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In this note, inequalities for length biased and the original residual life function and equilib-
rium distribution function with monotone hazard rate and mean residual life functions are
derived. We also obtain estimates of the length biased probability density function and
hazard function under random censoring. Finally, the Bayesian exponential reliability esti-
mate under length biased sampling using a conjugate prior for the scale parameter is given.
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1 INTRODUCTION

In survival analysis, the usual estimators of cell kinetic parameters
resulting from labeled mitosis experiments are biased, because cells with
longer DNA synthesis periods have greater probability ofbeing labeled.
The effect of size-biased sampling in cell kinetic problems and the distri-
butions associated with cell populations have been studied by several
authors including Brockwell and Trucco [2], Schotz and Zelen [16] to
mention a few. Length biased distributions have also been applied in
other areas of scientific studies including but not limited to reliability
studies, renewal theory, and wildlife populations (Patil and Rao [13]).
The importance and implications of the property of monotone hazard
rate and mean residual life function is well investigated. The purpose of
this article is to establish bounds on the distance between length biased
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residual life distributions, equilibrum distributions in the class of distri-
butions having increasing or decreasing hazard rate and the exponential
distribution. The estimates of the length biased probability density
function (pdf), hazard rate and exponential reliability function are also
given.

Consider the family of distributions with pdf

g(t;O) ( tf(t;O)/#’ > O,
O, otherwise,

(1.1)

where 0 < #= E(T)< o, 0 is an unknown positive parameter for a

given parametric set O c [0, o). If the random variable Y is distributed
according to the density (1.1) wherefis the exponential pdfwith param-
eter 0, then the survival or reliability function is given by

G(y; O) P(Y > y; 0),
{(y + 0)/0)exp{-y/O), y >_ O. (1.2)

In general, from (1.1)

((Y) =/(Y){ Y + 6FCY)}/#F,

where

6F(y) F(u)du/F(y) and 0 < #F- F(y) dy < c. (1.3)

Clearly, t(y) _>/(y), for all y _> 0, so that y /f (u)d(u)/’(y) >_
f0/(y) dy, for all y _> 0, that is

EyCYIY > y) >_ ’(y) dy, Vy >_ 0, (1.4)

where Ef denotes expectation with respect to the probability density
function f. This note is organized as follows. In Section 2, some basic
results, including several estimates of the parameters are given. In
Sections 3 and 4 stability results and inequalities for length biased
residual life function and equilibrium distribution function with mono-
tone hazard functions and mean residual life functions are derived.
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In Section 5, estimation of the density function and hazard rate under
random censoring are presented. In Section 6, we consider the Bayesian
estimates of the length biased exponential reliability function. This
section is primarily concerned with various estimates of the reliability
function.

2 BASIC RESULTS

Let X1, X2,... Xn denote a random sample from the model in (1.2),
where f(x; O) 0-1 exp{-x/O}, x > 0, 0 > 0. We write XLB exp(0) to
denote that X has the length biased exponential density, with survival
function given by (1.2). The maximum likelihood estimator of 0 is
given by

Sn/2n, (2.1)

where S, _,in=l Xi.
The statistic Sn which is sufficient for 0, has a gamma distribution

with shape parameter 2n and scale parameter 0. That is Sn P(2n, 0).
Consider the estimator of 0 A-1 of the form &(c) c/Sn, where e > 0.
Then

E(c/Sn) cA/(2n- 1), (2.2)

and

Var(e/Sn) A2{c2 -4c(n- 1)+(2n- 1)(2n- 2)}/{(2n- 1)(2n- 2)}

A: c2-4c(n-1)
(2n- 1)(2n- 2) + 1}. (2.3)

Note that the MLE of A is obtained by setting Cl 2n, while the mini-
mum mean squared error estimator (MMSE) in the class {c" (c)=
c/Sn, c > 0) is obtained by setting c2 2(n 1).
The Pitman estimator of A is

(2.4)
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where U(X A) is the likelihood function, that is

p {foo A A2ne-S" dA}/{/ A2ne-S" dA)
(2n / 1)/Sn.

