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Let a) be a bounded domain in 1R"- with smooth boundary, u +, u_ E, a > 0, and let
u Wi2ne((-a,a x w) N Cl([-a,a] x o3) satisfy -Au + c(xl)Uxl =f(x,u) and Uxl > 0 in
(-a, a) x w, u u+ on {+a} x w and Ou/Ou 0 on (-a, a) x Ow, where c is bounded and
nonincreasing andfis continuous and nondecreasing in Xl. We prove that u is a function
ofx only. The same result is shown for a related problem in the infinite cylinder 11 x w.
The proofs are based on a rearrangement inequality.
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1. INTRODUCTION

This paper is concerned with the question of one-dimensionality of
solutions ofcertain boundary value problems with Neumann boundary
conditions in cylindrical domains. More precisely, we consider problems
of the following kind:

Let f x a; be an infinite cylinder, where w is a bounded domain in
]l.n--1. For x E f we write X--(.X1,X,t) where x’ Eo. Suppose that u
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266 F. BROCK

satisfies

-Au + c(X)Ux, f(x, u)
Ou
=0 on x Ow,
Ov
u(+o, .) u+,

in f

(1)

where the functions c,f are continuous and u+/- E IR, u+ > u_. The
solutions of (1) can be seen as travelling waves of a corresponding
semilinear parabolic equation. They arise in various applications, e.g. in
combustion and some problems of biology. We note that for one space
dimension there is much more literature for problems of this kind. This
corresponds to c c(xl), f=f(xl, u) and u u(xl). The problem (1) then
reduces to

-u"+c(x)u’=f(x,u) OhiO,
(2)

u(+c) =u+.

Here a general reference is the book of Fife [8]. Problem (1) has been
extensively studied by Berestycki and Nirenberg [4]. They obtained
various existence criteria, and it turned out that the solutions of (1)
behave qualitatively similar as in the one-dimensional case. In particular,
if c=c(x’)> 0 and if f=f(u) is smooth and satisfies some further
conditions near u +/-, then u is unique, Ux, > 0 and u tends exponentially
fast to u+/- as Xl 4-oe. We mention that the proofofmonotonicity and
uniqueness u is based on the so-called sliding method. This device turned
out to be a very powerful tool to show qualitative properties ofsolutions
of some boundary value problems in cylindrical domains (see [1-4]).

It is natural to raise the following question: Suppose that the functions
c andfin (1) are independent of x’ and Ux, > 0. Is it then true that u is
independent of x’, too?

Let us first emphasize that if c is constant and iff is smooth and
f=f(u), then the uniqueness result of [4] immediately yields the desired
answer. On the other hand, iffis not smooth, then we cannot apply the
sliding method, and the solutions of(1) might be not unique. (In fact, it is
easy to construct counterexamples with "fiat zones", see Remark 3).
Nevertheless the answer to the above question is positive in some relevant
cases, even iff C.
We consider solutions of (1) and also of some related problem in a

finite cylinder (-a,a)x w with the decaying conditions replaced by
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Dirichlet boundary conditions on {+a} x o. We assume that c is
decreasing and thatfis increasing in xl and continuous. In case of the
problem in the infinite cylinder we impose some further conditions on
f(xl, u) near u= u_+ which ensure exponential decay of u and Vu at
infinity. Exploiting some appropriate transformation ofvariables and a
simple rearrangement inequality we prove the one-dimensionality ofthe
solutions (Theorems and 2). The following Lemma shows that the
method is not restricted to continuous nonlinearitiesf.
We conclude with a simple comparison result for solutions u of some

related boundary value problem which satisfy the stronger condition
ux, > 0 (Lemma 2).

Remark 1 (1) Our work is also motivated by a paper of Carbou [7].
The author studied the following minimum problem for the Ginzburg-
Landau functional:

J(u) =_ IVul2 + dx + Min !, u r, (3)

where K {u E Wil2e(IR") fq Z(,n)" limx,_+ u(x) +1 }. This is
related to the solutions of -Au u- u3 in f. Using a rearrangement
inequality he proved that (3) admits only the trivial solution
u(x) tanh(xl/x) (see also Remark 2).

(2) Recently I studied the Cauchy problem for a convolution model
ofphase transitions in a cylinder in [6]. In particular, I proved the mono-
tonicity and one-dimensionality of travelling and stationary waves by
using the sliding method.

