
Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2011, Article ID 181409, 13 pages
doi:10.1155/2011/181409

Research Article
A Limit Theorem for Random Products of Trimmed
Sums of i.i.d. Random Variables

Fa-mei Zheng

School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China

Correspondence should be addressed to Fa-mei Zheng, 16032@hytc.edu.cn

Received 13 May 2011; Revised 25 July 2011; Accepted 11 August 2011

Academic Editor: Man Lai Tang

Copyright q 2011 Fa-mei Zheng. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Let {X,Xi; i ≥ 1} be a sequence of independent and identically distributed positive random
variables with a continuous distribution function F, and F has a medium tail. Denote Sn =∑n

i=1 Xi, Sn(a) =
∑n

i=1 XiI(Mn − a < Xi ≤ Mn) and V 2
n =

∑n
i=1(Xi − X)2, where Mn = max1≤i≤nXi,

X = (1/n)
∑n

i=1 Xi, and a > 0 is a fixed constant. Under some suitable conditions, we show that

(
∏[nt]

k=1(Tk(a)/μk))
μ/Vn d→ exp{∫ t0(W(x)/x)dx} in D[0, 1], as n → ∞, where Tk(a) = Sk − Sk(a) is

the trimmed sum and {W(t); t ≥ 0} is a standard Wiener process.

1. Introduction

Let {Xn;n ≥ 1} be a sequence of random variables and define the partial sum Sn =
∑n

i=1 Xi

and V 2
n =

∑n
i=1(Xi − X)2 for n ≥ 1, where X = 1/n

∑n
i=1 Xi. In the past years, the asymptotic

behaviors of the products of various random variables have been widely studied. Arnold
and Villaseñor [1] considered sums of records and obtained the following form of the central
limit theorem (CLT) for independent and identically distributed (i.i.d.) exponential random
variables with the mean equal to one,

∑n
k=1 logSk − n log(n) + n√

2n
d−→ N as n −→ ∞. (1.1)

Here and in the sequel, N is a standard normal random variable, and d→ (
p→ ,

a.s.→ ) stands
for convergence in distribution (in probability, almost surely). Observe that, via the Stirling
formula, the relation (1.1) can be equivalently stated as

(
n∏

k=1

Sk

k

)1/
√
n

d−→ e
√
2N. (1.2)
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In particular, Rempała and Wesołowski [2] removed the condition that the distribution is
exponential and showed the asymptotic behavior of products of partial sums holds for any
sequence of i.i.d. positive random variables. Namely, they proved the following theorem.

Theorem A. Let {Xn; n ≥ 1} be a sequence of i.i.d. positive square integrable random variables with
EX1 = μ,VarX1 = σ2 > 0 and the coefficient of variation γ = σ/μ. Then, one has

(∏n
k=1Sk

n!μn

)1/γ
√
n

d−→ e
√
2N as n −→ ∞. (1.3)

Recently, the above result was extended byQi [3], who showed that whenever {Xn;n ≥
1} is in the domain of attraction of a stable lawLwith index α ∈ (1, 2], there exists a numerical
sequence An (for α = 2, it can be taken as σ

√
n) such that

(∏n
k=1Sk

n!μn

)μ/An

d−→ e(Γ(α+1)
1/α)L, (1.4)

as n → ∞, where Γ(α + 1) =
∫∞
0 xαe−xdx. Furthermore, Zhang and Huang [4] extended

Theorem A to the invariance principle.
In this paper, we aim to study the weak invariance principle for self-normalized prod-

ucts of trimmed sums of i.i.d. sequences. Before stating ourmain results, we need to introduce
some necessary notions. Let {X,Xn; n ≥ 1} be a sequence of i.i.d. random variables with a
continuous distribution function F. Assume that the right extremity of F satisfies

γF = sup{x : F(x) < 1} = ∞, (1.5)

and the limiting tail quotient

lim
x→∞

F(x + a)

F(x)
, (1.6)

exists, where F(x) = 1 − F(x). Then, the above limit is e−ca for some c ∈ [0,∞), and F or X is
said to have a thick tail if c = 0, a medium tail if 0 < c < ∞, and a thin tail if c = ∞. Denote
Mn = max1≤j≤nXj . For a fixed constant a > 0, we say Xj is a near-maximum if and only if
Xj ∈ (Mn − a,Mn], and the number of near-maxima is

