.85077759- - - 4.84425980- - -
(1,1000) 5.77619986- - - 5.59622174- - - 5.31858214- - -

Letc = I(a,b), then

b
(logb —logc)(b—-L(c,b)) = (logc —loga)(L(a,c) —a) =1I(a,b) - ﬁ. (3.5)
From inequalities (3.3) and (3.4) together with (3.5) we clearly see that
b
f ftydt>(b-a)f(I(a,b)). (3.6)

Next for any x € [a,b], let y = (logx —loga)/(logb —loga), then 0 < y < 1 and
x = a'YbY. From the definition of GA-convex function and the transformation to variable of
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integration we get

.[Zf(x)dx = I:f<a1‘yby>d<al_yby> < aﬂ[(l —y)f(a)+ yf(b)]d<g>y
_ af: [f(a) + (f(b) —f(a))y]d<g>y

= (b-a)f(a)+a(f(b) ‘f(“))flyd<g>y

b b/a-1 )
a logb-loga

=bf(b)—af(a) - (f(b) - f(a))L(ab)
= (b-L(a,b))f(b) + (L(a,b) - a)f(a).

~ (b~ a)f(@) + a(f(®) - f(@)(

(3.7)

Therefore, Theorem 1.1 follows from inequalities (3.6) and (3.7).

Proof of Theorem 1.2. From Lemmas 2.5 and 2.6 together with Theorem 1.1 we clearly see that

1 1 (° 1 _ logT'(b) —logI'(a) 1
v D)+ oty 2 5o aL ("’(x) * Z)dx - b—a * 2L(a,b)’ (38)

(I(a,b)) + 1 + 1 < 1 Jb< ( )+i+L>d
P T ol p) T 1202(a,b) S b-a) \Y T 2x T 122 )

_logI'(b) —logT'(a) . 1 N 1 logI'(b) —logT'(a) . 1 . 1
- b-a 2L(a,b) 12ab b-a 2L(a,b)  12G2(a,b)’
(3.9)
O
Therefore, Theorem 1.2 follows from (3.8) and (3.9).
Proof of Theorem 1.3. From Lemmas 2.5 and 2.6 together with Theorem 1.1 we get
1 (* 1 b- L(a b) L(a, b)
) (100 30> 02 (v ) + SR (vt + ),
(3.10)
1 (b 1 1 b-L(a,b) 1
b—aL<‘”(x)+E+1zx2>dx5 b-a ( () + 12b2>
(3.11)

, Lab) - 11
M (‘/““’*W@)
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Inequalities (3.10) and (3.11) lead to

logT(b) ~ logT(a) _ b-L(a,b) L(a,b) - a [%(a,b) - G(a, b)
b-a 2 e YO YO S he@y) ¢ 1Y
logT'(b) —logT'(a) b-L(a,b) L(a,b)-a L*(a,b) - G*(a,b)
b-a S e YO Y@ S G 513)
, L@ b)A(a,b) - G(a,b) '
6G*(a, b)
0

Therefore, Theorem 1.3 follows from (3.12) and (3.13).

Remark 3.1. Making use of a computer and the mathematica software we can show that the
bounds in Theorems 1.2 and 1.3 are stronger than that in inequalities (1.9) and (1.10) for some
a and b. In fact, if we let M;(a,b) = ((b— L(a,b))/(b - a))yp(b) + (L(a,b) —a)/(b-a))y(a),
M(a,b) = ¢(L(a,b)), Ms(a,b) = ¢(I(a,b))~((I(a,b)~L(a,b))/(2I(a,b)L(a,b)))~((I*(a,b)~
G*(a,b))/(12I*(a,b)G*(a,b))), Ma(a,b) = ((b - L(a,b))/ (b - )¢ () + ((L(a,b) - a)/(b -
a))¢(a) + ((L*(a,b) - G*(a,b))/(2L(a,b)G*(a,b))), N1(a,b) = ¢(L(a,b)) +1og I(a,b)/L(a,b),
Na(a,b) = ¢(I(a,b)) - ((I(a,b) - L(a,b))/(2I(a,b)L(a,b))) and N3(a,b) = ((b-L(a,b))/(b-
a))g(b)+((L(a,b)—a)/(b—a))g(a)+(L*(a,b)-G?*(a,b))/(2L(a,b)G*(a, b)) +(L(a,b)A(a,b) -
G?(a, b))/ (6G*(a,b)), then we have Tables 1 and 2 via elementary computation.

Remark 3.2. We clear see that the lower bound in Theorem 1.3 is stronger than that in
inequality (1.9) for all a,b > 0.
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