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Let w be a bounded domain in R” ! with smooth boundary, . ,u_ €R, a>0, and let
ue Wﬁ;ﬁ((—a, a) x w) N CY([~a,a] x @) satisfy —Au + c(x1)us, = f(x1,u) and uy, > 0in
(—a,a) X w, u=u, on {+a} x w and u/0v =0 on (—a, a) x dw, where c is bounded and
nonincreasing and f'is continuous and nondecreasing in x;. We prove that u is a function
of x; only. The same result is shown for a related problem in the infinite cylinder R X w.
The proofs are based on a rearrangement inequality.
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1. INTRODUCTION

This paper is concerned with the question of one-dimensionality of
solutions of certain boundary value problems with Neumann boundary
conditions in cylindrical domains. More precisely, we consider problems
of the following kind:

Let @ =R x w be an infinite cylinder, where wis a bounded domain in
R"~!. For x€Q we write x=(x;,x’) where x’ €w. Suppose that u
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266 F. BROCK

satisfies

—Au+ c(X)uy, =f(x,u) inQ
QE:O on R x Ow, (1)
ov

u(to0, ) = ug,

where the functions c, f are continuous and uy €R, u, >u_. The
solutions of (1) can be seen as travelling waves of a corresponding
semilinear parabolic equation. They arise in various applications, e.g. in
combustion and some problems of biology. We note that for one space
dimension there is much more literature for problems of this kind. This
corresponds to ¢ = ¢(x,), f=f(x;, u) and u=u(x;). The problem (1) then
reduces to

—i' +c(x)u’ =f(x,u) onR,
u(£oo) = uy.

©

Here a general reference is the book of Fife [8]. Problem (1) has been
extensively studied by Berestycki and Nirenberg [4]. They obtained
various existence criteria, and it turned out that the solutions of (1)
behave qualitatively similar asin the one-dimensional case. In particular,
if c=¢(x")>0 and if f=f(u) is smooth and satisfies some further
conditions near u .., then u is unique, #,, > 0 and u tends exponentially
fasttou . as x; — +oo. We mention that the proof of monotonicity and
uniqueness u is based on the so-called sliding method. This device turned
out to be a very powerful tool to show qualitative properties of solutions
of some boundary value problems in cylindrical domains (see [1-4]).

Itis natural to raise the following question: Suppose that the functions
¢ and fin (1) are independent of x’ and u,, > 0. Is it then true that u is
independent of x’, too?

Let us first emphasize that if ¢ is constant and if f is smooth and
f=/f(u), then the uniqueness result of [4] immediately yields the desired
answer. On the other hand, if fis not smooth, then we cannot apply the
sliding method, and the solutions of (1) might be not unique. (In fact, it is
easy to construct counterexamples with “flat zones”, see Remark 3).
Nevertheless the answer to the above question is positive in some relevant
cases, even if f¢ C'.

We consider solutions of (1) and also of some related problem in a
finite cylinder (—a,a) x w with the decaying conditions replaced by
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Dirichlet boundary conditions on {+a} x w. We assume that c is
decreasing and that fis increasing in x; and continuous. In case of the
problem in the infinite cylinder we impose some further conditions on
Sf(x1,u) near u=u, which ensure exponential decay of # and Vu at
infinity. Exploiting some appropriate transformation of variables and a
simple rearrangement inequality we prove the one-dimensionality of the
solutions (Theorems 1 and 2). The following Lemma 1 shows that the
method is not restricted to continuous nonlinearities f.

We conclude with a simple comparison result for solutions u of some
related boundary value problem which satisfy the stronger condition
uy, > 0 (Lemma 2).

Remark 1 (1) Our work is also motivated by a paper of Carbou [7].
The author studied the following minimum problem for the Ginzburg—
Landau functional:

Ju) = /Q (|Vulz+%(u2— 1)2) dx —» Min!, ueck, (3)

where K:={u€ Wl]c;z(R") N L®(R"): limy, 400 #(x) = £1}. This is
related to the solutions of — Au=u—u’ in Q. Using a rearrangement
inequality he proved that (3) admits only the trivial solution
u(x) = tanh(x;/v2) (see also Remark 2).