(3) In a forthcoming paper we will study the problem whether the
solutions of (1) are monotonous in direction xl. The main tool will be
some kind of continuous rearrangement. Note that recently a similar
construction has been investigated by the author in [5].

2. RESULTS AND PROOFS

By Ek we denote k-dimensional Lebesgue measure (1 < k < n). Let w a
bounded domain in ]R’- with Cl-boundary, and let

=Xw, a--(--a,a) XW,
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where a > 0. For points x E 9t we write x (Xl, xt), where x E IR, x’ w,
and similarly, ( ((1, (’). Furthermore, we write V (O/Oxl, V’) for the
gradient, where V’ (O/Ox2,..., O/Ox,). Our first result is

THEOREM Let c L((-a, a)) and nonincreasing, and letf f(xl, u)
be continuous on (-a,a) x and nondecreasing in x. Furthermore,

W2,n Clet u loe(fa) f’l (aa) satisfy."

AU + C(Xl )Ux, f(xl, u), Ux, > 0 in ’a, (4)

u: u+ on {-+-a} xw, (5)

On
0--- 0 on (-a,a) x 0a (u: exterior normal). (6)

Then u is independent ofx’.

Proof By introducing a new variable,

o’XllfotlZ--qO(Xl)’-- exp- c(s)ds dt, (7)

and by settingf(z, .) := f(xl, .) and v(z, x’) := v(z, x’) / ez, where

v(z, x’) := u(x , x’) (8)

and e > 0, problem (4)-(6) can be rewritten as

_A,v 0
-z (g2(z)Vz) j(z, r e ez) 2eg(z)g’(z), (9)

> e in (a_ a+) x w,Vz (10)
ve=u++ea+ on{a+}xw,

0---= 0 on (a_,a+) Ow, (11)

where A n 2 2’]i=2 (0 /Ox ), a + qo(-+- a),

}g(z) exp c(t) dt (12)

and Xl () is the inverse function of. Note that g() is convex since
c(x) is nonincreasing.
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Let z y(v, x’) be the inverse function of v with respect to z, and let
W2n CUe "= (u + ea u + + ea +) x w. We have ye E loc (Ue) I"1 (’),

and we compute the derivatives ofyS as:

e e Yi
]IXi eVz Yv Yv

Yv
Vzz (yve)3’ Vzxi

Yxx xvYx

(i,j= 2,... ,n).

Then from (9)-(11) and (13) we obtain:

"gXi X V

(Yve)2 (Yve)3’ (13)
YxjvYxi xxvv
(yv)2 (yv)

V’ (V’Ye)k Y(’ J -vO (IV’yelE + 2 g(ye)g,(ye)y_
f(ye, v ey e) 2eg(ye)g(ye),
0<y 1/e in U,
y u + ea on{u+ea}xw,
V’y 0 on (u_ + ea_, u+ + ea+) x Ow.

(14)

Let Y the following average ofy:

ye(v,x,) =_ ye(v fy(v,()d(
:= ((v,x’) Ue). (15)

Note that Y is independent of x’ and Y < 1/e. Then (14) yields the
identity

/( Yv
V,(ye

u

iXT,yl2 + gE(ye) )2(Yv)2 (yv Y) dx’ dv

g(Ye)g’(Ye)
(ye ye) dx’ dv

U

=//(f(ye, v eye) 2eg(ye)g,(ye))(ye ye) dx’ dv.

u
(16)
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Furthermore, since the function

f(l,..., n+l) := Ein=2 /2 _+_ g2 (1)
n+l

((1,...,n+l) ]ln X +),

is convex, we have that

! (.E7=2 TI/2 _+_ g2 (TI1)_ Yin=2 /2-[-g2(l ).’
2 k, Tin+l n+l

> zin=2(-) Z;7=2 , +g() (n+ n+)
n+l 22+1

g((1)g’(l)+ ( ),
n+l

((1,..., n+l), (TI1,..., Tin+l) E ]n x ]+). (17)

Choosing 1 Y, Tit Y, i Yx, Tii Y (i- 2, n), n+ Y and
Xi

Tin+ Y in (17), and since V’ Y-- 0, we derive from (16)

1/f (g2(Y) IV’y12 + gE(y)) dx, dv- \ Yu

>- J7 (f(Ye’ V eye) 2eg(Ye)g’(Ye))(ye ye) dx’ dv.

u

(18)

Next we claim the following rearrangement inequality:

J7 g2(yee)y dx’dv>_ ff g2(yveYe) dx dr.

u u
(19)

To show (19), it is sufficient to prove that

Vv [u_ + ea_, u+ + ea+].