We assume that the uncertainty about the parameter A--0-1 can be
expressed as a gamma distribution, A F(a,/3) with prior density

0,

A-le-, A, a,/3 > 0,

otherwise.
(2.6)

For a single observation X-x, the joint distribution of (X, A) has the
density

x, A > O. (2.7)

The statistic Sn Ein=l Xi is sufficient for 0 E 0 C [0, o) and its pdf is
given by

gs, (s; O) P(2n)
O,

s2n-le-s/O, s > O, 0>0,

otherwise.

(2.8)

With A 0-1 (2.8) can be written as

g&(s;A)= P(2n) s

O,

2n-le-AS s>0, A>0,

otherwise.

(2.9)

Let Tn Shin, then

/2n
n2n 2n-le-Ant,

gr,(t;A)= P(2n)
0,

A>0, t>0,

otherwise.

(2.10)
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The joint distribution of (Shin, A) is

fs.a (s, ,x; a,

3a/2n+a-

r(oOr(2n)
O,

s2n- e-,X(s+3) s>O, A>O, a>O, /3>0,

otherwise,

(2.11)

and the joint density of (Tn, A) is given by

t2n- e-,(nt+3) t>O, ,>0, a>O, /3>0,

otherwise.

Suppose however, we consider observation from the original pdf
f(y A) rather than the length biased pdf (X LBexp(0)) then the pre-
dictive distribution has the density given by

fr x( y x) f y; A)f(,; x) dA

Aa+l fla xe-(3+x)/e-’XY

3%c /a+2e-(+x+Y)’X d,

flax I(a + 1)
F(a) (/3 + x + y)a+l

(fl -b x q- y)a+l
y>O. (2.13)

In medical applications ofsurvival analysis and various other settings,
there is usually censoring. For the ith individual there is a survival time Xi
and a censoring time Ci and we observe (Ti, 6i), where Ti Xi A Ci and
6i= I(Zi < Ci). Under length biased exponential sampling, if d .is the
number of uncensored observations, then the loglikelihood based on



452 B.O. OLUYEDE

T], T2, Tn is given by

In L(A) K+Z In 7(tj) + Z In
U U

(2.14)

where K is constant, and 7a, G given by (1.3).
For LB exp(A), 7a(y) A2y/(1 + Ay) and t(y) (1 + Ay)e-Ay, y > 0,

so that

ln L(A) K+ In A + ln[(1 + Atj)e-t]
U U

--K+2-lnA+tj-Atj.
u j j

The maximum likelihood estimate of A is given by ’jn=l tj/2d and
the MLE estimate of the reliability function is

(2.15)

3 INEQUALITIES FOR RELIABILITY MEASURES

In this section, inequalities for the length biased residual life function and
equilibrum distribution function with monotone hazard and mean resi-
dual life functions are established.

Consider a renewal process with life distribution F(x) and length
biased distribution G(x). Let Xt denote the residual lifetime of the unit
functioning at time t. Then as , X, has the limiting pdf (Ross [14])

fe(x) ’(X)/#F, X >_ O. (3.1)

The survival function or equilibrium survival function is given by

P(u) du,Fe(x) -F x > O, (3.2)
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and the length biased equilibrium survival function is

e(X) __1 (U) du

/(u) {u + 6e(u)} du, (3.3)

where 8F(U) fu P(t) dt/P(u), u > O, and O-2F is the variance ofF.
Let {Sj(x)}, j=0, 1,2,... ,J, be a sequence of decreasing functions

given by

F(x),

S(x) t-
f0/(x + t)

(j 1)!
dt, j: 1,2,...,J.

(3.4)

We let S_l(x)=f(x) be the pdf of F if it exists. Then Sj(0)= #j/j!,
S}(x) -Sj_ (x), j= O, 1,2,...,J. The ratio Sj_(x)/Sj(x)is a hazard
function ofa distribution function with survival function Sy(x)/Sj(O). The
following is a modified version of the lemma given by Barlow et al. [1]:

LEMMA 3.1 (Barlow et al. [1])
(DMRL), then

IfF has decreasing mean residual life

S(x) < Sk(O)e-x/u, k 1,2,...,

and

Sk(x) > #S-1 (O)e-x/u #S_I (0) + S(O), k 2, 3,...

