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In this paper we investigate the large time behavior of solutions to the Cauchy problem
on R for a one-dimensional thermoelastic system with dissipation. When the initial data
is suitably small, (S. Zheng, Chin. Ann. Math. 8B (1987), 142—155) established the global
existence and the decay properties of the solution. Our aim is to improve the results and
to obtain the sharper decay properties, which seems to be optimal. The proof is given by
the energy method and the Green function method.
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1 INTRODUCTION

In this paper we investigate the large time behavior of solutions to the
Cauchy problem for a one-dimensional thermoelastic system with dissi-
pation on R x (0, o0):

Wi — a(Wy, O)Wyx + b(wy, 0)0x + aw, =0,
c(wy, 0)0; + b(wy, @)Wy, — d(6, 05)0xx = 0, (L.1)
w(x,0) = wo(x), wi(x,0) =wi(x), 6(x,0)=6(x),
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168 K. NISHIHARA AND S. NISHIBATA

where « is a positive constant, and smooth functions a, b, ¢ and d satisfy
b#0, and a,c,d> 6 > 0 under considerations. (1.2)

For the derivation of this system refer to[1,9]. In[9] Slemrod also showed
the global existence theorem for the system (1.1) with & =0 on the inter-
val [0, 1]. Damping mechanism was discussed in [1]. Nevertheless, for
lack of the Poincaré type inequality our problem (1.1) is not necessarily
clear. Instead of this system, by introducing new unknown functions

wy=v, w,=u 06=0, (1.3)
Zheng [10] considered the corresponding system

Vt - ux = 0,
w— a(v,0)vy + b(v,0)0, + au =0, (1.4)
c(v,0)0; + b(v, Nux — d(6,6,)05x =0

with
(v, 14, 0)],20 = (vo, o, 60) (). (1.5)

In [10] he established the global existence of the solution of (1.4) and
(1.5) together with its decay order, when the initial data (v, ug, 6p) in
H?(R) are suitably small.

Our main purpose is to observe the large time behavior of the solution
of (1.1). However, instead of treating (1.1) directly, we first consider (1.4)
and (1.5) using L*-energy method, which improves the result in [10].
Faster decay estimates of a,’;,u, obtained here play an important role in
the next process. That s, regarding u,in (1.4) asaninhomogeneous term,
we have a parabolic system of (v, #) and hence the “explicit” formula of
(v, 6) using the Green functions G(x, t), G5(x, t), which will give sharper
estimates of (v, u, 0) if (vo, g, 8p) € L'(R). This method has been devel-
oped by the first author [5,6]. See also [7]. Finally, define a solution
(w,0)(x, ) of (1.1) by w(x,7) = [~ o (¥, 1) dy, where (v, u, §) is a solution
of (1.4) with its initial data

Vo = Wox, U= Wi, 90 = 00. (16)

Thus we obtain a solution to the original Cauchy problem (1.1). Below,
we sketch this procedure and state theorems.



ONE-DIMENSIONAL THERMOELASTIC SYSTEM 169

First, linearize (1.2) around (v, u, 8) =(0,0,0):
v —uy =0,
Uy — vy + boby + u = g, (1.7
0; + bouy — Oxx = 83,
where we have normalized as
a=1, a(0,0)=4d(0,0)=1, 5(0,0)= by (1.8)
and set

g2 = (a(v,0) — 1)vy, — (b(v,0) — by)by,

1= 255 (b0 = B D)+ (d616:) ~ 1), (19)

By denoting the Lebesgue space (resp. the Sobolev space) by LF =
LP(R) with its norm || - ||, (resp. H™ = H™(R) with its norm || - ||,»),
especially |||,z = |- |lo := || - ||, our first theorem based on the L*
energy method is the following:

THEOREM 1 Suppose that (v, ug, 05) € H*(R) is suitably small. Then, the
Cauchy problem (1.4) and (1.5) has a unique global solution (v,u,6) €
C([0, 0o); H*(R)), which satisfies

E(t;v,u,0)
t
= E(t v,u,0)+/E2(7'; v,u,0)dr
0

= |, )OI + (1 + )| (vx, 1, 65) (DI

+ (14 1)710x (vx, 1, 6), 8:(v, ) (DI’

+ (14 1)°]102 (v, 1, 6, 8y (v, u, 85) (1) ]