(2) Recently I studied the Cauchy problem for a convolution model
of phase transitions in a cylinder in [6]. In particular, I proved the mono-
tonicity and one-dimensionality of travelling and statlonary waves by
using the sliding method.

(3) In a forthcoming paper we will study the problem whether the
solutions of (1) are monotonous in direction x;. The main tool will be
some kind of continuous rearrangement. Note that recently a similar
construction has been investigated by the author in [5].

2. RESULTS AND PROOFS

By £* we denote k-dimensional Lebesgue measure (1 <k <n). Let w a
bounded domain in R” ~! with C'-boundary, and let

Q=Rxw, Q=(—a,a)Xuw,
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where a > 0. For points x € Q we write x = (x;, x'), where x; €R, x’' € w,
and similarly, £ = (¢, £). Furthermore, we write V = (8/8y,, V') for the
gradient, where V' = (9/d,,, . ..,0/8y,). Our first result is

THEOREM 1 Let ¢ € L*°((~a, a)) and nonincreasing, and let f=f(x, u)
be continuous on (—a,a) x R and nondecreasing in x,. Furthermore,
let u € W*"(Q,) N C () satisfy:

loc

—Au+ c(x1)uy, = flx1,u), ux, >0 in Qy, 4)
u=uy on{ta}xuw, (5)

Ou .
v 0 on(—a,a) xOw (v: exterior normal). (6)

Then u is independent of x'.

Proof By introducing a new variable,

2= o(x) = /0 ) exp{- /0 "(s) ds} dt, ™)

and by setting f(z, -) := f(x1, -) and ¥*(z, x') := W(z, x') + £z, where
v(z,x") == u(x1, x") (8)
and ¢ > 0, problem (4)—(6) can be rewritten as

—Alve — gz_ (& (2)vE) = Az, v¢ — ez) — 2eg(2)g (2), 9)

(10)

v >e in(a-,a;) X w,
€ ==

uy +eay on {ai} X w,

ove
E=O on (a_,a+) X &u, (11)

where A’ = 377, (8%/0x2), ax = p(Z a),
¥(z)
g(z) = exp{— /0 c(1) dt}, (12)

and x; = 1(z) is the inverse function of ¢. Note that g(z) is convex since
¢(x) is nonincreasing.
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Let z=)"(v, x') be the inverse function of v* with respect to z, and let
= (u_+ea_, u, +ea,)xw. We have y¢ € W2'(U°) n C/(T?),
and we compute the derivatives of y* as:

Ve =—lg, Vi = y’;’ ,
¥ s
V=" J’fv3 s Vo = —ijz y;yfsv »
o5) L) 0 (13)
P Vix, VeV N YeoVs,  YadsVo
W) e »)
(Lj=2,...,n).

Then from (9)—(11) and (13) we obtain:

v (Q) _9 (w'yetz +g2<ye>) _g09)g0°)
) o 2ye)’ »
=y, v —ey) — 2e2(y)d (b°)s (14)
0<yi<l/e in U®,
ye=uy+ear on {ux+ear}xw,
V'y¢=0 on (u_ +ea_,us +eay) x Ow.