The inequafities are reversedifFhas increasing mean residual life (IMRL).
Let > 0 be fixed. The distribution function

alt (X)
a(t + X) a(t)

a(t)
X > O, (3.6)

is called the residual life distribution corresponding to the length biased
distribution G. The corresponding survival function is given by

d,t (x) a(t_+ x)
G(t)

x >_ O. (3.7)
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THEOREM 3.1 Let Ge be the length biased equilibrium survivalfunction
with decreasing hazard rate (DHR). Then

UiSe(X)- _> -#e- 1), fore > #.xe-X/# dx 2e-’/(#

Proof Let Ge have DHR, then there exist e > # such that Ge(x) <
x exp(-x/#) or G(x)> x exp(-x/#) as x< e or x>_ e. It follows,
therefore, that

jo’ [te(x) xexp(-x/#)[ dx

2 (e(x) xexp(-x/#))dx

_> 2 (/e (x) xexp(-x/#))dx

)=2 F( y) dy x exp(-x/#) dx

2_ (S(x) #xexp(-x/#))dx

2
(S2() {#2eexp(-e/#)+ #exp(-e/#)})

_> 2S1 (e) 2 exp(-e/#){#e + }
>_ 2/zSo(e) 2 exp(-e/#){#e + }
2exp(-e/#){#- #e- 1).

The first inequality follows from the fact that (e(X) >_/’e(X), for all
x > 0. The last two inequalities follows from the fact that

Sk(x) _> #S-l(X), Vx _> O, k _> 1,

where

Sk(x) Sk_l(u)du.
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THEOREM 3.2 Ifde has increasing hazard rate (IHR), then

fo I((x)- xe-X/’ dx <_ 2,

where 6 #2 #/2#.

Proof Let D {xlG (x) <_ x exp{-x/#} }. Then, for x > O, we have

o’[d(x) xexp{-x/#}l dx

f{xexp(-x/#) Oe(x)} dx {xexp(-x/#) de(X)} dx

<_ 2 {xexp(-x/Iz) Ge(x)} dx

<_ 2 {xexp(-x/#) Fe(x)}dx

2foo{Xexp(-x/#) ( fx(y)dy)}dx
2 {xexp(-x/#)- S(x)/#}dx

2(#2 S(O)/#)

2o

THEOREM 3.3 Let dr, have DHR, then

olOt(x)
{1 + x/(# + t)}exp{-x/#}ldx

>_ 2e-’/u{a +/3} for e >_ U,

where a #(e-t/u (e/(# + t)) 1) and -(lz + t)-1.
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Proof Let > 0 be fixed and (1, have DHR, then there exist e > # such
Gtt(x) (_>){1 + x/(# + t)}exp{-x/#} as x<_(_> )e, so that

lOzt (x) { + x/( + t) } exp{-x/#) dx

2 (It(X) {1 + x/(lz + t)}exp{-x/#})dx

>_ 2 (’t(x) {1 -+- x/(# + t) )exp{-x/#)) dx

>_ 2 (F(x + t) {1 + x/(# + t))exp{-x/#))dx

2S1 (e + t) 2#exp{--e/#}

(u + t)(#eexp{-e/#} + exp{-e/#})

_> 2#So(e + t) 2#e-’/u + t)

2#e-(+t)/u 2/_ze-,/u 2

(u+ t) (#ee-‘lu + e-’lu)

) 2e-’/u
2#e-’/u e_t/u_ e

-1
#+t #+t

=2e-’/u{#(e-flu #+re 1) #+tl}
2e-’/u{a +/3}.

THEOREM 3.4 IfGl, has IHR, then

Jo’ Idt,(x) {1 + x/(# + t)}exp{-x/#}l dx <_ 2#(1 + ’7),

where "7 #1(# + t) (#2/2#2).
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Proof Let B {x (t, (x) _< (1 + x/(# + t)) exp(-x/#)}. Then for
fixed > 0 and x > O, we have

INEQUALITIES AND STABILITY RESULTS FOR
REPAIRABLE SYSTEMS

In this section, we present results and inequalities for repairable systems.
Let {J(i}i=l be a sequence of operating times from a repairable system
that starts functioning at time 0. The sequence oftimes {Xi}i=l forms
a renewal-type stochastic point process. Following Kijima [7], ifa system
has virtual age Tm-1 immediately after the (m 1)th repair, then the
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length of the mth cycle Xm has the distribution function

Gt(x) P(Xm x Tm_l t)
F(x + t) F(t)

F(t)
x>O, (4.1)

where/)(x) F(x), is the reliability function ofa new system. When

EiJ=l Xi,j- 1,2, m 1, minimal repair is performed, keeping the
virtual age intact andwhen 0we have perfect repair. The virtual age of
a system is equal to its operating time for the case of minimal repair.
The reliability function corresponding to the distribution func-

tion (4.1) is (see also Brown [3]),

t(x) ’(x + t)/’(t), x >_ O. (4.2)

THEOREM 4.1 IfGt has DHR, then

fo lOt(x) e-X/"l dx 2#e-*/(e-t/ 1).