+ (14 )82 (v, 4, 0), 814, BB (Vs t, 0r), Beth, D (v, u, 0) (1))

t

+ fo {11, 0) (DI + (1 + 7)[105 (v, u, 85), Be(v, 8) ()|

+ (1 + 7)2(182(vx, 4, 0x), 8y (v, 14, 6:) (7))

+ (147102 (vx, 1, 6x), 8:0y(vx, 1, 6), O (v, 0) () ||

+(1+7)*|0fu, 82 (vx, u, 6), 8,02 (v, u,6), 8,03 (v, 6), 330(r)||* } dr
< C||vo, uo, o |:. (1.10)
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In the next step we first obtain “explicit” formula of (v, 6). From the
decay orders obtained in Theorem 1, the term u, in the left-hand side of
(1.7), (the second equation of (1.7)) decays faster than the other terms.
Hence, differentiating (1.7), once in x and using (1.7);, we regard (1.7) as

a parabolic system of (v, u):

Vi = Vax + boOxx = —tixy + g2,
bov; 4+ 6; — 0xx = g3,

or
A(v) _B(v) _ (_uxt+g2x> —F,
0), "\0/)u &
where
(1 0 (1 —=bo
=(n 1) =G )
Setting

(o) =7(e)

for a regular constant matrix P, we have

VN _ po1 41 V' _ p-14-1
() -roaoe(s) —ras

. 1 _b
“1p_ 0
The eigenvalues k1, k, of A~'B = ( by B 41 ) are

BB+2—/(B2+2)7° -4

0<k = )
Bi+ 24/ (B3 +2)* -4
</\'2=

2 b

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)
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and corresponding unit vectors are

1 ( —bo )__. (Pn)
b5+ (ky — 1)2 ki —1 P

1 ( —bo )_. (PIZ)
B2+ (ky — 1)? \K2 =1 P2

Hence, a matrix

(1.17)

P.— (Pn 1712)
pxn p2

gives the diagonalized system

(g),‘G}l ;)(g)xxz P47, (1.18)

and hence the “explicit” formula is

(6)e0=(4 6.)en(ar)

+/ot<Gol 22)("" T)* PTIAF(,7)dr  (1.19)

Vo _ p-1f 0
where(eo>—P (00),

1 x? .
Gi(x, t) = mexp(— m), 1= 1,2 (120)

and * means the convolution in x. Note that, since A~'B s a real sym-
metric matrix, P and P are orthogonal matrices and

X (1.21)
Y pipik =Y pipi =0, j#k.

=1 i=1
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By (1.19),

gives
(o)o=r(3 6)r(3)

t G 0 —
+/P( : )P—'*A—‘( ""’+g2")d7. (1.22)
0 0 G 83

From (1.17) and (1.21)

P(Gl 0 )P“ B ( P4G1+phGy Pupn G +P12P22G2)
0 G pupaGi + papnGr P34 G1 + p%Ga

_. ((1 — a)G] + aG, ’Y(Gl — G2) ) (1.23)
(G —G)  BGI+(1 - PB)G,

with 0 < o, 3, |y| < 1. Thus, we have an “explicit” formula of (v, 6):
(V) ((1 —a)G1 + aGy ’7(61 --Gz) ) (Vo)
(‘x’ t) = ('3 t) *
6 7(G1 — G2) BG1 + (1 - B)Ga 6o
t((1-a)G G G -G
+/ (( )G + oG, (G 2) >(-,t——7—)
0 (G —Gy)  BG +(1 - P)G,
luy,
. ( ot 820 )(.,T) dr, (1.24)

by (uxt - g2x) + g3

which is “explicit” in the sense that several kinds of information about
Uys, 82, 3 are already known. From (1.7),, u has the form

u(x,t) = vy — bpby — u; + 2. (1.25)

From (1.24)and (1.25), (vy, u, 6,) instead of (v, u,, 65) have same decay
order if u, and g, decay faster. From this point of view the decay orders
obtained in Theorem 1 seem to be reasonable. Compare this to the result
of Zheng [10]. See also [2,4].
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Further, if the initial data (v, 8,) is in L'(R), then these decay orders
are improved. In fact, we have the following second main theorem:

THEOREM 2 In addition to the assumptions in Theorem 1, suppose that
(vo, bo) is in L'(R). Then, the solution (v, u, 0) of (1.4) and (1.5) satisfies the
decay estimates

L+ )"0, 0 @ + (1 + 014, 0) (D]l
+ (14 041 (v2y 1, 0) (O] + (1 + Dl (v, 0, 6) (D]

+(1+ t)5/4”(vxx, ux, Oxx) (D) + (1 + t)s/zn(vxx’ U, Oxx) ()]
< C(l|vo, o, boll4 + [0, boll 1)- (1.26)

Remark 1 In this stage the assumption uy € L' is not necessary.

