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A Note on A, Weights: Pasting
Weights and Changing Variables
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For two weights u, w on R”, we show that w € 4, (the Muckenhoupt class of weights) if and
only if wu € 4, and wu!~? € A, under the assumption that u € 4, for every r > 1. We also
prove a rather general result on pasting weights on R that satisfy the 4, condition.
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1 INTRODUCTION

A,(R") weights (see below for an intrinsic definition) were introduced
by Muckenhoupt [8]. They are exactly those weight functions on R"
for which the Hardy-Littlewood maximal operator

1
M = sup JQ o)l dy )

is bounded on L”(w). Here, the supremum is taken over all the cubes
Q € R” containing x and |Q| denotes the Lebesgue measure of Q.
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When another (doubling) measure u replaces the Lebesgue measure
in the definition of the maximal function, then the corresponding A4, ,
weights play the same role (see [1]).

To be precise, let u be a positive Borel measure on R”, 1 < p < oo and
let p’ be the conjugate exponent: 1/p+ 1/p'=1. If Q C R", then
A, (Q) denotes the class of weights (i.e., u-measurable, nonnegative
functions defined on Q) satisfying Muckenhoupt’s condition: there exists
some positive constant C such that

rir
J wdu(J wP'lP du) < Cu(Qy
0 0

for every cube O € Q. We will write 4,, ,(Q, w) for the least constant C.

We write 4,,,(Q) if du(x) = u(x) dx, and 4,(Q) if u = 1, i.e., p is the
Lebesgue measure on Q. We omit Q if there is no ambiguity.

The 4,(R) classes also characterize the boundedness of the Hilbert
transform on LP(w), see [4]. The same applies, for instance, to
A,([0, 27]) weights and Fourier series, or 4,([—1, 1]) weights and Four-
ier expansions in Chebyshev polynomials (actually, Fourier series on
[0, 27] and Fourier expansions in Chebyshev polynomials are closely re-
lated via a change of variable). In general, the 4, condition is sufficient
for the boundedness of Calderon—-Zygmund operators and, in some
sense, it is also necessary. We refer the reader to [2, 1] for further details
on these topics.

In this context, the relation between different 4, classes is certainly
interesting. We refer, for instance, to the relation between “weighted”
and “unweighted” classes, i.e., 4, , and 4,,. In section 2, we state a re-
sult of this type and give some illustrating example; in section 3 we give
a very simple proof. In particular, some results of Johnson and Neuge-
bauer [5, 6] follow, relating the 4,, conditions for a weight w on R and
the weight w o h, where & is a given change of variable.

A different, yet also interesting question is the construction of exam-
ples of 4, weights. Here, the simplest case is w(x) = |x|?, which belongs
to A,([0, 1]) if and only if —1 < a < p — 1. Indeed, this can be checked
by simply computing the integrals in the 4, condition. The same holds
if we replace [0, 1] by [0, co) or R. Obviously, the same characterization
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remains true for power weights w(x) = |x — b|?, but the computations
are not so straightforward in the case of

N
wee) = [l — 517,
-1

which can be considered essentially as the result of pasting simple
power weights, in the sense that w behaves like |x — #|* near #. A con-
tribution on this subject was made by Schréder [10]: if w € 4,((a, 0]),
w € 4,([0, b)) and

& dx & dx
0 < liminf b ) < lim sup Jy W) < 00

WD MDY 2
e=>0 ffew(x)dx_ &0 fgaw(x)dx @

then w € 4,((a, b)). In section 4 we give an elementary proof that under
some mild conditions we can paste 4, weights so as to obtain another 4,
weight.

2 CHANGE OF VARIABLES

PROPOSITION 1 Let u, w be two weights on Q CR", 1 <p < o0.
Then,

wu € 4p, wul? e Ap=>wed,,.
Remark 1 Actually, we will prove that 4, ,(w) < 4, (wu)d,(wu'~P).