Proof Let t have DHR, then there exist e >_ # such that t(X) e-x/’

or dt(x) < e-x/u as x _> e or x _< e. We have

Jo O,(x) e-x/"l dx 2 (3rt(X) e-x/") dx

>_ 2 (’(x + t) e-x/u) dx

2($1 (e + t) #e-/u)
> 2#S0(e + t) 2#e-’/

2#e-(e+/)/ 2#e-e/u
2#e-e/U(e-t/u 1).

THEOREM 4.2 IfGt has IHR, then

rint(x) e-X/U[ dx <_ 2#(1
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Proof Let a {x t(x e-X Then for x > 0,

[Gt(x) e-X dx <_ 2 (e-x/" Gt(x)) dx

<_ 2 (e-x/" P(x + t))dx

2 (e-x/" (x + t))dx

)2 e_X/._S (x + t)
dx

(ex/" S (0)

The results given in previous sections concerning the length biased
equilibrium survival functions also applies to the original equilibrium
survival function. The results are stated below. The proofs are similar to
the proof of Theorems 3.1 and 3.2 respectively.

ToN 4.3 Let e hae DHR, then

Proof We have by virtue ofN having DHR, that

Ig(x) e-x/" dx ; ((x) e-x/") dx, for .,

2S (e) 2;e

2S0(e) 2e
2,e-/,(1
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The inequalities follows from the fact that

&(x) >_ #Sk_(x), Vx >_ O, k > l.

THEOREM 4.4 IfPc has IHR, then

e-x/ul dx < 2# #2

Proof Let D {x [/>e(X) _< e-X/U}. Then for x > 0,

I/e (x) e-x/u dx <_ 2 (e-x/" ’e (x)) dx

_< 2fo (e-x/u- (-f/(y) dy))dx
2#- 2S2(x)/#

2# #2.

5 ESTIMATION FROM CENSORED DATA

In this section we consider estimation of the length biased density
function and related functions with and without censoring. Vardi [17]
derived the nonparametric maximum likelihood estimate (NPMLE),
/ ofFon the basis two independent samples of sizes rn and n from F(y)
and G(y) 1/t.ZFf x dF(x), respectively. As in Section 2, let the ran-
dom variable X be censored on the right by the random variable Ci,
leading to the observation of only Ti Xi/X Ci and 6 I(Xi <_ Ci), where
A denotes minimum and I(. ) is the indicator random variable of the
event in parenthesis. The censoring times Ci, 1,2,..., n are assumed
independent and identically distributed (iid) and independent of X,
i= 1,2,...,n.

Consider the well known uncensored kernel density estimator off
(Padgett and McNichols [11])

K Xhnfn(X) "n i=1
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where {hn; n > } is a sequence ofpositive constants tending to zero, Kis
a known pdf (kernel). A natural estimator of g, the length biased pdf
based on the complete set of observations is

gn(X) XL(X) (5.2)Zn

where/2 is an estimator of #, and a possible estimator is given by/2n
n/-]in=l X{-1 Another estimator is n since/2n < n.

Let Wn(x) -]in=l I(Ti x) and Mn(x) -’in=l I(Ti x/ Ci), then
W,,(x) and M,(x) are the number ofobservations censored or uncensored
greater than or equal to x and the number of uncensored observations
less than or equal to x respectively.
An estimator ofg based on the censored data {(Ti, i) }in= is given by

gn(x) xfn(x)~ (5.3)

where

fn(X)
i=1 hn

Pi, Pi Fn (Z(i)) Fn (T(i-1)),

p, [’n(T()), i= 2,...,n,

(x) P; n- )iH n---i;1
i: T(i <x<T(n

n
#n n/_i=1 T and T(i)is the order statistic of Ti. Note that (x) is
the Kaplan-Meier (K-M)estimator of/(x). Note that an empirical
estimator of the length biased cummulative hazard function is the well
known Nelson estimator and is given by

x dMn(y)h.(x)= Wn(y)" (5.4)
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In estimating the hazard rate 7a(x) by ,a(x) we may use (4.4) or use the
fact that

x

rn(X) gn(y) dy,

where gn(x) is given by (5.3) and estimate "ya(x) as

6(x) gn(x)/Gn(x), (5.6)

by consider values ofx for which G(x) > O.

