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Let we have an integral operator

b(x)
Kf(x) == v(x) /a( ) k(x,y)u(y)f(y)dy for x>0

where a and b are nondecreasing functions, « and v are non-negative and finite functions,
and k(x, y) > Ois nondecreasing in x, nonincreasing in y and k(x, z) < D[k(x, b(y)) + k(y, 2)]
for y < x and a(x) < z < b( y). We show that the integral operator K: X — Y where X and Y
are Banach functions spaces with /-condition is bounded if and only if 4 < co. Where
A:=Ay+ A4, and

do= sup X (YRGB vllXag) b0l
x<y,a(y)<b(x)

Ari= sup X Yl pllX (a0 .600) (DK ()l x-
x<y,a(y)<b(x)
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2 A. GOGATISHVILI AND J. LANG
1 INTRODUCTION

Let X and Y be two Banach function spaces on (¢, d) and R respectively.
We define the general Hardy operator

Kf(x) == v(x) / ::) k(xy)u()fy)dy forxeR  (L1)

where a,b are nondecreasing functions on R, —oco<c<a(x)<
b(x)<d< oo, and v and u are non-negative measurable and finite
functions a.e. on R and (¢, d). The kernel k(x, y) >0 is defined a.c. on
{(x,¥); x €R, a(x) <y < b(x)} and satisfies the following conditions:

(i) it is nondecreasing in x and nonincreasing in y;
(ii) k(x,z)<D[k(x,b(y))+k(y,z)] for every y < x and a(x) <z<b(p),
where the constant D > 1 is independent of x, y, z. (1.2)

In this paper we describe the necessary and sufficient condition for the
boundedness of the operator (1.1) in Banach function spaces.

This paper extends results of Lomakina and Stepanov [3] and Opic
and Kufner [4]. In these papers the operator (1.1) was characterized
for a(x) =0 and b(x) = x.

Sections 2 and 3 contain the definitions, formulations of the main
results and some comments. In Section 4 we treat the simpler case
when the kernel k(x, y) is equal to 1 and the spaces X, Y satisfy the
I-condition. We use this result in Section 5 to deal with the general kernel
satisfying (1.2).

2 DEFINITIONS

In this section we recall the definition and some basic properties of the
Banach function spaces. In what follows M(2) will be the set of all
measurable functions on (2, where 2 is any measurable subset of R.

DEFINITION 2.1  Anormed linear space (X, ||.||x) on Qiscalled a Banach
function space (BFS) on (2 if the following conditions are satisfied:

(2.1) the norm || f|| x is defined for all f&€ M(R2) and f€ X if and only if

11l x < o0
2.2 Ifllx= 111 llx for every f€ M(Q);
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(23) if0<f,/fae.in Q then [llx |/ Ix

(2.4) if |E| < 00, EC ), then xg€ X;

(2.5) forevery set E, |E| < oo, E C Q, there exists a positive constant Cg
such that [g| f{x)|dx < Cgl| f||x-

By / we denote a Banach sequence space (BSS), which means that the
axioms (2.1)—(2.5) are fulfilled with respect to the counting measure and
{ex} denotes the standard basis in /.

Recall that the condition (2.3) immediately yields the following
property:
(2.6) if 0 <f<gthen || fllx<|lglx-

DEFINITION 2.2 The set

X = {f; [ e

< oo for every g € X},

equipped with the norm

1Al = sup{{ [

is called the associate space of X. It is known from Bennett and Sharpley
[1] that X” = X and that X’ is again a BFS.

Let T be a linear operator from a BFS X into a BFS Y. Then 7’ is an
associate operator to the operator T'if [o(Tf)g= [of(T'g) forall fe X
andgeY.

lelly < 1},

LEMMA 2.3 (Bennett and Sharpley [1]) Let T be a linear operator

fromaBFS XintoaBFS Y. Then || If || y < C|| f|| xfor allf € X with a finite

positive constant C, if and only if | T'g||lx < C||g|| v for alige Y.
Moreover | T||x— y=|T'||y' - x

DEFINITION 2.4 (Lomakina and Stepanov [3]) Given a BFS X and a
BSS [, X is I-concave, if for any sequence of disjoint intervals {J;} such
that UJ, =, and for all f€ x

< dillfllx

Zek”Xka”X
k

1



4 A. GOGATISHVILI AND J. LANG
where is d; a finite positive constant independent on f€ X and {J;}.

Analogously, a BFS Y is said to be /-convex, if for any sequence of
disjoint intervals {I;}, UL, =Q and forallge Y

lglly < &

> edxnelly
k

1

with a finite positive constant d, independent on g € Y and {I;.}.
Wesay, that BFS X, Y satisfy the /-condition, if there exist a BSS /such
that X is I-concave and Y is /-convex simultaneously.