PROPOSITION 2 Let u, w be two weights on Q CR", 1 <p < o00.
Assume that u € Ny-14,. Then,

W€ dpy => wu € Ay, wu'P € 4.
Remark 2 1t follows from the proof that
Ap(wu) < AP0 4, (W), A=p§ -1, r=141/k
Ay’ P) < 4@ 4y )P, d=pd —1, r=1+1/4

here, & > 1 is such that w’ € 4,,,,.
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Remark 3 The assumption that u € N,-14, in Proposition 2 is ne-
cessary in the following sense: let u be a weight on Q C R", take some
1 <p<oo and suppose that wu € 4, for every w € Ap,. Then,
u € Ny»14,. Indeed, if M is the (unweighted) Hardy-Littlewood max-
imal operator (1), we have

[mrcopweont as = € [reopweouto as, v e 4

(since wu € 4,). Then, Rubio de Francia’s extrapolation theorem [9,
Theorem 3] gives

J M@ W) dr < cj PO wiu() dx, Y € Any

for every 1 < r < oo. Taking w = 1 yields u € 4,.

COROLLARY 3 (change of variable) Let Q;, , be intervals in R,
h: Q—>Q, bijective and absolutely continuous, and let h~! be its in-
verse function. Let w be a weight on Q;, 1 < p < oo.

(@) Ifw|l'| € 4,(Q,) and wil'|'™” € 4,(Qy), then w o h™' € 4,().
(b) Assume that K| € N1, (Q1). If woh™! € 4,(Q2), then
wil'| € 4,(Q1) and w|k'|'™P € 4,().

Proof of the Corollary ~ Taking into account that A transforms intervals
into intervals, it is straightforward to check that wo A~! € A, if and only
if w € 4, i). We only need to take u = |/’| in Propositions 1 and 2.l

Remark 4 1If wi,w; €4, and 0 <A <1, then wiwi™ € 4,, by
Hoélder’s inequality. Hence, under the hypothesis of Proposition 2,
wu* € A, for 1 —p < o < 1. In terms of a change of variable in R, we
have as a corollary:

ved,(Q) = (voh) - IH|"€4,(Q)), 1-p=<a=xl.

This result was proved by Johnson and Neugebauer in [5, Theorem 2.7]
(for the case 0 < o < 1) and [6, Corollaries 3.1 and 3.4] (on the full
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range 1 — p < o < 1). In fact, our proof of Proposition 2 and the discus-
sion on the necessity of u € N,..14, are a simplified version of the proof
of [5, Theorem 2.7]. Also, we must remark that in the case n = 1 our
Proposition 2 could be deduced from [6, Corollaries 3.1 and 3.4],
since for each weight function » on R there is some 4 with u = |//|.

Example (maximal operator of Fourier—Jacobi series) Let us take
o, f > —1/2 and consider the Founer—Jacobl series associated to the
measure d/,t(“”’) (x) = (1 —x)*(1+x)" dx. In other words, this is the
Fourier expansion associated to the Jacobi polynomials of order (a, ),
which are orthogonal on (—1,1) with respect to (P,

Let us write 4/(x) = (1 — x)*(1 + x), let u be a weight on (—1, 1) and
take

w(t) = u(cos £)(1 — cos 1)FP@HD/4(] | cos £)@PIEFHD/A,

Following some results of J. E. Gilbert, it was proved in [3] that under
condition w € 4,((0, 7)) the maximal operator S ; of the Fourier-Jaco-
bi series is bounded on Z7(u du®P). Now, we can translate this A, con-
dition into the interval (—1, 1): apply Corollary 3 to the weight

V(x) = u(x)(1 — x)(Z—p)(2a+l)/4(1 + x)(2-—p)(2ﬂ+1)/4,

with A(x) = arccos x, h:(—1, 1)—(0, ). A direct proof that |#'(x)| =
(1 —x2)7"2 satisfies the 4, hypothesis can be given, but either
Schroder’s result or our Proposition 4 below can be successfully used,
as well. Then, Corollary 3 yields

w € 4,(0, 1) = u(x)(1 — x)P1W)'P* € 4,(~1,1).