THEOREM 5.1 Under appropriate assumptions [9,12,15],
x/-n(fin #) e_+ O, then

and if

(nh)l/2(gn(X) E(gn(X))) & N(O, cr2(x)),

for x E [0, a], a < , where

cr 2 (x) g(x) jf K2 (u) dy. (5.7)

Proof Follows from Parzen [12], p. 1073
Theorem 3.1. The asymptotic variance ofg,,(x) is

and Roussas [15],

g(x) f K2(y) dy

If however, (Ti, 6/), 1,2,..., n is available from

foo
x

G(x) y dF(y),

0 < #F "( (30, then an estimate offis given by

--#ngn(X)/X, (5.9)
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where

K
x

gn (X)
j=l hn qi,

qi r(T(i)) (T(i-1)), i= 2,3,...,n,

ql ((T(1)), /2 =n/T[-1

/ i=1

or any consistent estimator of# and

On(x) H x < T(n). (5.10)
i: T(i

THEOREM 5.2 If[z*n is a consistent estimator oflz, thenf is a consistent
P P

estimator off(x), provided n (x) g(x), where denote convergence
in probability.

Remark 5.1 (i) Note that/, n/ y’in=l Tf- < fzn Ein=l Ti/n, is a
consistent estimator of #. If T/- has finite second moment, then

Xn(/2, -/z) L 0. (5.11)

(if) If E(Tis) < , where S is a natural number, then

E(f;(x) -f(x))2 0 as n o,

where

n (X) ngn-* (X X T-1

i=1

(5.12)

BAYESIAN LENGTH BIASED EXPONENTIAL
RELIABILITY ESTIMATION

In this section, estimates ofthe length biased exponential reliability func-
tion are presented. The maximum likelihood estimate, Bayes estimator,
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Pitman estimate are presented. For the Bayes estimate, direct calculation
of the risk of estimators of reliability function is often impossible and
numerical calculation is very difficult. Asymptotic approximation or
numerical computation might be possible but is not objective of this
manuscript and is not given here. Some results on asymptotic approxi-
mation for risk of the exponential reliability function calculated with
respect to the quadratic loss function are given by Hurt et al. [6], Chao [4],
among others. See also (Martz and Waller [8], Padgett [10]). The dif-
ficulty in the calculation ofthe risk ofthe exponential reliability function
is compounded by the fact that computations depends on sampling dis-
tribution, prior distribution, type ofestimates and choice ofloss function.

It is well known that in the case ofexponential distribution, the asymp-
totic properties of the Bayes risk for the typical estimators of the relia-
bility function indicates that the best estimator is the Bayes estimator.
The MLE of the reliability function in (1.2) is given by

(y; t (1 + y/O exp(-y/),

(1 + ,y)exp(-y), (6.1)

where and hence is given by (2.1).
Substituting the Pitman estimate v of A in (1.2), we get the estimate

(p(y; p)= (1 + ,py) exp(-py), (6.2)

where p is given by (2.4). The Bayes estimator of ((y; A) is obtained
from

E[O(y; A) IX]

fo e-’XY{1 + y)/2n (uin=l xi)e-AS"(A2n/I(2n))S2nn-le-AS" dA
fo A2n (Hin__ xi)e-’Xs.(A2n/r(2n))S2nn-’e-’xs. dA

f ,k4ne-A(y+2S") dA + yf /4n+le-A(y+2S") dA

foc A4ne2AS,, dA

(2Sn 4n+l{4ny+2y+2Sn}y --S.J y + 2S.
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Consequently, the Bayes estimator of G(y; A) is given by

(6.3)

From (6.1), we get a conservative estimate of G(y; A) given by

c(Y; ,) exp{-,y}. (6.4)
st

This follows from the fact that F < G, that is G(y) > F(y) (Gupta and
Keating [5]), for all y > 0. The estimate of the length biased exponential
reliability function under random censoring is given by (2.15).
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