LeEmMA 2.5 (Lomakina and Stepanov [3]) Let Y be a I-convex BFS.
Then Y' is an l'-concave BFS and

<d|flly

I/

> exllxa SNy
k

forallfe Y and {I}, UL, =A.

3 MAIN RESULTS

Assume X and Y are two BFS on (¢, d) and R, respectively. Then we
denote

Aoi= sup  Ix(ey (OVOR( O PliX @0 b4l 5
x<3,(3)<b(x)
Avi= sup XVl pllXa) 500 (DR D)Ly
*<3,a(3)<b(x)
and A:=Ay+ A4;.

Note that Ag= A4, if k(x,y)=1.

THEOREM 3.1 Let X and Y be two BFS on (c,d) and R, respectively,
satisfying the I-condition. Let K be the integral operator of the form (1.1)
with kernel k(x, y) > 0 satisfying (1.2). Then K: X — Y is bounded, if and
only if, A is finite. Moreover

Kl x-y < 4
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To prove Theorem 3.1 we need a corresponding result for the general
Hardy operator with kernel k(x, y) = 1.
Let

b(x)
HAx) == (%) / LY (3.1)

where —oo < ¢ < a(x) < b(x) < d < oo are nondecreasing functions on R,
v and u are real measurable and finite functions a.e. on R and (e, ),
respectively.

THEOREM 3.2 Let X and Y be two BFS on (c,d) and R, respectively,
satisfying the I-condition, and let H be the operator defined by (3.1). Then
H: X — Y is bounded, if and only if,

Ag:= sup  |IxeyVlylIX(ao)beullxr < oo
*<y.ay)<b(x)

Moreover A=< || H|x_ y-

4 BOUNDEDNESS OF THE OPERATOR H

In this section we prove Theorem 3.2. At first we prove a lemma.

DEFINITION 4.1 Let v be a non-negative measurable function on an
interval (o, @) where —oco<a<f<oo.LetceR,let —oo<a(x)<c<
b(x) < oo be nondecreasing functions, and let  be a non-negative mea-
surable function on (e,d) where e:=liminf,_,,a(x) and d:=
lim supy _, 3b(x). Then we define

b(x)
Hyf(x) == v(x)/c u(0)f(¢)dt

for every measurable function fon (c,d), and

c

Hof(x) = v(x) /

a(x

u()f(¢) dt
)

for every measurable function fon (e, ¢).
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LEMMA 4.2 Let X and Y be two BFS on (e, d) and (a, 8), respectively,
satisfying the I-condition. Then Hy: X — Y is bounded, if and only if,

Ap = sup ||vxxpll¥llex(esm)lly < oo
ax<p

Moreover
1 Hollx—y < Ab-
Also H,: X — Y is bounded, if and only if,

A= sup ||vx@p)llylleX(aw),ollx < oo
asx<p

Moreover

|Hallx_y X 4a-

Proof We will give the proof only for Hy. The proof for H,, is similar.
Necessity Given x € (o, §) and f€ X such that fu > 0, we have

_>.

b()
W) / w(O)f(e) d

b()
YOxe) () / w(O)f(0) de

> vOxs() / u(t)f(1)d

Y
b x
= sy / u()f(2)] dt.

Taking the supremum over all such fand x € (o, 3) we obtain
1 Hbllx—y = VX0l plltx e ool
and so,

| Hsllx—y = 4b-

Sufficiency If A,=o0 then |H|xy_ y<Ap, If A4,=0 then
| Hallx — ¥y=0.
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Let 0<Ap<oo. Choose f€X such that ||f|x=1. Define C;=
(t; 1€@pB), [Vl >2), D=C\Ciy1 and E={x; x&(c,d),
b(X)E C,'}, B,'=E,'\E,'+1. Then '(C’d)\UiGZ B,"‘—'—‘O and I(a,ﬁ)\
Uiez Dy =0 and we have