Let Y* the following average of y*:

Joy© (. €)d¢

Yo x') = YO0) =2 o

(v,x") € T?). (15)

Note that Y* is independent of x’ and Y¢ < 1/e. Then (14) yields the
identity

//( VY gy - yey 4 12 2|(+;)g2 2) (e 5)>dx,dv

/ / g(ye)g’(ye)( € _ Ye)dx'dv

= [[ (o= v - 20009 06)) 0 - ¥ ax'av. (16
UE
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Furthermore, since the function

Y& +8(&)

§n+1

f(&,. ..,§n+1) = s ((51,. . -,€n+1) e R" x R+),

is convex, we have that

1 <z;;2 7+ m) Y& +g2(£1)>
2

Mn+1 Entl
21_251(771 &) _ Z?=2 512 +g2(§]) (77 =& 1)
Enin 22, e
+g-—-——(£2g €) (m = &),
n+1
(61> 641)> (M5, Mg1) €R” X RT). (17)
Choosing & =5, m =Y, & =5, i = yg, (i=2,...,n), &1 = y; and

1 = Y¢ in (17), and since V'Y =0, we derive from (16)

/ / (gl(y&) |v'y€|2ytg2(y€)> &' dv

2 /U / e, v — ey®) — 2eg(y*)g (ye)) (y° — Yo)dx'dv. (18)

Next we claim the following rearrangement inequality:

/UE/ng()—?E)dx'dvz/UE/gﬂY?—e)dx'dv. (19)

To show (19), it is sufficient to prove that
/gz(y ) dx' > LY (w )gz( Vv € [u- +ea_,u; +eay]. (20)

By Jensen’s inequality we have

J.,g(r®)dx’ -

g(¥) < £ (w)

@1
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Furthermore, the Cauchy—Schwarz inequality yields

/w @ dx’ / yedx' > ( / g(f)dx’)z- (22)

Then (20) follows from (21) and (22). Since V'v* = V'v, we obtain from
(18) and (19):

1o

—= /lV'v|2dx’dz
2Jo Jo

> [ [ (e - o) - 2807080 0F - Yy dx'dy. ()
J

Since f(x, 4) is nondecreasing in u, we have
(fosv—er) —frsv—ey)) oo -1 20.  (24)
Furthermore,

/ / AYe, (S — Y)dx'dv=0. (25)

UE

Now (23)—(25) yield

at
—%/ /IV'vlzdx’dz
a.- w

> [ [ (v - o) - 2280798 69) 0 - ¥ dx' ey
J

= // (f(Ye,v —ey®) _.f(YE, v) — Zeg(yE)g/(ye)) (¢ — Y¢) dx' dv.
U (26)

Since the last integralin (26) tendsto zero ase — 0, we obtain that V'v=0
in (a_,a) x w. This proves the assertion.

Remark 2 (1) Theaveraging transformation y* — Y* defined by (15)is
related to a very simple type of rearrangement: Let (v¥)"(z) = (v*)*(z, x'),
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((z,x")€(a_,a ) x w), theinverse of Y°. Then (v¢)* € C'([a_,a;] x @)
and 8(v°)*/0z > e. Furthermore, it is easy to see that v* and (v°)" are
equimeasurable, i.e. we have

L'{a <ve <)) =L"{a < (V) <)),
ifu_+ea_<c <c;<uy +eay. (27

Finally, inequality (19) can be rewritten as

/15+Af(2)(%;>2dx'wzAj+[dg2(2)(?%§£)2dx'dz. (28)

(2) The above averaging rearrangement can be generalized for func-
tions which are not increasing in x;, and one could prove then several
inequalities which are similar to (28) (see [7]). But since we actually need
only the simple inequality (19) in our proofs, we will not go in detail here.

Next our aim is to apply the method to a related problem in the infinite
cylinder Q with (7) replaced by decaying conditions at infinity. To this
we add some further conditions on fnear u which ensure exponential
asymptotic behavior of # and Vu. Note that the assumption ¢>0 in
Theorem 2 is not essential, since, if ¢ <0, then by setting w(x;, x’) :=
—u(xy,x") we arrive at an analogous problem for w, with ¢ replaced
by —c.

