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Graphical models are useful for characterizing conditional and marginal independence structures
in high-dimensional distributions. An important class of graphical models is covariance graph
models, where the nodes of a graph represent different components of a random vector,
and the absence of an edge between any pair of variables implies marginal independence.
Covariance graph models also represent more complex conditional independence relationships
between subsets of variables. When the covariance graph captures or reflects all the conditional
independence statements present in the probability distribution, the latter is said to be faithful to
its covariance graph—though in general this is not guaranteed. Faithfulness however is crucial,
for instance, in model selection procedures that proceed by testing conditional independences.
Hence, an analysis of the faithfulness assumption is important in understanding the ability of the
graph, a discrete object, to fully capture the salient features of the probability distribution it aims
to describe. In this paper, we demonstrate that multivariate Gaussian distributions that have trees
as covariance graphs are necessarily faithful.

1. Introduction

Markov random fields and graphical models are widely used to represent conditional
independences in a givenmultivariate probability distribution (see [1–5], to name just a few).
Many different types of graphical models have been studied in the literature. Concentration
graphs encode conditional independence between pairs of variables given the remaining
ones. Formally, let us consider a random vector X = (Xv, v ∈ V )′ with a probability dis
tribution P where V is a finite set representing the random variables in X. An undirected
graph G0 = (V, E0) is called the covariance graph (see [1, 6–11]) associated with the probability
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distribution P if the set of edges E0 is constructed as follows:

(u, v) /∈ E0 ⇐⇒ Xu ⊥⊥ Xv. (1.1)

Note that (u, v) /∈ E means that the vertices u and v are not adjacent in G.
The concentration graph associated with P is an undirected graph G = (V, E), where V

is the set of vertices and each vertex represents one variable in X. The set E is the set of edges
(between the vertices in V ) constructed using the pairwise rule: for pair (u, v) ∈ V ×V, u/=v,

(u, v) /∈ E ⇐⇒ Xu ⊥⊥ Xv | XV \{u,v}, (1.2)

where XV \{u,v} := (Xw, w /=u and w/=v)′.
Note that the subscript zero is invoked for covariance graphs (i.e., G0 versus G) as the

definition of covariance graphs does not involve conditional independences.
Both concentration and covariance graphs not only are used to encode pairwise

relationships between pairs of variables in the random vector X, but as we will see below,
these graphs can also be used to encode conditional independences that exist between subsets
of variables of X. First, we introduce some definitions.

The multivariate distribution P is said to satisfy the “intersection property” if for, any
subsets A, B, C, and D of V which are pairwise disjoint,

XA ⊥⊥ XB | XC∪D and XA ⊥⊥ XC | XB∪D then XA ⊥⊥ XB∪C | XD. (1.3)

We will call the intersection property (see [2]) in (1.3) above the concentration inter-
section property in this paper in order to differentiate it from another property that is satisfied
by P when studying covariance graph models. Though this property can be further relaxed,
we will retain the terminology used in [2].

We first define the concept of separation on graphs. Let A, B, and S denote a pairwise
disjoint set of vertices. We say that a set S separates A and B if all paths connecting A and B
in G intersect S, that is, A⊥GB | S. (This is not to be confused with stochastic independence
which is denoted by ⊥⊥ as compared to ⊥G.)Now, let P satisfy the concentration intersection
property. Then, for any triplet (A,B, S) of subsets of V pairwise disjoint, if S separates A and
B in the concentration graph G associated with P , then the random vector XA = (Xv, v ∈ A)′

is independent of XB = (Xv, v ∈ B)′ given XS = (Xv, v ∈ S)′. This latter property is called
concentration global Markov property and is formally defined as

A⊥GB | S =⇒ XA ⊥⊥ XB | XS. (1.4)

Kauermann [6] shows that if P satisfies the following property: for any triplet (A,B, S) of
subsets of V pairwise disjoint,

if XA ⊥⊥ XB and XA ⊥⊥ XC then XA ⊥⊥ XB∪C, (1.5)
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then, for any triplet (A,B, S) of subsets of V pairwise disjoint, if S separates A and B in the
covariance graph G0 associated with P , then XA ⊥⊥ XB | XV \(A∪B∪S). This latter property is
called the covariance global Markov property and can be written formally as follows:

A⊥G0B | S =⇒ XA ⊥⊥ XB | XV \(A∪B∪S). (1.6)