B . .
[emr<y [ o< 3 2l
o i ie

i€z Z,|Di|>0
< Y 2¥wxcliylexolly
i€Z, |D;|>0
. Ab
= i - lexaly
i€Z, |Di|>0 UX(csup Ei-i) |l xr

d
(using 271 < / s Il
(4
< “fXBi—] ”X”uX(c,sup Bi1) ”X')

i1 1
< D A2 ol lxliexolly:
iEZ,’D,‘|>0

(using Holders inequality and /-condition)

< 44, > eillexolly

i€Z, |Di|>0

Z eill fx ol x

i€Z,|D;|>0
< ddida A\ flixllgll y-

Then we have

I 4

b
IHsflly = sup / gHyf < 4dids Ay f .

lglly<t Ja
Now we prove Theorem 3.2.

Proof of Theorem 3.2 Necessity Let f€ X be such that fu>0 and
IIfllx=1, and let x, y be such that o < x < y < # and b(x) > a(y). Then

b(.)
1ESly > 19X () / oy

b(x)
= Ivxnlly / u(D)f(6) dt.
a(y)
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Taking the supremum over all such x, y and f'we obtain

IH oy 2 11X | pllX a0 b0 -

Sufficiency Define M:={(x,1); x€R, a(x)<t<b(x)}. M is a
measurable set. If | M| =0 then it is easy to see that ||H||x_, y=0.

Suppose that [M]>0. We set M,,:={x; (x,f)e M, t=y}, y€R, and

={y; (x,H) €M, |M,| > 0}. Then P = U, P;, where P; are intervals,
|P | >0, and m < o0.

Let yo€int P; then we have a set M, and co = a(infM,,),
do = b(sup My,).

Suppose we have defined y;, ¢;, d;and M,,.

If i>0 and d;cint P; then we define y; 1 =d;, ciy1 = a(inf M), 1),
dit1 = b(sup My,11). If i<0 and ¢;€intP; then we define y;_;=c;
ci-1 =a(infM,,_ ), di_1 = b(sup M,,_,).

By using this method we can construct, for every P;sequences { yj’:};;mi ,
{c Y s 14 {My‘ e my» Where — o0 <m; <n; < oo.

We can rewrite all these sequences in the following way: {y,},_l,
(e}, {di}e, and {M, }* | where k = ™, (n; — m; + 1).

Then we have

Hf(x) = ZXMy,(x) (v(x) / u()f(t) dt + v(x) /a ; u(t)f(t)dt) a.e.

i=1

and

k
: b) Vi
- . P e ;
; /M ([v( ) . fAtyu(r)dt + v(x)/a (x)f(t) (1) z] g(x)) x
_Z[/ ( (x) f(t)X(y,,d,)u(t)dt> g(x)dx

+ /M ) (v(x) '/a :)f(t)x(c,.,y,.)u(t) dt) g(x) dxl

(Using Lemma 4.2 and A4, + 4y < Ay)
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k
/R gHf < 4didy Y Anl| X (eopn | xllgxall
i=1

k
+4d\d> Z Agll fXpa) | xllgxall v

i=1

k
< 8didr A ) || MX(ena I xllExasilly

i=1
(use Holder’s inequality and /-condition)

< 84ndid; || fllxlglly-

5 BOUNDEDNESS OF THE OPERATOR K

In this section we prove Theorem 3.1.

LEMMA 5.1 Let b(x) be a nondecreasing right continuous function on
(a, B) andlet b(a) = ¢, b(B) = d. Let ko(x, y) > 0 be akernel satisfying(1.2),
and ko(x, y) > 0 on set of positive measure. Suppose that ky(x, y) is right
continuous with respect to x for all x € [, 8] and for a.e. y € (¢, b(x)).

Let u, f be measurable functions on (c,d), fu >0, and

b(x)
Go(x) = / ko(x, »)u()() dy.

For a fixed number 6§ > D (where D is a constant from(1.2)), we define
Ar:={x € (a, B); Go(x) > (6 + 1)*}, k € Z, and N = sup{k; Ay # 0}. Then
there exist sequences {xy}, {yi} suchthat a < -+- <xp_1<x < -+ <f
and the inequality

b(x,

x)
(6+1)%" < / ko3 Y)u()f) dy

b1

b(Xk-1)
+D / ko(xk-1,y)u()f(y) dy
b(xx-2)
b(xx)

+ Do (x, b(x1-1)) /b ( )u(y)f(y)dy

b(Xk-2)
+ Dha(xi b)) [ wOYO) .

holds for allk < N, and Go(x) < (1 + 6)"""+1 when x € [Xg _ 1, Xx)-
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Proof By the Lebesgue Dominated Convergence Theorem Gy(x) is a
nondecreasing right continuous function for all e < x < S and lim,, _, ,,

Go(x) =0.