THEOREM 2 Let u,, u_, c€R, u,>u_ and ¢>0, and let
fECR X [u_,u PNCY*R x (u_,u_ +6]U[u, —6,u,l) for some
6> 0and a €(0, 1). Furthermore, let f(x1, u) nondecreasing in x,, and let

Sfix,ur) =0, fu(x,us) =—by Vx €R, (29)
forsome b ., b_ €R, satisfying

02
bo>—7. bi>0 (30)

and

b->0 ifc=0. (31)
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Finally, let u € W2 () N CY(Q) satisfy:

loc

—Au+ cuy, = flx1,u), Uy, >0in S,

lim wu(x;,x')=us Vx' €aq,
X1 —300

-g—g =0 ondQ (v: exterior normal).

Then u is independent of x'.

c c?
A =5F 7 tbs

Proof Let

Note that A_ >cand 0> A, . We choose X, \| € R, such that

Ao>A>X >¢/2 and 0> )] > A, > N,

273

(32)

(33)

(34)

(35)

(36)

Then, in view of the results of ([4, Section 4]), we find numbers

¢1, 2, R> 0, such that

1’ < u(xy, x') —u_ < ee™,
1€’ <y, (31, x") < 26,
|Vu(x1,x')| < 626'\’:)“, if x; < —R,
e < uy —u(xy, x') < ce?,
1€ < uy (x1,x") < e,

|Vu(xi, x")| < e, if x; > R.

(37)
(38)
(39)
(40)
(41)

(42)

We choose h€ C(R) with h(f)= —1 for t < —R, h(¢)=1 for t > R and
H(t) > 0fort € (—R, R),and we set u°(x) := u(x) + eh(x;), wheree € (0, 1).
Then the functions #° satisfy asymptotical conditions analogous to

(37)—(42), with u .. replaced by u . e, respectively, and we have

—Au + cuj = flxi,u® —eh(x1)) — eh”(x1) +ech'(x1), u, > 0in Q.

(43)
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Let z, v, g(z) and fbe defined as in the previous proof.
First suppose that ¢ > 0. Then
1 —e™

r= (44)

and
g(z)=1-cz. (45)

Setting v*(z, x') := u°(x1,x"), let y° and Y* be defined as in the previous
proof, and let V* := (u_ —e,u, +¢) xw. Then we obtain from (43)
and (13):

V,(V’ye) 9 (lv'yf|2+ ( —cyf)z) L el-oyf)
ov

¥§ 2(y5)* ¥
= fy%,v — eh(—(1/c) log(1 — cy®))) — eh”(—(1/c) log(1 — cy*))
+ ech'(—(1/c)log(1 — ¢y®)), 0<y; <+oo in V¥, (46)
lim_ P, x") =400 Vx' €, (47)
V— UL TE
V'y¢=0 on (u- —e,uy +¢€) X Ow. (48)
We choose §' € (0, ), such that

{x: u-+8 <u(x) <u;, — &} D [-R, +R] X w. (49)

Multiplying (46) with (y* — Y°) and then integrating over
Vi=(u-—e+(1/k)ur +e—(1/k)) xw, (k€N),

we obtain:

Illk,e + I]llk,e + IZk,e + I;c,e

11,€ 1,62 )2
5//(———2{ Vi -y + 2000 (yf—Y5)> dx’ dv
Vi Y

2(yg)?

c(l —cy®
Vi

V'Y + (1 = cy®)? .
_/I ylz(y(e)2 y°) (° — ¥*)dx'

v=u,+e—(1/k)
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15,€ _
/IV I + 1 cy ) ( € _ YE) dx’
v=u_—e+(1/k)

- / / J#,v — eh(=(1/¢) log(1 — cp¥)))(y* — ¥*) dx’ dv
Vi

- / / eh"(=(1/¢) log(1 — cy¥)) (¥ — ¥*) dx’ dv

+ / / ec (—(1/¢) log(1 — ¢y*))(y* — ¥¥)dx’ dv
VE
= Jlk,s + Jék’E + Jélk,E'

Then we derive analogously as in the previous proof:

— () 162 _ 52
]{k,e+]£/k,e<2//(1 cYe)® _wyrra cy))dx,dv

Yy

< —% |V've|* dx’ dz.