Finally, consider the Cauchy problem to the original system (1.1).
Taking (1.3) and the first component of (1.24) (denote by (1.24),) into
consideration, we assume wo, = vo with wy € H>(R) N L'(R), and set

w(x, 1) = /—x v(y, 1) dy. (1.27)

o]

By (1.7)1, wi(x,0) = [*_vi(p,0)dy = [* ux(p,1) dy = u(x, 1). Hence,
(w, 0) satisfies (1.1). Estimating (1.24), and (1.27) with (1.24),, we have
the following theorem:

THEOREM 3  Suppose that (wo, w1, 60) € H(R) x H*(R) x H*(R) is suit-
ably small and wy, wyy, wy, O are in Ll(R), and that (v, u, 0) is a solution of
(1.4) with (v, u, 0)|;=0 = (Wox, W1, 0) obtained in Theorem 2. Then (w, )
defined by (1.27) and (1.24), is a solution of (1.1), which satisfies
(1+ 074w + W)l

+ 1+ 0w, ) (O + (1 + )] (wx, 0) (1) ]| o

+ (14 Y[ (Waes wer 0) (D] + (14 O (Wi e, 65) | o0

+ (14 8| (Waxxs Wexs 615 0) ()|

+(1+ t)3/2“(wxxx, Wix, exx)(t)”L“’
< C(lIwolls + w1, Bolly + [1wo, wox, w1, Boll1)- (1.28)
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2 [*-ENERGY ESTIMATES

In this section we prove Theorem 1 employing the L>-energy method.
Our present concern is the Cauchy problem to the system of equations
(1.4) with the initial data (1.5).

The global existence of the solution is given by the combination of
the local existence (Proposition 2.1) and the a priori estimates (Propo-
sition 2.2). This observation immediately gives the proof of Theorem 1.

By multiplying (1.4); by a(v, ), the resultant system becomes the sym-
metric hyperbolic—parabolic system. Thus, the local existence theorem
below immediately follows from the general theory constructed in
Kawashima [3]. The readers are referred to [§], too.

ProposITION 2.1 (Local Existence) Lets > 3 be aninteger. Suppose that
(v, tg, Bp) € H*(R). Then, there exists a positive constant T, depending
only on ||(vo, tg, 00)||5, Such that the initial value problem (1.4) and (1.5) has
a unique solution (v, u, 0) satisfying that

(u,v) € C°([0, Tol; H*(R)) N C'([0, Tol; H*~' (R)),

8 € C°([0, To]; H*(R)) N C'([0, To); H*%(R))
N L2([0, To; H*(R)).

Our theory concerning the asymptotic states requires the solutions
(v,u,6) to be in the space H*(R) in the spatial variable x. Thus, we fix
s =4 hereafter. Then, we introduce the solution space

X(0,T) :={(v,u,0) | E(t; v,u,0) < oo}

Also, we wuse the supremum of E(t;v,u,0)= E(t;v,u,0)+
f(; Ey(t;v,u,6)dr:

N(T)2 = N(T;v,u, 0)2 = sup E(t;v,u,6).

0<i<T
Apparently, it holds that
(v, u,0)(D)lly < E(t;v,u,6).

Thus, we can combine the following a priori estimates with the local
existence theorem.
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PROPOSITION 2.2 (A Priori Estimates) Let (v,u,0)€ X(0,T) be a
solution of (1.7), (1.5) satisfying N(T) < 1. Then, there exists a positive
constant g, such that if ||vo, ug, 0o||4 < €2, then (v, u, ) satisfies (1.10) for
0<t<T.

We now devote ourselves to the proof of Proposition 2.2, which will be
done in several steps.

Step 1 We first multiply (1.7),—(1.7); by v, u, 6, respectively, to have

(l/vzdx) +/uvxdx=0
2 t
(%/uzdx> +/(-uvx+bou0x+u2)dx=/gg‘udx
t
(—;:/02dx) +/(—b0u0x+e§)dx=/g3 -fdx.
t

Here and hereafter, the integrand R is often abbreviated. Adding three
equations, we have

1d
3 g0 OO + 16 8) O = [ (e2-u+g2-6) v
= F{"(5;8)- (2.1),
Integrating (2.1)o over [0, 7], t < T, we have first lemma.