Kn(a) := Card
{
j ≤ n; Xj ∈ (Mn − a,Mn]

}
. (1.7)

These concepts were first introduced by Pakes and Steutel [5], and their limit properties have
been widely studied by Pakes and Steutel [5], Pakes and Li [6], Li [7], Pakes [8], and Hu and
Su [9]. Now, set

Sn(a) :=
n∑

i=1

XiI{Mn − a < Xi ≤ Mn}, (1.8)
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where

I{A} =

⎧
⎨

⎩

1, ω ∈ A,

0, ω /∈ A,

Tn(a) := Sn − Sn(a),

(1.9)

which are the sum of near-maxima and the trimmed sum, respectively. From Remark 1 of
Hu and Su [9], we have that if F has a medium tail and EX/= 0, then Tn(a)/n

a.s.→ EX, which
implies that with probability one Card{k : Tk(a) = 0, k ≥ 1} is finite at most. Thus, we can
redefine Tk(a) = 1 if Tk(a) = 0.

2. Main Result

Now we are ready to state our main results.

Theorem 2.1. Let {X,Xn; n ≥ 1} be a sequence of positive i.i.d. random variables with a continuous
distribution function F, and EX = μ,VarX = σ2. Assume that F has a medium tail. Then, one has

(
[nt]∏

k=1

Tk(a)
μk

)μ/Vn

d−→ exp

{∫ t

0

W(x)
x

dx

}

in D[0, 1], as n −→ ∞, (2.1)

where {W(t); t ≥ 0} is a standard Wiener process.

In particular, when we take t = 1, it yields the following corollary.

Corollary 2.2. Under the assumptions of Theorem 2.1, one has

(
n∏

k=1

Tk(a)
μk

)μ/Vn

d−→ e
√
2N, (2.2)

as n → ∞, where N is a standard normal random variable.

Remark 2.3. Since
∫1
0 (W(x)/x)dx is a normal random variable with

E
∫1

0

W(x)
x

dx =
∫1

0

EW(x)
x

dx = 0,

E

(∫1

0

W(x)
x

dx

)2

=
∫∫1

0

EW(x)W
(
y
)

xy
dx dy =

∫∫1

0

min
(
x, y

)

xy
dx dy = 2.

(2.3)

Corollary 2.2 follows from Theorem 2.1 immediately.
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3. Proof of Theorem 2.1

In this section, we will give the proof of Theorem 2.1. In the sequel, let C denote a positive
constant which may take different values in different appearances and [x] mean the largest
integer ≤ x.

Note that via Remark 1 of Hu and Su [9], we have Ck := Tk(a)/μk
a.s.→ 1. It follows that

for any δ > 0, there exists a positive integer R such that

P

(

sup
k≥R

|Ck − 1| > δ

)

< δ. (3.1)

Consequently, there exist two sequences δm ↓ 0(δ1 = 1/2) and R∗
m ↑ ∞ such that

P

(

sup
k≥R∗

m

|Ck − 1| > δm

)

< δm. (3.2)

The strong law of large numbers also implies that there exists a sequence R′
m ↑ ∞ such that

sup
k≥R′

m

|Ck − 1| a.s.≤ 1
m
. (3.3)

Here and in the sequel, we take Rm = max{R∗
m,R

′
m}, and it yields

P

(

sup
k≥Rm

|Ck − 1| > δm

)

< δm

sup
k≥Rm

|Ck − 1| a.s.≤ 1
m
.

(3.4)

Then, it leads to

P

(
μ

Vn

[nt]∑

k=1

log(Ck) ≤ x

)

= P

(
μ

Vn

[nt]∑

k=1

log(Ck) ≤ x, sup
k≥Rm

|Ck − 1| > δm

)

+ P

(
μ

Vn

[nt]∑

k=1

log(Ck) ≤ x, sup
k≥Rm

|Ck − 1| ≤ δm

)

=: Am,n + Bm,n,

(3.5)
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andAm,n < δm. By using the expansion of the logarithm log(1+ x) = x − x2/2(1+ θx)2, where
θ ∈ (0, 1) depends on |x| < 1, we have that