By Jensen’s inequality we have

g( ye) < fg(y) dx’

.-()

(20)

(21)
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Furthermore, the Cauchy-Schwarz inequality yields

dx’ )y Yv dx >_ g(y dx (22)

Then (20) follows from (21) and (22). Since V’v= V’v, we obtain from
(18) and (19):

L2 IV’vl2 dx’ dz_
ff (f(ye, v eye) 2eg(ye)g,(ye)) (ye ye) dx’ dv.

u

(23)

Sincef(xl, u) is nondecreasing in u, we have

(f(ye, v- eye) f( ye, v eye))(ye ye) >_ O. (24)

Furthermore,

fff( ye, v)(ye ye) dx’ dv O.
u

(25)

Now (23)-(25) yield

1 a+

>//(f(Ye, v- ey e) 2eg(ye)g’(ye))(ye- Ye)dx’ dv

u

ff (f(ye, v eye)_f(ye, v)_ 2eg(ye)g,(ye))(ye_ ye)dx’ dv.

u

(26)

Since the last integral in (26) tends to zero as e 0, we obtain that V’v 0
in (a a +) x o. This proves the assertion.

Remark 2 (1) The averaging transformationy YS defined by (15) is
related to a very simple type ofrearrangement: Let (v)*(z) (v)*(z, x’),
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((z, x’) E (a_, a+) x w), the inverse of Y. Then (v) E C ([a_, a+] x )
and O(v)*/Oz > e. Furthermore, it is easy to see that v and (v) are
equimeasurable, i.e. we have

_< v _< _< _<
if u_ + ea_ < Cl < c2 < u+ + ea+. (27)

Finally, inequality (19) can be rewritten as

fa +f dx dz >_ g2 (z)
\ Oz

dx’ dz. (28)

(2) The above averaging rearrangement can be generalized for func-
tions which are not increasing in x l, and one could prove then several
inequalities which are similar to (28) (see [7]). But since we actually need
only the simple inequality (19) in our proofs, we will not go in detail here.
Next our aim is to apply the method to a related problem in the infinite

cylinder 9t with (7) replaced by decaying conditions at infinity. To this
we add some further conditions onfnear u+ which ensure exponential
asymptotic behavior of u and Vu. Note that the assumption c > 0 in
Theorem 2 is not essential, since, if c < 0, then by setting w(xl, x’) :=
-u(xl,x) we arrive at an analogous problem for w, with c replaced
by -c.

THEOREM 2 Let u + u_ c I, u+ > u_ and c >_ O, and let

fE C(N x [u_, u + ]) fq cl’c(N x ([u u_ + ] U [u + 6,u + ])) for some

> 0 and a E (0, 1). Furthermore, letf(xl, u) nondecreasing in Xl, and let

f(xl, u+ O, fu(Xl, u+ -b+ (x1 1[, (29)

for some b +, b_ N, satisfying

c2
b_>_

4’ b+>O (30)

and

b_>O /fe=O. (31)
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Finally, let u e Wi2o’cn(f) N C () satisfy:

Au + CUx f(xl, u), Ux, >_ 0 in f, (32)

lim U(Xl,X’) u+ Vx’ E 9, (33)
Xl -----CX3On

0--- 0 on Of (u: exterior normal). (34)

Then u is independent ofx’.

Proof Let

c
a: + b+/-. (35)

Note that A > c and 0 > A+ We choose A’ A+, E IR, such that

A’_>A_>A"_>c/2 and 0>A_>A+>A_. (36)

Then, in view of the results of ([4, Section 4]), we find numbers
Cl, c2, R > 0, such that

ce’- < u(x,x’) u_ < cex’-, (37)

)tt Xce’x < u(x,x’) < c).e (38)

[VU(Xl,X’)[ c2eAZxl, if Xl -R, (39)

cle’’+x <_ u+ -U(Xl,X’) c2e’x, (40)

tie’+x’ <_ Ux, (Xl,X’)_< c2e’x, (41)

IVu(xa,x’)l c2e-x’, if xl > R. (42)
We choose h C(IR) with h(t)= -1 for < -R, h(t) for > R and
h’(t) > 0 for (-R, R), andwe set u(x)"= u(x) + h(Xl), where e (0, 1).
Then the functions u satisfy asymptotical conditions analogous to

(37)-(42), with u + replaced by u + 4-, respectively, and we have

AU -[" CUx,e "-JXl, u eh(xl)) eh"(x) + cff(Xl), ux, > 0 in f.