LEMMA 2.1 For some constant C independent of t it holds that
t
10, OO + [ 18P o
2, [ RO
< C{ |Ivo, uo, bo||” + A F 7 (r;g)dr ). (2.2)

Step 2 Multiplying (1.7),—(1.7); by —82v, —02u, —d20, respectively,
we have

1d 2 2
2d: (v s, 02 ) (ON|” + || (s, Oxx) (2) |

= /(8xg2 - Oyt + Oxg3 - 0x0) dx =: F](])(t;g). (2.1),
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We also multiply (1.7), and (1.7); by u,, 8,, respectively, and add the
resultant equations to have

—j—, B (s 6:) (D> + / (bofx — vx)u dx]
+ / (1 + 67 — u? + 2boisy) dx = / (g2 u +gs-0)dx. (2.3)

Calculating (2.1); +(2.3) x A for a small positive constant A, we have

2 [S10muorP + 2 + o]

+/M%%—WWM+U*AWMMF+WWﬁMWV
+ 165 (8)]* + / 2\bouy - 6, dx
= /(axgz B+ Axgy - s + Bxgs - 0,0+ Ags - 8;) dx = BV (1;g).
(2.4),

and hence

t
(v, 2, 0) (DI + / ttes 4, 01, Br) (7) | A7
0
t
sc(nvo,uo,eou%+ Ji Fz(l)(f;g)df). 2.5)
0

Moreover, differentiating (1.7), with respect to x and using (1.7);,
we have

Vi — Vxx + Upx + bobxx = gox,
and, by multiplying this by v,

5 SO+ IO = [+ butpc e

=— /gz v dx =: F3(1)(t;g). (2.6),
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By (2.2), (2.5) and the Schwarz inequality
2 ! 2
O+ [ )i ar
t
< (oo tolf + [ (RO +F 4 FO)mgyar). @)
0

We now have had the integrability of ||v.(7)||* on [0, 7]. Hence we turn
back to (2.4); and multiply (2.4); by (1 + ¢) to obtain

t
(1 + )| (vxs 14, 1, ) (D)1 + /0 (14 7| (vxs s, 01, B3 (7)) dT
2 ! 0 1 1
sc(uvo,uo,oolh + /0 (FO(r;8) + (1 + 1) F{) (3 ) + F! )<T;g))df)
t
= c(||vo,u0,eo||$+ /0 Hl('r;g)d7'>. (2.8)

Combining (2.8) and (2.7) we have the second lemma.
LEMMA 2.2 It holds that

(1 + O)||(vx, 4y s 0x)(t)||2

+ /t(livx(f)ll2 + (14 7)1tz w1, 61, Bx) (7)) d
0

t
SC<||Vo,uo,00||%+/0 Hl(T;g)dT)- (2.9)

Step 3 Estimates of higher order derivatives corresponding to (2.1),,
(2.4); and (2.6);, respectively, become

| &

195 (v, w, O)(1) 1> + 1185 (w, 6:) ()

N —
(oW

t

= / (BFgy - 0%u+ 0kgs - 8%0)dx := FP(1,8),  (2.1),
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5 31t + 152

o001 +3 1ok u()
+ / A(B0dk0 — 8X)8F N udx + (1 — N)[|0fu(o)|*
+ A0 w007 + 056,01 + [ 2Ab00u- 0516, dx
- /(afgz Ok +20) gy - 05w, + 0k gy - 9F6)
+ 20K gy - 0510, dx =: F{ (1, g), (24)

and

SISO + 1051 - [0+ bodk0)0kvdn

N =

”‘/ 0F gy - Ofvdx = F{"(1;g) (2.6

for k=2,3,4. Same method as that of obtaining Lemmas 2.1-2.2
yields the third lemma.