Set g, =inf A, for k< N.
Fix i € Z such that |A;| > 0. We set xo = a;, vo = max{i; a;= xo}, Xx =
a,, where v, = max{i;a; = a,,_,, ) for k> 0and v = max{i;a; = a,,, }

for k<0.

It is obvious that {7} is an increasing sequence of integers, therefore
Vo < W — 1, G(xk) = G(ay,) 2 (14 6)™.
If x € [xk, Xk 4+ 1), then we have a,, 11 = xx41, and therefore x < a,, 41

G(x) < (1 + &)+ 1. Next on using (1.2) we find that

b(xx)
(1+6)" = / Ko (e ¥)u()(y) dy

As

b(xk)
_ / o (xie YU )0) dy + /
b

X1 b(xx-2

b(x-2)
+ / koo, Y)u()) dy
(4

b(xk)
< / ko (e Y)u()f(y) dy
b(Xk-1)

b(xk_| )

+D ko(xk-1,y)u(y)f(y) dy
b(xk-2)

b(xk_l)

+ Do (36, b(xk1)) / u()(y) dy

b(xk-2)

b(xk—2)
+ Dko((xi b(xk_2)) / u()fy) dy + DGo(xk2).

DGo(xr—2) <D(1+ 81 < DA+ 8™ < (1 + 6"
1+ 6)"— 61 + 6™ '=(1+ 6y~ the lemma follows.

b(xk1

)
ko(xk, y)u(y)f(y) dy

and

THEOREM 5.2 Let X and Y be two BFS on (c,d) and(c, 3), respectively,

(where b(8) = d and b(a) = ¢) satisfying the I-condition and

b(x

)
Kef(x) i=v(x) | k(e p)f)u() dy,
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where k(x, ) satisfies (1.2). Then
1Kl xy < 43+ 4
where
Ay = sup |Ixee)VllrllXen@) (kz Jul)ll s
a<z<f
4= sup_[x(e)(WIRC, @) plixeocnll-
a<z<f

Proof Necessity Let x>a. Then b(x)>c. Since k(x,y) is non-
decreasing in x and nonincreasing in y, for every a < x < z < 3 we have

b(x)
Kfx) > v(z) / (o, E)f(0)u(z) di

and

b(x)
Kf(z) > v(z)k(z,b(x))/c u(H)f(t) ds.
Hence,

b(x)
&S Iy = 1X(x,)(-)v(.) k(x, 0)f(2)u(z) Aty
c
2 [1X e VIl pllx ey (R Ces ()Ll fxepieonllx
forall fe Xand a < x < 3, and

b(x)
IKF Iy > X (DY b)) / u(Of() dlly
2 {1X(x,8) (V) DO Pl X a2l X o0 1 x

forallfe Xand a<x < g.

Sufficiency Let D be the constant from condition (1.2) and let 6 > D
be fixed. Without loss of generality we may assume that k(x, y) and b(x)
satisfy the assumptions of Lemma S5.1. Otherwise we replace k(x, y) by
k(x ., y) and b(x) by b(x ).
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By the principle of duality it is sufficient to show that

8
J= / v(1)G(2)g(¢) dt‘ < Alfllxlglly, forallfe XandgeY’,

where G(1) = [** |k(1,y)f(y)u(»)| dy. By Lemma 5.1 we obtain

J< Z/ [v()G(2)g(2)| dt

k<N

<+ [ pogola
k<N P

< (148 [t + Ji2 + Ja1 + J2a),

where
=3 / [ o, putto)a / (Vo) dr,
b(xk-1) Xkt
i :=Dk§s;v AM ke, ()0 dit / ()] ds,
bx_ Xie+1
= DY k(xi (1)) ] ()0 lde / lg(v()] dr,
k<N b(xr-2) Xy

b(Xk—2 Xke+1
ha = DY kb)) [ sl [ gl

k<N
Applying the Holder inequality and the /-condition we find
Tit 3 (1) b s el ol X b b0 SN
k<N
X “X(xk,xrm)g“Y'”X(xk,ka)VHY)
< Ixepen ks Yol xo X o)V X o ek 0 T X Gty v

k<N
< A X0y b0) S X e 8l v
k<N
< A erllxan sosn x| |2 el Xromean&lly
k<N k<N v

< dida 4| flxlgll -
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Analogously, we obtain