In parallel to the concentration graph case, property (1.5) will be called the covariance
intersection property and is sometimes also referred to as the composition property. Even if
P satisfies both intersection properties, the covariance and concentration graphs may not be
able to capture or reflect all the conditional independences present in the distribution; that is,
there may exist one or more conditional independences present in the probability distribution
that does not correspond to any separation statement in either G or G0. Equivalently, a
lack of a separation statement in either G or G0 does not necessarily imply a conditional
independence. On the contrary case when no other conditional independence exists in P
except the ones encoded by the graph, we classify P as a faithful probability distribution to
its graphical model (see [12]). More precisely, we say that P is concentration faithful to its
concentration graph if, for any triplet (A,B, S) of subsets of V pairwise disjoint, the following
statement holds:

A⊥GB | S ⇐⇒ XA ⊥⊥ XB | XS. (1.7)

Similarly, P is said to be covariance faithful to its covariance graphG0 if, for any triplet (A,B, S)
of subsets of V pairwise disjoint, the following statement holds:

A⊥G0B | S ⇐⇒ XA ⊥⊥ XB | XV \(A∪B∪S). (1.8)

A natural question of both theoretical and applied interest in probability theory is to
understand the implications of the faithfulness assumption. This assumption is fundamental
since it yields a bijection between the probability distribution P and the graph G in terms
of the independences that are present in the distribution. In this paper, we show that when
P is a multivariate Gaussian distribution, whose covariance graph is a tree, it is necessarily
covariance faithful, that is, such probability distributions satisfy property (1.8). Equivalently,
the associated covariance graph G is fully able to capture all the conditional independences
present in the multivariate distribution P . This result can be considered as a dual of a
previous probabilistic result proved by Becker et al. [13] for concentration graphs that
demonstrates that Gaussian distributions having concentration trees (i.e., the concentration
graph is a tree) are necessarily concentration faithful to its concentration graph (implying that
property (1.7) is satisfied). This result was proved by showing that Gaussian distributions
satisfy two types of conditional independence properties: the intersection property and the
decomposable transitivity property. The approach in the proof of the main result of this paper
is vastly different from the one used for concentration graphs (see [13]). Indeed, a naı̈ve
or unsuspecting reader could mistakenly think that the result for covariance trees follows
simply by replacing the covariance matrix with its inverse in the result in Becker et al.
[13]. This is of course incorrect and, in some sense, equivalent to saying that a matrix and
its inverse are the same. The covariance matrix encodes marginal independences whereas
the inverse covariance matrix encodes conditional independences. These are very different
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models. Moreover, the former is a curved exponential family model whereas the latter is a
natural exponential family model.

The outline of this paper is as follows. Section 2 presents graph theory preliminaries.
Section 2.2 gives a brief overview of covariance and concentration graphs associated with
multivariate Gaussian distributions. The proof of the main result of this paper is given in
Section 3. Section 4 concludes by summarizing the results in the paper and the implications
thereof.

2. Preliminaries

2.1. Graph Theoretic Concepts

This section introduces notation and terminology that is required in subsequent sections. An
undirected graph G = (V, E) consists of two sets V and E, with V representing the set of
vertices, and E ⊆ (V × V ) \ {(u, u), u ∈ V } the set of edges satisfying, for all (u, v) ∈ E ⇐⇒
(v, u) ∈ E. For u, v ∈ V , we write u∼G v when (u, v) ∈ E and we say that u and v are adjacent
in G. A path connecting two distinct vertices u and v in G is a sequence of distinct vertices
(u0, u1, . . . , un), where u0 = u and un = v, where, for every i = 0, . . . , n − 1, ui∼G ui+1. Such a
pathwill be denoted p = p(u, v,G) andwe say that p(u, v,G) connects u and v or alternatively
u and v are connected by p(u, v,G). We also denote by P(u, v,G) the set of paths between u
and v. We now proceed to define the subclass of graphs known as trees. Let G = (V, E) be an
undirected graph. The graphG is called a tree if any pair of vertices (u, v) inG is connected by
exactly one path; that is, |P(u, v,G)| = 1 for all u, v ∈ V . A subgraph of G induced by a subset
U ⊆ V is denoted by GU = (U,EU), U ⊆ V and EU = E ∩ (U × U). A connected component of
a graph G is the largest subgraph GU = (U,EU) of G such that each pair of vertices can be
connected by at least one path in GU. We now state a lemma, without proof, that is needed in
the proof of the main result of this paper.