LEMMA 2.3 It holds that
(14 020 (v 0 1 B5) (1)
t
+ ] [+ D02 + (1 + 7210 (s s Bor i) ()2 d
0
t
< C(Ilvo,uo,aollg-l—/o Hz(T;g)dT), (2.10)
(1 + 0102 (v 11, 62) ()|

* /ot[(l + 183 + (1 + 1) (182 (s, 1, 61, 0 (7) | dr

< c(||vO,uo,00||§+ / 'Hs(r;gmr), @.11)
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and
(1+ 041103 (e, 4z, ) (D)

+/0 [+ )10 + (14 7)1107 (s, 1, 62, B ()] d

t
< C(||v0, u0,90||3 —l—/ Hy(t;8) dT), (2.12)
0

where

Ha(ig) = 3" {(1 + 7 FE D () 4 (1 4+ 1) F (73 )
k=1
+(1+ 7" FP (). (2.13)

Step 4 We next estimate the derivatives of (v, u, §) with respect to ¢.
Differentiate (1.7) in ¢ once to have

(), — (), =0,
(), — (V) + bo(6), + u = g, (2.14)
(0t)t + bo(ut)x - (Ot)xx = &3:-

Since  {|(vs us, 8| i=oll < C(||vo, uoll1 + |6oll2) and that (1+7)|(v,=
Uy, Uy, 0,)(T)||* is integrable on [0,7] by Lemma 2.2, same way as in
Lemma 2.3 yields the following lemma:

LEMMA 2.4 It holds that

(1+ 2)[18:(v, 1, 0)(1)I* + /ot(l +7)11:(u, 6x) (7) || dr

t
< c(nvo,uon% +leull + [ [Himi) + 1+ 0 FO(rg0)] dr),

(2.15)

(14 02119, (vx 4, i, B) ()2 + /0 [+ 7))
+ (1 + T)3”61(ux’ Uy, 01’ axx)(r)llz] dr
< c(mmli+ 1603+ [ [Fitrio)+ (14770 ar )
(2.16)
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and

(1+ t)4||6x3,(vx, U, Uy, 9x)(t)||2 + /(:Kl + 7')3”Vtxx(7')”2
+ (14 7)*|820 (4, s, 01, B (7)||*} d7

< c(uvo, wl+ ool + [ (Hi(rig) + (1 + ) Ho(r g} dT).

(2.17)
Step 5 Differentiating (2.14) in ¢ once more, we have
LEMMA 2.5 It holds that
t
1+ 01820 )OI + | (1471020 () Par
t
< C(Ilvo,uo, bl +/0 [Hi(7;8) + (1+7)°Hi(7;8)
400, .
+ (1+7)"F) (1;8u)]d7 ). (2.18)

Step 6 Adding all inequalities obtained in Lemmas 2.1-2.5, we have
t
Ei(t;v,u,0)+ / Ey(7;v,u,6)dr
0

t
< C(|Ivo, oy Bol2 + /0 (Ha(rsg) + (1 + 7 Ha(r 1)
+ (1 +7)*FO(r;g4)] dr. (2.19)

Here we have used F](O)(t;g) < Hi(t;8) < Hy(1;8) < H3(t;8) <
H,(t; g), where F< H means that all terms of F are included in H.

The last term of (2.19) has higher orders of (v, u, ) and estimated as
follows:

LEMMA 2.6 For small positive constant v it holds that
t
C [ [Hatri) + 1+ P Harig) + (1 + ) O (] dr
0

t
< C|lvo, uo.0ol3 + v / E>(r;v,u,0)dr + CN(T)*/?.
0
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The proof of lemma 2.6 is not difficult, but many and tedious cal-

culations are necessary. So, we only show a few terms. For example,
Jo Ha(7; g) dr includes

1
1
ni= [ [ gy oo 0dxa
1
Jr = / 1+ 7)4/(0(\’, 0) — 1)V yxxxlxrn dx dr,
0

the latter of which is in fot(l +7)* [83g> - O3u,dxdr. J; is estimated as
follows:

/ot/[_('c—(,f_a))x b(v,0))u + (0 )b(v ,0), ]dxdr

t
< CN(T)'? / / (2 + 2 +62) dxdr < CN(T)2.
0

Since v, = u,,

t
= / 1+ T)4 [i/(a(v, 0) — 1) Vrxxtxy dx
0 dT

- / (a(V, O)Tvxxxxuxxx - (a(V, 0) - l)vtxxxxuxxx) dx:| dr

T=t

=(1 —|—7') / a(v,0) — 1) Vyxuxlizex dx o

_4/ (47’ / (@(9,8) = 1)Vaxretirey dxdr

/ (1+7) / (a(v, O)Tvxxxxuxxx +a(v, e)xuxxxxuxxx
+ (a(v,0) — D)ul,,,)dxdr

XXXX

t
< CN(TYY2 + Cllvo, uo, 80| + v /0 (1 + 1) seee (D dr
t
+CN(T)'/2/0 [+ 7Y | s ) (T A (1 7)* |l thwa (7) 7] d7