Jiz < dida A ||f| gl -

Theestimate for J,; is similar to that for J;; on applying the knowledge
that k(x, y) is nondecreasing in x and proceeding like for J;;: we find that

I < did AY|flxlgll -
For J,, we write

B rbi(x)
Ja= [ [ OAOId Y Kok bs2) s (Ol ()]

k<N
< 1K/ ylelly

where Kif(x) := ¢(x)v(x) [ [u(0)f(1)|ds and by (x) := Ty blxs—2)

X)) (%) and  @(x) = 3o n k(e b(Xk—2))X (i) (X)- By
Theorem 3.2 we have that

[Killy—y < C sup x5Vl vl X (ctr(apyell
a<z<f
if Xk, < z < Xgy41 When by (z) = b(xx,-2) and

DX () < 3 K (3t 2) X () < Kl B0 2))
k=kq

Therefore we have

Xz BVl Pl1X (10 2l < X2, %D Kky—2) )V X e g2 e
0
S Ab.

Thus J < CAY)|f|lxllglly-- Then we have that || Ky ||y, < C(4) + 49).
Proof of Theorem 3.1 Necessity Letfu>0a.e., x<yand b(x)> a(y).

Since k(x, y) is nondecreasing in x and nonincreasing in y, for every
x <z<ywehave

b(x)
Kf(z) > ¥(2) / M
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and
b(x)
KAZ) > v(2)k(z, b(x)) / S

Therefore we get

b(x)
k(x, u()f(2) dtl|x ey ly < IKF NIy < (1Kl pll Sl

a

and

b(x)
/(y) u(O(0) del|vx k(- By < IKF NIy < KN x5

for all f€ X such that fu>0.
Then by duality we have

Ao+ Ay < 2||K||y_y-

Sufficiency We use the same techmque as in the proof of Theorem
3.2. For a(x), b(x) we define {c;}*_,, {di}*,, {»:}~, and {My,}‘ ,asin
that proof. Then we have

k b(x)
K = eun, (6) (%) /y k(x, )u(O)f(0)de
i=1 i
+v(x) / " k(x, Ou()()de)
®

k
Z (x) K} f(x) + ZXMy (x)K2f(x),
=1

where K} = v(x) [, 5 k(x, Du()f(1)dtxm, (x) and K = v(x) [y, k(x, 1)

u(t)f(t)thMy, (x)-
By the /-condition we obtain

&Ny < Z eillK; (N)xar, NIy

=L+ 5.

k
Z ei"K?(f)XMy, 1%
i=1

1 ]
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By Theorem 5.2 we have
IK; (N)xm, 1y < CAllX(eap Sl x

and therefore we obtain

k
I < CA)) Y eillxean fllxll < CAlLf Ny

i=1

To estimate I, we use the condition (1.2) for x; =inf(M,,) and
a(x)<t<y;=b(x), x;<x. Then k(x,?) < D[k(x,y;)+ k(x;,?)] and we
have

XM, () KH(x) = X, (x)v(x) /a():) k(x, Hu(e)f(r) dt
Vi
< Dy, (X)(0)k(%, 1) / w(O)f(0) dt
a(x)

Vi
+ Dy, (2)¥(x) / s Qa1

Theorem 3.2 yields

< Al Xeayllx
Y

Vi
o, V()% ) / RECICL!

and

i, ) [ () k(o Du()f1)de

S A ”fX(ci,di) ”X'
Y

Therefore

lIxan, Kif NIy < 2CA| fxaanllx

and by the /-condition we obtain that

b <24 <2CA|A1-

k
Eei”fX(C:,dz)”X
i=1

!
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Combining the estimates of /; and I, we arrive at

XS lly < ACI flx-

Theorem 3.1 is proved.

Remark When this paper was finished we learned (by oral commu-
nications) that this problem for Hardy operators in Lebesgue spaces was
considered by Heinig and Sinnamon [2].
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