Lemma 2.1. Let G = (V, E) be an undirected graph. If G is a tree, then any subgraph of G induced
by a subset of V is a union of connected components, each of which are trees (or what we will refer to
as a “union of tree connected components”).

For a connected graph, a separator is a subset S of V such that there exists a pair of
nonadjacent vertices u and v such that u, v /∈ S and

∀p ∈ P(u, v,G), p ∩ S/= ∅. (2.1)

If S is a separator, then it is easily verified that every S′ ⊇ S such that S′ ⊆ V \ {u, v} is also a
separator.

2.2. Gaussian Concentration and Covariance Graphs

In this section, we present a brief overview of concentration and covariance graphs in
the case when the probability distribution P is multivariate Gaussian. Consider a random
variable X ∼ N(0,Σ), where µ ∈ IR|V | and Σ = (σuv) ∈ P

+, where P
+ denotes the cone of

positive definite matrices. Without loss of generality, we will assume that µ = 0. Gaussian
distributions can also be parameterized by the inverse of the covariance matrix Σ denoted by
K = Σ−1 = (kuv). The matrix K is called the precision or concentration matrix. It is well known
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(see [2]) that for any pair of variables (Xu,Xv), where u/=v, Xu ⊥⊥ Xv | XV \{u,v} ⇔ kuv = 0.
Hence, the concentration graph G = (V, E) can be constructed simply using the precision
matrix K and the following rule: (u, v) /∈ E ⇔ kuv = 0. Furthermore, it can be easily deduced
from a classical result (see [2]) that for any Gaussian concentration graph model the pairwise
Markov property in (1.2) is equivalent to the concentration global Markov property in (1.4).

As seen earlier in (1.1) covariance graphs on the other hand are constructed using
pairwise marginal independence relationships. It is also well known that, for multivariate
Gaussian distributions, Xu ⊥⊥ Xv ⇔ σuv = 0. Hence, in the Gaussian case, the covariance
graphG0 = (V, E0) can be constructed using the following rule: (u, v) /∈ E0 ⇔ σuv = 0. It is also
easily seen that Gaussian distributions satisfy the covariance intersection property defined
in (1.5). Hence, Gaussian covariance graphs can also encode conditional independences
according to the following rule: for any triplet (A,B, S) of subsets of V pairwise disjoint,
if S separates A and B in the covariance graph G0, then XA ⊥⊥ XB | XV \(A∪B∪S).

3. Gaussian Covariance Faithful Trees

We now proceed to study the faithfulness assumption in the context of multivariate Gaussian
distributions and when the associated covariance graphs are trees. The main result of this
paper, presented in Theorem 3.1, proves that multivariate Gaussian probability distributions
having tree covariance graphs are necessarily faithful to their covariance graphs; that is, all
of the independence and dependences in P can be read by using graph separation. We now
formally state Theorem 3.1. The proof follows shortly after a series of lemmas/theorem(s)
and an illustrative example.

Theorem 3.1. Let XV = (Xv, v ∈ V )′ be a random vector with Gaussian distribution P =
N|V |(μ,Σ). Let G0 = (V, E0) be the covariance graph associated with P . If G0 is a disjoint union
of trees, then P is covariance faithful to G0.

The proof of Theorem 3.1 requires, among others, a result that gives a method to
compute the covariance matrix Σ from the precision matrix K using the paths in the
concentration graph G. The result can also be easily extended to show that the precision
matrix K can be computed from the covariance matrix Σ using the paths in the covariance
graph G0. We now formally state this result.

Lemma 3.2. Let XV = (Xv, v ∈ V )′ be a random vector with Gaussian distribution P = N|V |(μ,Σ),
where Σ and K = Σ−1 are positive definite matrices. Let G = (V, E) and G0 = (V, E0) denote,
respectively, the concentration and covariance graph associated with the probability distribution of
XV . For all (u, v) in V × V ,

kuv =
∑

p∈P(u,v,G0)

(−1)|p|+1|σ|p
∣∣Σ \ p∣∣
|Σ| , σuv =

∑

p∈P(u,v,G)