t
< C|lvo, o, 6ol + v /0 (1 1) [ seene (7)[2 dr + CN(T)Y2,
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The other terms are omitted. We now have reached to the inequality
N(T) < C(Ilvo, uo, bolls + N(T)™),
and hence
N(T') < Cl|vo, uo, foll;

provided that || v, uo, 6o|| is suitably small. Thus, we have completed the
proof of Proposition 2.2.

3 ESTIMATES IN L'-FRAMEWORK

In this section we prove Theorem 2. Assuming (vy, 8p) € L'in addition to
the assumptions in Theorem 1, we remind the “explicit” formula (1.24)
of (v,6). In order to obtain the estimates of (v, §), it is enough to esti-
matel; :=Gx*vy, L, := G0y, Il := f(; G * Uy, 111 == f(; G * gy, dTand
IV .= fot G * g3 dr, where G=G, or G,, and g, g3, Gy, G, are, respec-
tively, given by (1.9) and (1.20).

First, we seek for the L>-norm of v, 6. Since ||G(1)|| .« < O(t71/2),itis
easily seen that

||+ || < Ct1/? (3.1)

(From now on we denote a constant depending on ||vo,uo, 6oll4 +
[vo, 66| simply by C.) Dividing the integrand (0,¢) into (0,#/2)U
(¢/2, t) and using the Hausdorff—Young inequality, we have

t/2 t
1| < /0 1G(t — ) ()| dr + [/2 1G(t — )| a7 d

t/2 t
<c / (=) A7) dr+C [ (=) 1+ dr
0 t/2

S Ct_3/4, (32)
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t/2 t
(| < /0 1Gx(t = 7)ll ol 2]l 21 d7 + [/2 I1G(t = 7)1 llg2xl d7

t/2
<c / (¢ = 7)) (5, 6) (D) | (v, 0)() | dr
0
vef (1= 12 0 B) (D + [0 O (e B () | )
t/2

t/2 t
scr3/2/ 1-(1+T)—l/2dT+C(l+t)_1/ (t—7)dr
0 t/2
<crl? (3.3)

and

1< [ 166l lea)lsor
< [[= P10 s b (D 0
<c</ ] )(z Y2 (1) dr
TinQ2 +1). (3.4)
Hence, together with ||(v, 0)(t)]l« < C, (3.2)~(3.4) and (1.24) give
[3,0) (Dl < CA+ 1) In(2+ 1), (3.5)

which will be improved soon after getting the estimates of ||(v, 0)(?)||.
Next, we seek for ||(v, 0)(?)|| in a similar fashion to the above:

I+ 120 < IG@) I Ivolls + l6oll) < €174, (3.6)
t/2
11| + 1| < /0 Gt llzeell + 11Gell llg2ll )

t
+ // (G sl + G0 g2el ) &

< crl/A, 3.7
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and

t
IVVWIS‘/‘HGHHgﬂthT

<%/ /) 7)Y (5, 0) (7)1 ]t Bre) () | A7

<Cr'm2+ ). (3.8)
Hence

1, 0| < C(1+ 1) *In2 +1). (3.9)

Applying (3.9), just obtained, to (3.4) and (3.7) we have
V|l < COA+072 7| < Cot/t
from which we obtain the desired estimate
1+ 0210, 0Ol + 1+ 0O < C. (3.10)

By (1.24) the estimates of I}, ..., IV, yield

(14 D[ 0:) (Dl o + (1 + 4 (02 0) (1)]| < C. (3.11)
From (1.25), (3.11) and the Sobolev inequality

lu(ll = < C(II(vx, 02) (D) ] 20
+ (D)l 2o + 1%, )| o | (V5 0x) (D)]] Lo
<Cc1+9)! (3.12)

and

()N < C(l(vx, 0) N + N (D] + 11V, O) ()] oo [| (Vx5 62) (D)
<C(l+1) Y4 (3.13)
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Similarly, we have

”(Vxx, exx, ux)(l)“Lw < C(] + t)"3/2
”(vxx’ Oxxs ux)(l)” < C(l + t)—5/4. (3.14)

By (1.7); and (1.7); v, and 6, have same decay orders as (3.14).
Equations (3.10)—(3.14) yield the desired estimate (1.26). Here, we note
that the assumption uo € L' is not necessary till now.