Thus, the two 4, conditions on the right are sufficient for the bounded-
ness of the max1mal operator S; 5. Actually, they are also necessary even
for the uniform boundedness of the Fourier—Jacobi series, at least for
power-like weights (see [7]).
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3 PROOF OF PROPOSITIONS 1 AND 2

Proof of Proposition 1 Let Q be a cube, Q C Q. By the hypothesis,

) L\PIP
J wu(J w"’/"’u"’/”) < A,(wu)|QP,
Q Q

L \PIP
J wu"”(J wP /”u) sAp(wu"")lQl”,
] 0

where |Q)| is the Lebesgue measure of Q. Let C = A,,(wu)Ap(wu"”). It
follows that

N4
J wu(J wr /”u)
Y 0
) LN\ -1
5C|Q|2P(J w—l’/l’u-P/P) (J wu“”)
0 0

19l

P
=C (JQ ”) (fQ u) 1/2 (fQ w—l"/l’u—l"/l’) 1727 ( fQ wu"l’/l”) 72p
o)

o

where the last inequality follows from the three function Holder’s in-
equality applied to

2p

R TUL o Ve L UL N e S NE n

Proof of Proposition 2 Since u € Ny4,, for each r > 1 and each

cube Q we have
r—1
Jou(] aren) < acor.
Q 0
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Let us take A = 1/(r — 1), that is: r = 1 + 1/4; for each A > 0 we have

A
(j u) J u < A, |1, 3)
Q Q

(a) Let us prove that wu € 4,. Let § > 1 be such that w e Apu (see
[1,2]). Take 1/6 4+ 1/’ = 1. Let Q be any cube contained in Q. By
Holder’s inequality,

1/6 1/8
o= ()" ()
2 0 Y
1/6 1/8
J wPryrlp =J w PPy ry < ( J w—p’é/pu) (J ul—p’é’) )
Y 0 0 Y

Taking this into account and the fact that = Ap s

pip
J wu(J w—p’/pu—p’/p)
Q o
RN ak 1/ \PIED)
= (fwellorma ) ()
o o o o
p/o+1/8 L \P/E')
<apto?([ W) ([ )
g g
po—1 p/@'Y)
= p.u(W(S)I/‘S (j u) J u' 7o
Q g

< 4p (W) P 4, ()P TP,

where in the last inequality we use (3) with A = p’d’ — 1 and for the pre-
vious step

5P, p _p p( 1\ _p 1
Po=-Nrg= p’(5'—5+5'(1 pf)‘5+5"
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(b) Let us now prove that wu'~? € A,,. Part (a) can be conveniently mod-
ified so as to get a direct proof. Alternatively, the elementary fact that for
any v, 4, 1 <s <00

vedy = v edy,
with Ay (v=57%) = 4, ,(v)'"*, together with part (a) gives

wedy, = wPP edy, = wPPuedy < wu'" €4,

and the appropriate relation for the 4, constants follows as well. W

4 PASTING 4, WEIGHTS

In this section n = 1, i.e., 1t is a Borel measure on R and we deal with
weights defined on a measurable subset of R.

Remark 5 Assume that J is an interval, u(J) < co, w € 4p,(J) and
w# 0, i.e.,, wis not (u almost everywhere) the null weight on J. Then,

deu>0
4

for every measurable subset 4 C J of positive measure, since otherwise
we would have w = 0 p-almost everywhere on 4,

J w7 du = 400,
J
and the A, , condition on the whole interval J would yield w = 0 on J.

PROPOSITION 4 Let Q be an open interval on R, u a Borel measure on
Q with supp u = Q, and w a weight on Q. Assume that there exist some
open intervals Jy, Ji, ...,y such that

(@) Q=U)_J;
(b) Jo,J1,...,JIn-1 have finite measure;
(c) weApu(Ji), forevery k =0,1,...,N;
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(d) w#0onJy, forevery k=0,1,... N — 1.
Then, w € Ap, (D).