(−1)|p|+1|k|p
∣∣K \ p∣∣
|K| , (3.1)

where, if p = (u0, . . . , un), |σ|p = σu0u1σu1u2 . . . σun−1un , |k|p = ku0u1ku1u2 . . . kun−1un , K \ p =
(kuv, (u, v) ∈ (V \ p) × (V \ p)) and Σ \ p = (σuv, (u, v) ∈ (V \ p) × (V \ p)) denote, respectively,
K and Σ with rows and columns corresponding to variables in path p omitted. The determinant of a
zero-dimensional matrix is defined to be 1.
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The lemma above follows immediately from a basic result in linear algebra which
gives the cofactor expression for the inverse of a square matrix. In particular, for an invertible
matrix A, its inverse A−1 can be expressed as follows:

A−1 =
1

det(A)
adj(A), where adj(A) denotes the adjoint of A. (3.2)

A simple proof can be found in Brualdi and Cvetkovic [14]. The result has been
rediscovered in other contexts (see [15]), but, as noted above, it follows immediately from
the expression for the inverse of a matrix.

The proof of our main theorem (Theorem 3.1) also requires the results proved in the
lemma below.

Lemma 3.3. Let XV = (Xv, v ∈ V )′ be a random vector with Gaussian distribution P = N|V |(μ,K =
Σ−1). Let G0 = (V, E0) and G = (V, E) denote, respectively, the covariance and concentration graphs
associated with P , then

(i) G and G0 have the same connected components,

(ii) if a given connected component inG0 is a tree, then the corresponding connected component
in G is complete and vice versa.

Proof. Proof of (i): the fact that G0 and G have the same connected components can be
deduced from the matrix structure of the covariance and the precision matrix. The connected
components of G0 correspond to block diagonal matrices in Σ. Since K = Σ−1, then, by
properties of inverting partitioned matrices, K also has the same block diagonal matrices as
Σ in terms of the variables that constitute these matrices. These blocks correspond to distinct
components in G and G0. Hence, both matrices have the same connected components.

Proof of (ii): let us assume now that the covariance graph G0 is a tree, hence it is a
connected graph with only one connected component. We will prove that the concentration
graph G is complete by using Lemma 3.2 and computing any coefficient kuv (u/=v). Since G0

is a tree, there exists exactly one path between any two vertices u and v. We will denote this
path as p = (u0 = u, . . . , un = v). Then, by Lemma 3.2,

kuv = (−1)n+1σu0u1 . . . σun−1un

∣∣Σ \ p∣∣
|Σ| . (3.3)

First, note that the determinants of the matrices in (3.3) are all positive since principal minors
of positive definite matrices are positive. Second, since we are considering a path in G0,
σui−1ui /= 0, for all i = 1, . . . , n. Using these two facts, we deduce from (3.3) that kuv /= 0 for
all (u, v) ∈ E. Hence, u and v are adjacent in G for all (u, v) ∈ E. The concentration graph
G is therefore complete. The proof that when G is assumed to be a tree implying that G0 is
complete follows similarly.

We now give an example illustrating the main result in this paper (Theorem 3.1).

Example 3.4. Consider a Gaussian random vector X = (X1, . . . , X8)
′ with covariance matrix Σ

and its associated covariance graph (which is a tree) as given in Figure 1(a).
Consider the sets A = {1, 2}, B = {5}, and S = {4, 6}. Note that S does not

separate A and B in G0 as any path from A and B does not intersect S. Hence, we cannot
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(a) An 8-vertex covariance tree G0
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(b) Sub-graph
(G0){2,5,3,8,7}

Figure 1: Covariance graph in Example 3.4.

use the covariance global Markov property to claim that XA is not independent of XB

given XV \(A∪B∪S). This is because the covariance global Markov property allows us to read
conditional independences present in a distribution if a separation is present in the graph. It
is not an “if and only if” property in the sense that the lack of a separation in the graph does
not necessarily imply the lack of the corresponding conditional independence. We will show
however that in this example XA is indeed not independent of XB given XV \(A∪B∪S). In other
words, we will show that the graph has the ability to capture this conditional dependence
present in the probability distribution P .