4 THERMOELASTIC SYSTEM OF SECOND ORDER

In the final section we consider the original second order thermoelastic
system (1.1) with dissipation, and prove Theorem 3.

For the solution (v, u, #) of (1.4) with the initial data (v, ug, 6p) =
(Wox> W1, bp) obtained in Theorems 1 and 2, Eqs. (1.24) and (1.27) give
the solution (w, 6) of (1.1) by

w(x, 1) = (Gi1 * wo)(x, 1) + /_ ;(GIZ * 00) (&, 1) d€
+ /0 x [(G:l + boGra) (1 = 7) % (~ +g2) ()] () dr
+ [ [ [ont=n «an] @ aras
=M+@+0BG)+®) (4.1)
and
6(x,1) = (G2 * wox) (%, 1) + (Gzz % 60) (%, 1)

x At[GIZ(" - T) * (—uxt + gZx)('a T) + G22(" - T)
% (bo(—uxt + g2x) + £3) (-, 7)] d7, 4.2)

where

G = oG + (1 - a)Gz, Gpp = ’)’(G] - Gz)
Gxn = 6G; + (1 — B)G,. (4.3)
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First, note that, for any fe L' n L2,

[ Guenieee
= [ 16 -G erieae

x © 1 )
— =((6-y)*/4k10) d
/—oo [/—w 4'kl7rte f(y) Y

oo Vakomt

= [ e VRn) (e i)
/ / (Vki — \/_)77 —(n2/49)
/ (€+\/_n+/\(\/_ \f—) )d/\dndﬁ
_(\/— \/,72)/_00\/_4____ =P /40

[ 1+ (V4 A (VI ~ VR ) ) an
=(\/k_ \/k_z)/ n - Go(n, 1)

« [ 5 (x+ (VB4 A (VR - V) ) dren

Hence,

[ (61-6 110 ds} < Csupln- Guln, ) - Iz
< Clfln (4.4)

and

[ 161~ G 210 4| < Clo- Gatan 1151
< g, 5)
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Using (4.4) and (4.5) we estimate each term of (4.1). First two terms
are easily estimated as

IWI< e+~ )l <+ (4.6)

and
lr<c 1@l <ci+o (4.7)
if 6 L'. In this section, only by C denote a constant depending on
||W0||5 + ||w, Boll4 + llwo, w0x, wi, 6o|| ;1. For (3) it is enough to estimate

3), = fo G *u,drand (3), == fo G * g, d1, where G = G, or G,. By the
mtegratmn by partsin 7,

O =67 s+ [ 6= ey an
+ tG(t—'r)*u,('r)dT
t/2

and hence, from Theorems 1 and 2,
1)1 < 16/ e/l + 1G] el
/2 t
+ /0 1G(t — ) [lu(r)]| dr + [/2 1G(t — )|l (7] dr

/2
< C(t“ +z"‘/2+/ (t—7) 0+ 7)) dr
0

t
+/ (=) (1) dr)
/2

<cr'? (4.8)
and

3l
< NG/l llu(E/2DN + N1G@ Wl

t/2 t
+/0 1Ge(t = )l ()l dT+/,/2 1G(z = D llwe(7) ]| d7
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0

t
+/ 1-(1+T)-3/2d7>
t/2

< cr/4

t/2
< C(t""/4 + 14 +/ (t— 7')“1(1 + 7')—3/4d7'

Since

g2l < ClE OO 5, 6:) (D] < C(1+0)7,

it holds that

@l < | 16— 1)l el b

t/2 t 12 "
gc(/o +/t/2)(z—f) (1+47)"dr

<C+0)""m@2+1),

and that

I < | 160 =) g2 dr

<C+1)m2+1).
Estimates of the final term (4) are as follows:
t
@ <c [ lelydr
t
< C/O (1C, O)(T) [l (T + [1(6, 6x) (7)1 [|xx11) d7

t
< C/ (1 +7‘)_’/4_5/4d7' <C
0

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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and
@i <c =" g
<C /0 t(t )T )T g < o (414)
Combining (4.6)—(4.14) we obtain
(L+ ) w(@)l| + W@l = < C.

The other terms w, = v, w, = u, f etc. are same as the orders in Theorem 2.
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