Bm,n = P

(
μ

Vn

[nt]∑

k=1

log(Ck) ≤ x, sup
k≥Rm

|Ck − 1| ≤ δm

)

= P

⎛

⎝
μ

Vn

Rm∧([nt]−1)∑

k=1

log(Ck) +
μ

Vn

[nt]∑

k=(Rm∧([nt]−1))+1
log(1 + Ck − 1) ≤ x, sup

k≥Rm

|Ck − 1| ≤ δm

⎞

⎠

= P

⎛

⎝
μ

Vn

Rm∧([nt]−1)∑

k=1

log(Ck) +
μ

Vn

[nt]∑

k=(Rm∧([nt]−1))+1
(Ck − 1)

− μ

Vn

[nt]∑

k=(Rm∧([nt]−1))+1

(Ck − 1)2

2(1 + θk(Ck − 1))2
≤ x, sup

k≥Rm

|Ck − 1| ≤ δm

⎞

⎠

= P

⎛

⎝
μ

Vn

Rm∧([nt]−1)∑

k=1

log(Ck) +
μ

Vn

[nt]∑

k=(Rm∧([nt]−1))+1
(Ck − 1)

− μ

Vn

[nt]∑

k=(Rm∧([nt]−1))+1

(Ck − 1)2

2(1 + θk(Ck − 1))2
I

(

sup
k≥Rm

|Ck − 1| ≤ δm

)

≤ x

⎞

⎠

− P

⎛

⎝
μ

Vn

Rm∧([nt]−1)∑

k=1

log(Ck) +
μ

Vn

[nt]∑

k=(Rm∧([nt]−1))+1
(Ck − 1) ≤ x, sup

k≥Rm

|Ck − 1| > δm

⎞

⎠

=: Dm,n − Em,n,

(3.6)

where θk (k = 1, . . . , [nt]) are (0-1)-valued and Em,n < δm.
Also, we can rewrite Dm,n as

Dm,n = P

(
μ

Vn

Rm∧([nt]−1)∑

k=1

(
log(Ck) − Ck + 1

)
+

μ

Vn

[nt]∑

k=1

(Ck − 1)

− μ

Vn

[nt]∑

k=(Rm∧([nt]−1))+1

(Ck − 1)2

2(1 + θk(Ck − 1))2
I

(

sup
k≥Rm

|Ck − 1| ≤ δm

)

≤ x

⎞

⎠.

(3.7)

Observe that, for any fixedm, it is easy to obtain

μ

Vn

Rm∧([nt]−1)∑

k=1

(
log(Ck) − Ck + 1

) p−→ 0 as n −→ ∞, (3.8)

by noting that V 2
n

p→ ∞.
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And if Rm ≥ [nt] − 1, then we have

μ

Vn

(
C[nt] − 1

)2

2
(
1 +

(
C[nt] − 1

)
θ[nt]

)2

a.s.≤ C

Vn

p−→ 0, (3.9)

as n → ∞. If Rm < [nt] − 1, then Rm + 1 < [nt]. Denote

Fm,n :=

(
μ

Vn

[nt]∑

k=Rm+1

(Ck − 1)2

2(1 + θk(Ck − 1))2

)

I

(

sup
k≥Rm

|Ck − 1| ≤ δm

)

, (3.10)

and, by observing that x2/(1 + θx)2 ≤ 4x2, then we can obtain

Fm,n ≤ C

Vn

[nt]∑

k=Rm+1

(Ck − 1)2 =
C

Vn

[nt]∑

k=Rm+1

(
Sk − Sk(a)

μk
− 1

)2

≤ C

Vn

[nt]∑

k=Rm+1

(
Sk

μk
− 1

)2

+
C

Vn

[nt]∑

k=Rm+1

(
Sk(a)
μk

)2

=: Hm,n + Lm,n.

(3.11)

For any ε > 0, by the Markov’s inequality, we have

P

(
1√
n

[nt]∑

k=Rm+1

(
Sk

μk
− 1

)2

> ε

)

≤ C

ε
√
n

E

(
[nt]∑

k=Rm+1

(
Sk

μk
− 1

)2
)

=
C

ε
√
n

[nt]∑

k=Rm+1

Var
(
Sk

μk

)

=
Cσ2

εμ2
√
n

[nt]∑

k=Rm+1

1
k

a.s.−→ 0.