Let us now examine the relationship between X2 and X5 given X{3,7,8}. Note that in
this example V \ (A ∪ B ∪ S) = {3, 8, 7}, 2 ∈ A, and 5 ∈ B. Note that the covariance
graph associated with the probability distribution of the random vector (X2, X5,X{3,8,7})

′ is
the subgraph represented in Figure 1(b) and can be obtained directly as a subgraph of G0

induced by the subset {2, 5, 3, 7, 8}.
Since 2 and 5 are connected by exactly one path in (G0){2,5,3,7,8}, that is, p = (2, 3, 5),

then the coefficient k25|387, that is, the coefficient between 2 and 5 in inverse of the covariance
matrix of (X2, X5,X{3,8,7})

′, can be computed using Lemma 3.2 as follows:

k25|387 = (−1)2+1σ23σ35
|Σ({8, 7})|

|Σ({2, 5, 3, 8, 7})| , (3.4)

where Σ({7, 8}) and Σ({2, 5, 3, 8, 7}) are, respectively, the covariance matrices of the Gaussian
random vectors (X7, X8)

′ and (X2, X5,X{3,8,7})
′. Hence, k25|387 /= 0 since the right hand side of

the equation in (3.4) is different from zero. Hence, X2 /⊥⊥X5 | X{3,8,7}.
Now, recall that, for any Gaussian random vector XV = (Xu, u ∈ V )′,

XA ⊥⊥ XB | XS iff ∀(u, v) ∈ A × B, Xu ⊥⊥ Xv | XS, (3.5)

where A, B, and S are pairwise disjoint subsets of V . The contrapositive of (3.5) yields

X2 /⊥⊥X5 | X{3,7,8} =⇒ X{1,2} /⊥⊥X5 | X{3,7,8}. (3.6)
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Hence, we conclude that since {4, 6} does not separate {1, 2} and {5}, X{1,2} is not
independent of X5 given X{3,7,8}. Thus, we obtain the desired result:

{1, 2}/⊥G0 {5} | {4, 6} =⇒ X{1,2} /⊥⊥X5 | X{3,7,8}. (3.7)

We now proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality, we assume that G0 is a connected tree. Let
us assume to the contrary that P is not covariance faithful to G0, then there exists a triplet
(A,B, S) of pairwise disjoint subsets of V , such that XA ⊥⊥ XB | XV \(A∪B∪S), but S does not
separate A and B in G0, that is,

XA ⊥⊥ XB | XV \(A∪B∪S), A/⊥G0 B | S. (3.8)

As S does not separate A and B and since G0 is a connected tree, then there exists a
pair of vertices (u, v) ∈ A × B such that the single path p connecting u and v in G0 does not
intersect S; that is, S∩p = ∅. Hence, p ⊆ V \S = (A∪B)∪ (V \ (A∪B∪S)). Thus, two cases are
possible with regard to where the path p can lie: either p ⊆ A ∪ B or p ∩ (V \ (A ∪ B ∪ S))/= ∅.
Let us examine both cases separately.

Case 1 (p ⊆ A ∪ B). In this case, the entire path between u and v lies in A ∪ B and hence
we can find a pair of vertices (u′, v′) belonging to p and (u′, v′) ∈ A × B such that u′∼G0v

′.
(As an illustration of this point, consider the graph presented in Figure 1(a). Let A = {1, 2},
B = {3, 5}, and S = {4, 6}. We note that the path p = (1, 2, 3, 5) lies entirely in A ∪ B and hence
we can find two vertices, namely, 2 ∈ A and 3 ∈ B, belonging to path p that are adjacent in
G0).

Recall that since G0 is a tree, any induced graph of G0 by a subset of V is a union of
tree connected components (see Lemma 2.1). Hence, the subgraph (G0)W of G0 induced by
W = {u′, v′} ∪ V \ (A ∪ B ∪ S) is a union of tree connected components. As u′ and v′ are
adjacent in G0, they are also adjacent in (G0)W and belong to the same connected component
of (G0)W . (In our example in Figure 1(a) with W = {2, 3, 8, 7}, (G0)W consists of a union of
two connected components with its respective vertices being {2, 3} and {8, 7}.) Hence, the
only path between u′ and v′ is precisely the edge (u′, v′). Using Lemma 3.2 to compute the
coefficient ku′v′ |V \(A∪B∪S), that is, (u′, v′)th coefficient in the inverse of the covariance matrix of
the random vector XW = (Xw, w ∈ W)′ = (Xu′ , Xv′ ,XV \(A∪B∪S))