Remark 6 Obviously, the intervals J; cannot be disjoint, rather they
overlap. But the notation Jy,J}, . ..,Jy means no particular order. Re-
garding condition (d), it makes the proof easier at some point, but ac-
tually it is not necessary. Indeed, if we take Remark 5 into account and
the fact that the J;, overlap, omitting condition (d) essentially leads to the
following situation:

Q=JUS,UJs, J=(@b), SL=0B-0,c+d), J=(d),
w=0 onJjUJ;, we Ap’”(.]z),
wb,b+¢) =00, Ve>0, u((c—e,c)=o00, Ve>0.

It is then immediate that w € 4, ,(Q).

Remark 7 If u is the Lebesgue measure on an interval Q C R, then
condition (b) yields Q # R. This condition cannot be just omitted, as
the following example shows: consider

(1+x? ifx>0

WO =11 Z %k i x <0

with -1 <a<p—1, -1 <b<p—1anda<b. Itis easy to check
that we4,((—1/2,00)) and w e 4,((—00,1/2)). However,
w ¢ Ap(R): for the interval I = (—n, n), easy computations yield

J W~ nl+b’J w——p’/p ~ nl-a/(p-—l)’
1 1
so that

2/4
o)
I I

and the 4, condition fails.



756 M. PEREZ RIERA

Remark 8 Proposition 4 implies Schréder’s result, since under con-
dition (2) it follows that w € 4,((a,¢)) and w € 4,((—¢, b)) for some
e>0.

Proof of Proposition 4 Let I be a nonempty interval, I C Q. We must
prove that there is some constant C, independent of I, such that

) oy
j wd,u(J — d,u) < cury. @
1 1

If I C J; for some k, we are done, by hypothesis (obviously, a common
constant can be chosen for all the 4, , conditions). We can therefore
suppose now that for every k£ € {0, 1,...,N}, I € J;. There must be
some m € {1,2,...,N} such that

ICUl o, TZUM .
Now, let us show that (4) holds with some constant which depends on

m, but not on / (then, the biggest constant will work for every interval).
We claim that

J wdu < C j wdpu (5)
1 nJ,
and
J w PP du<cC J wP P du, (6)
1 INJy,

with some constants depending on m, but not on /. If this is true (it will
be proved below), then our result follows immediately:

) plv' ) 12/
[ wdu(J wP/P d,u) <C J wdu(J wPp d,u)
JI 1 nJ, nJy,

< CUNJulP
= Clp,
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where in the second inequality we use that w € 4, ,(J,») and at each oc-
currence C denotes a different constant which depends only on m.

Thus, only (5) and (6) remain to be proved. Now, for every £k =
0,..., m—1,

J wdu < J wdu < oo. @)
INJy Jk

The fact that the second integral is finite follows from the hypothesis
that w € 4, ,(J;) when applied to the whole J;, which has finite mea-

sure.
On the other hand, since I and the J; are intervals and

I C U?=0Jk, I .«q_ U;Cn;(]l‘]/u 1 Z‘Im’

it follows that there is some n <m—1 with @ #J, N J,, SIN Jp.
Then,

J wdu > J wdu > 0. ®)
INJy JaVJin

The fact that the second integral cannot vanish follows from Remark $§
(with J = J,), together with the trivial property that every open interval
contained in Q = supp u has positive measure. Let us take

Cm=min“ wdu:ﬂ;éJ,,ﬂJm}.
I\

Then (7) and (8) yield

wd
J wd,us—L" ﬂj wdp.
INJ; Con  Jing,
Summing up in k=0, 1,...,m — 1, we obtain

m—1
de,uSJ wd,u+ZJ wdu<C J wdu,
I NJy, —o JInJ, nJ,
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where

m—1

C=14— J wdpu.
Cmg Jr

This proves inequality (5). For the proof of (6), just replace w by
w"p’/p. | |
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