(43)
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Let z, v, g(z) andfbe defined as in the previous proof.
First suppose that c > 0. Then

and

g(z) cz. (45)
Setting v(z, x’) := ue(xl, xt), let y and Y be defined as in the previous
proof, and let V := (u_ -e, u+ + e)x w. Then we obtain from (43)
and (13):

f(ye, v eh(-(1/c) log(1 cye))) eh"(-(1/c) log(1 cye))
+ ecff(-(1/c)log(1 cy)), 0 < y < +oo in V, (46)

lim y (v, x’) +c Vx’ E if;,
v-.*u+ .-t-

(47)

V’y=0 on (u_ e, u+ + e) x0w.

We choose 6’ E (0, 6), such that

{x: u_ + ’ < u(x) < u+ -’} I-R, +] .
(48)

(49)

Multiplying (46) with (y Y) and then integrating over

V :-- (u_ e -+- (1/k), u+ + e (1/k)) w, (k N),

we obtain:

lV’yl
2 + (1 cye)2

2(yve)2
(y YS) dx’

v=u++e-(1/k)
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(50)

Then we derive analogously as in the previous proof:

fi [V’v[2 dx’ dz.<
2
{u_-e+(1/k)<v <u++e-(1/k)

(51)

Since V’v= V’v, we can pass to the limit in (51) to obtain

lim sup(I(k’ + 12 <
e---,0

{u_ +(1/k)<v<u+-(1/k)

IV’vl2 dx’ dz. (52)

Furthermore, we infer as before:

if  h(_(l/c)log(1- cyS))) f(Y, v))
x (y YS) dx’ dr.

(53)

The functions y, Y are uniformly bounded in V for any k E N, by
the estimates (37) and (40). Hence we derive from (50) and (53):

Tlk,e Tllk,elim inf (J1k’ + 2 -[- 2 0. (54)
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In view of (41) and (49) we have u, > 0 outside of [-R, R] x w. Let
z y(v, x’) the inverse function of v with respect to z for Ix1[ > R, and let
Ybe the corresponding average:

Y(v,x’) =_ Y(v) :=
fy(v,’)d’

/n-l(cM)
((v,x’)(u_,u_+6’)(u/-6’,u+)). (55)

Note that in view of (49) we also have

y(v- e, .) y(v, .) for v < u_ + 6’ and (56)

ye (v + e, .) y(v, .) for v > u+ 6’.

Let (I/k) < 6’. Then (50), (52), (54)-(57) yield:

(57)

IV’ll2 dx’ dz
{u_+(1/k)<v<u+-(1/k)}

> IXT’yl2 / (1 cy)2

2(Yv)2
(Y Y) dx’

+lV’yl2+()(1-cy)2

2"yv"2
(y Y)dx’

v=u+-(1/k)

v=u_+(1/k)

(58)

Recall that

[V’yl2 + (1 cy)2

(yv)2

Using (37) and (39) this gives

IV’yl2 +(1 -cy)2

(yv)2 ,=u_+(1/k)

<_ c(ck)-2" /" (59)

Furthermore, we obtain from (37):

ly(u- + (1/k),x’)l, IY(u_ + (1/k))l _< (c’k)C/"-
c

VX (60)
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Then (59) and (60) yield in view of (36)"

lim I 0. (61)
k---o

Similarly we obtain, using (40), (42) and (59):

IXT’yl 2 /(1 -cy)2

(y)2
v--u+-(1/k)

<__ c(clk)-2A-/A’+

and

ly(u+ (1/k),x’)l, IY(u+ (1/k))l _< Vx’ o2, if kc >_ 1.

It follows that

lim I3k 0. (62)
ko

Now from (58), (61) and (62) we infer that V’v 0.
The proof is analogous and even more simple in the case c 0,

since then z xl. The details are left to the reader.

The method of proof also applies to discontinuous nonlinearities f:
Let H be the (multivalued) Heaviside function

0 if t< 0,
H(t) := [0,1] if t=0, (63)

ift>0.