′, we obtain,

ku′v′ |V \(A∪B∪S) = (−1)1+1σu′v′
|Σ(W \ {u′, v′})|

|Σ(W)| , (3.9)

where Σ(W) denotes the covariance matrix of XW and Σ(W \ {u′, v′}) denotes the matrix
Σ(W)with the rows and the columns corresponding to variablesXu′ andXv′ omitted. We can
therefore deduce from (3.9) that ku′v′ |V \(A∪B∪S) /= 0. Hence, Xu′ /⊥⊥ Xv′ | XV \(A∪B∪S). Now, since P
is Gaussian, u′ ∈ A, and v′ ∈ B, we can apply (3.5) to arrive at a contradiction to our initial
assumption in (3.8).Note in the case that V \ (A∪B ∪S) is empty the path p has to lie entirely
in A ∪ B. This is because by assumption p does not intersect S. The case when p lies in A ∪ B
is covered in Case 1 and hence it is assumed that V \ (A∪B ∪S)/= ∅. (As an illustration of this
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point, consider once more the graph presented in Figure 1(a). ConsiderA = {1, 2}, B = {7, 8},
and S = {4, 6}. Here, V \ (A∪B ∪S) = {3, 5} and the path p = (1, 2, 3, 5, 7, 8) connectingA and
B intersects V \ (A ∪ B ∪ S)).

Case 2 (p∩(V \(A∪B∪S))/= ∅ and V \(A∪B∪S)/= ∅). In this case, there exists a pair of vertices
(u′, v′) ∈ A × B with u′, v′ ∈ p, such that the vertices u′ and v′ are connected by exactly one
path p′ ⊆ p in the induced graph (G0)W ofG0 byW = {u′, v′}∪V \(A∪B∪S) (see Lemma 2.1).
(In our example in Figure 1 with A = {1, 2}, B = {7, 8}, and S = {4, 6}, the vertices u′ and v′

will correspond to vertices 2 and 7, respectively, and p′ = (2, 3, 5, 7), which is a path entirely
contained in {u′, v′} ∪ (V \ (A ∪ B ∪ S)).

Let us now use Lemma 3.2 to compute the coefficient ku′v′ |V \(A∪B∪S), that is, the (u′, v′)-
coefficient in the inverse of the covariance matrix of the random vector XW = (Xw,w ∈ W)′ =
(Xu′ , Xv′ ,XV \(A∪B∪S))

′. We obtain that

ku′v′ |V \(A∪B∪S) = (−1)|p′ |+1∣∣σp′
∣∣
∣∣Σ

(
W \ p′)∣∣
|Σ(W)| , (3.10)

where Σ(W) denotes the covariance matrix of XW and Σ(W \ p′) denotes Σ(W) with the
rows and the columns corresponding to variables in path p′ omitted. One can therefore easily
deduce from (3.10) that ku′v′ |V \(A∪B∪S) /= 0. Thus,Xu′ is not independent ofXv′ givenXV \(A∪B∪S).
Hence, once more we obtain a contradiction to (3.5) since u′ ∈ A and v′ ∈ B.

Remark 3.5. The dual result of the theorem above for the case of concentration trees was
proved by Becker et al. [13]. We note however that the argument used in the proof of
Theorem 3.1 cannot also be used to prove faithfulness of Gaussian distributions that have
trees as concentration graphs. The reason for this is as follows. In our proof, we employed
the fact that the subgraph (G0){u,v}∪S of G0 induced by a subset {u, v} ∪ S ⊆ V is also
the covariance graph associated with the Gaussian subrandom vector of XV as denoted by
X{u,v}∪S = (Xw, w ∈ {u, v} ∪ S)′. Hence, it was possible to compute the coefficient kuv|S which
quantifies the conditional (in)dependence between u and v given S, in terms of the paths in
(G0){u,v}∪S and the coefficients of the covariancematrix ofX{u,v}∪S = (Xw, w ∈ {u, v} ∪ S)′. On
the contrary, in the case of concentration graphs the sub-graph G{u,v}∪S of the concentration
graph G induced by {u, v} ∪ S is not in general the concentration graph of the random
vector X{u,v}∪S = (Xw, w ∈ {u, v} ∪ S)′. Hence our approach is not directly applicable in the
concentration graph setting.

4. Conclusion

In this note we looked at the class of multivariate Gaussian distributions that are Markov
with respect to covariance graphs and prove that Gaussian distributions which have trees
as their covariance graphs are necessarily faithful. The method of proof used in the paper is
also vastly different in nature from the proof of the analogous result for concentration graph
models. Hence, the approach that is used could potentially have further implications. Future
research in this area will explore if the analysis presented in this paper can be extended to
other classes of graphs or distributions.
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