(3.12)

Then, Hm,n
p→ 0. To obtain this result, we need the following fact:

V 2
n

n
a.s.→ σ2,

∑n
i=1

(
Xi −X

)2

∑n
i=1

(
Xi − μ

)2
a.s.−→ 1, as n −→ ∞. (3.13)

Indeed,

∑n
i=1

(
Xi −X

)2

∑n
i=1

(
Xi − μ

)2 =

∑n
i=1

(
Xi − μ

)2 − n
(
μ −X

)2

∑n
i=1

(
Xi − μ

)2

= 1 −

(
μ −X

)2

(∑n
i=1

(
Xi − μ

)2
)/

n
.

(3.14)
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Now, we choose two constants N > 0 and 0 < δ < 1 such that P(|X − μ| > N) < δ. Hence, in
view of the strong law of large numbers, we have for n large enough

(
μ −X

)2

(∑n
i=1

(
Xi − μ

)2
)/

n
≤

(
μ −X

)2

(∑n
i=1

(
Xi − μ

)2
I
(∣
∣Xi − μ

∣
∣ > N

))/
n

≤

(
μ −X

)2

N2
(∑n

i=1 I
(∣
∣Xi − μ

∣
∣ > N

))/
n

=
o(1)

N2
(
P
(∣
∣X − μ

∣
∣ > N

)
+ o(1)

)
a.s.= o(1),

(3.15)

which together with (3.14) implies that

∑n
i=1

(
Xi −X

)2

∑n
i=1

(
Xi − μ

)2 =
V 2
n

∑n
i=1

(
Xi − μ

)2
a.s.−→ 1, (3.16)

as n → ∞. Furthermore, in view of the strong law of large numbers again, we obtain

V 2
n

n
=

∑n
i=1

(
Xi −X

)2

∑n
i=1

(
Xi − μ

)2 ·
∑n

i=1
(
Xi − μ

)2

n
a.s.−→ σ2, (3.17)

as n → ∞, where σ2 = Var(X) > 0. For Lm,n, by noting that Sn(a)/Sn
a.s.→ 0, as n → ∞ (see

Hu and Su [9]), thus we can easily get

Sn(a)
n

=
Sn(a)
Sn

· Sn

n
a.s.−→ 0, (3.18)

as n → ∞. Then, for any 0 < δ′ < 1, there exists a positive integer R′ such that

P

(

sup
k≥R′

Sk(a)
k

≥ δ′
)

< δ′. (3.19)

Consequently, coupled with (3.18), we have

P
(
Lm,n > δ′) ≤ P

(
C

Vn

n∑

k=1

(
Sk(a)
μk

)2

> δ′, sup
k≥R′

Sk(a)
k

< δ′
)

+ P

(

sup
k≥R′

Sk(a)
k

≥ δ′
)

≤ P

(
C

Vn

n∑

k=1

Sk(a)
k

> δ′
)

+ δ′.

(3.20)
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Clearly, to show Lm,n
p→ 0, as n → ∞, it is sufficient to prove

1
Vn

n∑

k=1

Sk(a)
k

p−→ 0. (3.21)

Indeed, combined with (3.17), we only need to show

1√
n

n∑

k=1

Sk(a)
k

p−→ 0. (3.22)

As a matter of fact, by the definitions of Sn(a) and Kn(a), we have

(Mn − a)Kn(a) < Sn(a) ≤ MnKn(a). (3.23)

In view of the fact Mn ↑ ∞(a.s.), we can get from Hu and Su [9] that

Sn(a)
Mn

a.s.∼ Kn(a), (3.24)

and thus it suffices to prove

1√
n

n∑

k=1

MkKk(a)
k

p−→ 0. (3.25)

Actually, for all ε, δ > 0, and N1 large enough, we can have that

P

(
1√
n

n∑

k=1

Kk(a)Mk

k
> ε

)

= P

(
1√
n

n∑

k=1

Kk(a)√
k

· Mk√
k

> ε

)

≤ P

(
1√
n

n∑

k=1

Kk(a)√
k

· δ > ε, sup
k≥N1

Mk√
k

< δ

)

+ P

(

sup
k≥N1

Mk√
k

≥ δ

)

.