LEMMA (1) Let di E 1 and ui (u_ u +), (i-- 1,..., m). Then the
conclusions ofTheorem 1 hold ifthe equation in (4) is replaced by

m

Au + e(Xl)Ux -f(x, u) diH(u ui). (64)
i=1

(2) Let di, ui, (i 1,..., m), as in (1) and let g Cl"([u_, u + ]) with
g(U_)--O, g(U+) Eim=l di, gt(u+)’-0 and (0,1). Then the conclu-
sions of Theorem 2 hold if the equation in (32) is replaced by

m

Au + CUx, --f(xl, u) + g(u) diH(u ui). (65)
i=1
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Proof We consider the situation of Theorem 1. Let -Au+
C(Xl)Ux -f(x, u) h(x). Then, proceeding as in the proof ofTheorem
1, we arrive at

a+

U

+ h(yS, x’)(y Ys)dx’ dv
U

=_ If + U2, (66)

where h(z, .) "= h(xl, .) and z is given by (7). Recall that

lim If O. (67)
e---,O

Setting

He(t) -+-(t/x)
0

t>0,
[-eT, 0],

we have

I ft(ye, x ’) He(v- ey e ui) (ye ye) dx’ dv
U i=1

mff( )+Z He(v ey e ui) He(v ui) (ye ye)dx’ dv
i=1 U

m H+ He(v ui)(y e ye)dx’ dv
i=1 U

(68)

Since H is continuous, we have

T=0 W>0. (69)
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Furthermore,

ITI lylly YSl dx’ dv -- 0

G

as e 0. (70)

mFinally, the function h(y,x’) differs from Ei=I diHe(v- ey Ui) at
most on the set

m

U{(I,.X")" U --V/ . V--Eye(v,X’) < Ui} "--:

i=1

Since lyl < c for some c > 0, independently from e, we have that

m

m c U{u,- vT- c < v < u, +} =: u,
i=1

and since

limn(Ne) --0,
e--0

this yields

lim T 0. (71)
e-,0

Now (68)-(71) gives

limI O. (72)
e-,O

The assertion then follows from (66), (67) and (72).
The proofcarries over with obvious changes to the case ofthe problem

in the infinite cylinder

Remark 3 We cannot expect uniqueness for solutions of the problems
in Theorems and 2 since there are easy counterexamples like the
following one:

Let n 1, a 2,

0
u(x)-- 1 + (x3- 1)

if x_< O,
ifxE (0, 1),
if x_> 1,



280 F. BROCK

and ut(.) "= u(. t) where It[ _< 1. Then both u and u are weak solutions
of (4) and (5) with c--0, u_ 0, u + and

f--f(u)- 18(1- u)1/3 (1 -(1-u)/)1/(3-4(1-u)/),
(u [o,

On the other hand, it is often easy to prove the uniqueness of solutions
in similar problems, if we impose the stronger condition Ux, > 0. This
was kindly pointed out to me by Dolbeaut. For instance, there holds
the following comparison result:

LEMMA 2 Let D C be a bounded domain which is convex in x-
direction, let )2 be an open portion of OD N (I x cow). Furthermore, let
c E L(D) and nonincreasing in Xl, and let f=f(x, u) be continuous in
: andnondecreasing in Xl. Finally, let u W2,(D) N C (/)) satisfy

mu -[- C(X)
Oui

f(x, Ui) in D,
On

> 0 in D, (73)

On
0--- 0 on )2 (u: exterior normal), (i 1, 2), (74)

and

u < u on OD\)2. (75)

Then u < u2 in D.

Proof Let xl yi(v,x’) the inverse functions of U with respect to
let Ui, Si the image of D and )2, respectively, under the mapping
(xl, x’) (ui(xl, x’), x’) (i 1,2), and U U1 n U2, S $1 f $2. Then
yi W2,o(U CI cl([0,

c(yi, x ’) j(yi, X’, V) in U,
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Setting w := y2 yl we compute from this:

Atw n tyl 2 n

y___v 2 _- Yxi IV
i=2 (y)2 Wxiv + (ylv)3 wvv + Zi=2 aiWx, + awv

c(y1, X’) c(y2, X’) V) f(yl X’, V) in U,Y +f(y2, x’,

V’w=O onS, w_<O onOUS, (76)

where a, ai E L(U) (i 2,..., n). Since the Equation (76) is uniformly
elliptic and the right-hand side is nonpositive by the assumptions, the
maximum principle yields w < 0 in G. This proves the lemma.
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