{u_—e+(1/k)<ve <u,+e—(1/k)}
Since V'v* = V'v, we can pass to the limit in (51) to obtain

1

lim sup(I/%€ + 1<) < — 3 |V dx’ dz.
e—0

{u-+(1/k)<v<uy—(1/k)}
Furthermore, we infer as before:
52 [ [ (fure = en(—(1/c)log(1 - ) - (¥ )
Vi

X (¢ —Y®)dx'dv.
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(50)

(51)

(52)

(53)

The functions )®, Y© are uniformly bounded in ¥} for any k€N, by

the estimates (37) and (40). Hence we derive from (50) and (53):

lim inf (J*° + 13 + 1) > 0.
E—

(54)
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In view of (41) and (49) we have u,, > 0 outside of [-R, R] x w. Let
z=y(v, x") the inverse function of v with respect to z for |x;| > R, and let

Y be the corresponding average:

Y(3,x') = Y() = f‘f‘;(_v%l—g

((v,x") € (u—,u- +6") U (ur = §',u4) X w).
Note that in view of (49) we also have

ye(v—¢,-)=y(,-) forv<u_+¢ and

ye(v+e,)=ybv,:) forv>u, —§'.
Let (1/k) < &'. Then (50), (52), (54)(57) yield:
-% // |V'v[*dx’ dz
{u_+(1/k)<v<u—(1/k)}

o [V -y

= 2 (y—Y)dx'
w 2(yv) y=up—(1/K)
15,12 _ 2
+/IV W+ (12 cy) (y— ¥)dx’
w 2(p) v=u_+(1/k)
=If + I

Recall that

V' + (1 - cy)
)’
Using (37) and (39) this gives

2
= |Vul.

VP + (1= cp)’
2
Ov) v=u_+(1/k)

S C%(C]k) 2N /AL .

Furthermore, we obtain from (37):

(c1k)*/™

W+ (1/k), XN, [ Y- + (1/R)) < —

vx' € w.

(55)

(56)

(57)

(58)

(59)

(60)
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Then (59) and (60) yield in view of (36):

lim I§ = 0. (61)

k—00
Similarly we obtain, using (40), (42) and (59):

V9] + (1 - cy)

3 < AE(erk) P
() vy~ (1/K)

and
[y(us — (1/k), x")|, | Y(uy — (1/k))| <1 Vx' €w, if key > 1.

It follows that
lim If = 0. (62)

k—00
Now from (58), (61) and (62) we infer that V'v=0.
The proof is analogous — and even more simple — in the case ¢ =0,
since then z = x;. The details are left to the reader.

The method of proof also applies to discontinuous nonlinearities f
Let H be the (multivalued) Heaviside function

0 if 1 <0,
H(t) == { [0,1] ifr=0, (63)
1 if 1> 0.

LEMMA 1 (1) Let d;eR and u;e(u_,u,), (i=1,...,m). Then the
conclusions of Theorem 1 hold if the equation in (4) is replaced by

— But (g —flen ) € S diHu-w).  (64)

i=1
() Let d;, u;, (i=1,...,m), as in (1) and let g e C**([u_,u.]) with
gu_)=0, g(uy) =31 di, g(us)=0 and a€(0,1). Then the conclu-
sions of Theorem 2 hold if the equation in (32) is replaced by

— Au+ cuy, — fix1,u) +g(u) € i d:H(u — u;). (65)

i=1
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Proof We consider the situation of Theorem 1. Let —Au+

c(x1)ux, — f(x,u) =: h(x). Then, proceeding as in the proof of Theorem
1, we arrive at

_%/:+/wlv’v|2dx’dz
> [ (e -er) —fre - 280718/ 0)) 0 - 7 ' ay
J

+ / / h(y¢,x") (¢ — Y¢) dx' dv
UE
=L+ (66)

where A(z, ) := h(x, ) and z is given by (7). Recall that

limI7 = 0. (67)
e—0
Setting
1 t>0,
He(t) == q 1+ (t/Ve) t€[-E0],
0 1< —y/E,
we have

L= // (ﬁ(ye,x') - iHe(v—eye - u:))(ye — Y9)dx'dv
Ue =
+ 12':; /UE/ (He(v —ey® —u) — He(v— u,-)) (y¢ — Y¢)dx'dy

m
+Z//H5(v—u,~)(y€ — Y®)dx'dv
=1
=T+ 715+ Ts. (68)

Since H. is continuous, we have

TE=0 Ve> 0. (69)
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Furthermore,

72| g//%EIyellye—Yeldx’dv —.0 ase — 0. (70)
GE

Finally, the function A(y<, x’) differs from Y7, diH.(v — ey — u;) at
most on the set

m
U{(v,x'): Ui — e <v—ey*(v,x') <wu} = M..
i=1

Since |y°| < ¢ for some ¢ > 0, independently from e, we have that

m
MECU{u;—-\/E—ac<v<u,~+ec} =: N,
i=1

and since
lim £*(N,) =0,
e—0
this yields
lim 77 = 0. (1)
e—0
Now (68)—(71) gives
e
21113 I =0. (72)

The assertion then follows from (66), (67) and (72).
The proof carries over with obvious changes to the case of the problem
in the infinite cylinder 2.

Remark 3 'We cannot expect uniqueness for solutions of the problems
in Theorems 1 and 2 since there are easy counterexamples like the
following one:

Letn=1,a=2,

0 if x <0,
u(x) = { 1+(x3-1)° ifxe(0,1),
1 if x> 1,
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and u'(") := u(- — ) where |t| < 1. Then both u and «’ are weak solutions
of (4) and (S) with¢=0,u_ =0,u, =1and

S= ) = 1801 - )" (1 - - 14)’/3)1/3 (3-40-0"),
(u €10,1)).

On the other hand, it is often easy to prove the uniqueness of solutions
in similar problems, if we impose the stronger condition u,, > 0. This
was kindly pointed out to me by Dolbeaut. For instance, there holds
the following comparison result:

LEMMA 2 Let DCSQ be a bounded domain which is convex in x;-
direction, let 3 be an open portion of 0D N(R x Ow). Furthermore, let
¢ € L*°(D) and nonincreasing in xi, and let f=f(x,u) be continuous in
D x R andnondecreasing in x,. Finally, let v € W»*(D) N C'(D) satisfy

; ou N ol L=
—Au + c(x)a—x] = flx,u') in D, B, >0 inD, (73)
_6_zt_i_0 on'Y (v: exterior normal),(i=1,2)
o = v: exte ,(i=1,2), (74)
and
u' <u? onOD\X. (75)

Then u' <u?in D.

Proof Let x;=y'(v,x’) the inverse functions of «’ with respect to x;,
let U, S; the image of D and X, respectively, under the mapping
(o1, x") = (U1, x'), x") (i=1,2), and U=U,NU,, S=8,NS,. Then
¥ € w2 (U)n CcY(D),

[ 14,012 iyl
VI(Vy>_£ IVy';"l +C(y’.X)=f(yi,xl,V) in U,
¥y o\ 2(y) ¥

V'y'=0 onS, (i=1,2),
' >)* on OU\S.
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Setting w := y* — y' we compute from this:

Aw I~ YL VPP +1 U
-2 A Xiv Wyy + aiwy, + aw,
b ; ) )’ ;
1 0 _ /
b x )yl 0%, x) + 0% %, v) = ', x',v) in U,
v
V'w=0onS, w<0 ondlU\S, (76)

where a,a;€ L°(U) (i=2,...,n). Since the Equation (76) is uniformly
elliptic and the right-hand side is nonpositive by the assumptions, the
maximum principle yields w <0 in G. This proves the lemma.
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