(3.26)

Observe that if F has a medium tail, then we haveMn/
√
n = (Mn/ logn)(logn/

√
n) a.s.→ 0 by

noting that Mn/ logn a.s.→ 1/c [9], where c is the limit defined in Section 1. Thus it follows

P

(

sup
k≥N1

Mk√
k

≥ δ

)

−→ 0, (3.27)
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as N1 → ∞. Further, by the Markov’s inequality and the bounded property of EKk(a) from
Hu and Su [9], we have

P

(
1√
n

n∑

k=1

Kk(a)√
k

· δ > ε, sup
k≥N1

Mk√
k

< δ

)

≤ P

(
δ√
n

n∑

k=1

Kk(a)√
k

> ε

)

≤ C
δ

ε
√
n

n∑

k=1

EKk(a)√
k

≤ C
δ

ε
√
n

n∑

k=1

1√
k
≤ C

δ

ε
,

(3.28)

and, hence, the proof of (3.22) is terminated. Thus Lm,n
p→ 0 follows. Finally, in order to

complete the proof, it is sufficient to show that

Yn(t) :=
μ

Vn

[nt]∑

k=1

(Ck − 1) d−→
∫ t

0

W(x)
x

dx, (3.29)

and, coupled with (3.21), we only need to prove

Yn(t) :=
μ

Vn

[nt]∑

k=1

(
Sk

μk
− 1

)
d−→

∫ t

0

W(x)
x

dx. (3.30)

Let

Hε

(
f
)
(t) =

⎧
⎪⎨

⎪⎩

∫ t

ε

f(x)
x

dx, t > ε,

0, 0 ≤ t ≤ ε,

Yn,ε(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
Vn

[nt]∑

k=[nε]+1

Sk − μk

k
, t > ε,

0, 0 ≤ t ≤ ε.

(3.31)

It is obvious that

max
0≤t≤1

∣
∣
∣
∣
∣

∫ t

0

W(x)
x

dx −Hε(W)(t)

∣
∣
∣
∣
∣
= sup

0≤t≤ε

∣
∣
∣
∣
∣

∫ t

0

W(x)
x

dx

∣
∣
∣
∣
∣

a.s.−→ 0, as ε −→ 0. (3.32)

Note that

max
0≤t≤ε

|Yn(t) − Yn,ε(t)| = max
0≤t≤ε

1
Vn

[nt]∑

k=1

∣
∣Sk − μk

∣
∣

k
≤ 1

Vn

[nε]∑

k=1

∣
∣Sk − μk

∣
∣

k
, (3.33)
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and then, for any ε1 > 0, by the Cauchy-Schwarz inequality and (3.17), it follows that

lim
ε→ 0

lim sup
n→∞

P

(

max
0≤t≤ε

|Yn(t) − Yn,ε(t)| ≥ ε1

)

≤ lim
ε→ 0

lim sup
n→∞

P

(
1
Vn

[nε]∑

k=1

∣
∣Sk − μk

∣
∣

k
≥ ε1

)

≤ lim
ε→ 0

lim sup
n→∞

C√
n

[nε]∑

k=1

E
∣
∣Sk − μk

∣
∣

k

≤ lim
ε→ 0

lim sup
n→∞

C√
n

[nε]∑

k=1

1√
k

(

Var
(
Sk − μk√

k

))1/2

= lim
ε→ 0

lim sup
n→∞

C√
n

[nε]∑

k=1

1√
k

≤ lim
ε→ 0

lim sup
n→∞

C√
n

√
[nε].

(3.34)

Furthermore, we can obtain

sup
ε≤t≤1

1
Vn

∣
∣
∣
∣
∣
∣

[nt]∑

k=[nε]+1

Sk − μk

k
−
∫nt

nε

S[x] − [x]μ
x

dx

∣
∣
∣
∣
∣
∣

≤ sup
ε≤t≤1

1
Vn

∣
∣
∣
∣
∣

∫ [nt]+1

[nε]+1

S[x] − [x]μ
[x]

dx −
∫nt

nε

S[x] − [x]μ
x

dx

∣
∣
∣
∣
∣

≤ 1
Vn

∣
∣
∣
∣
∣

∫ [nε]+1

nε

S[x] − [x]μ
x

dx

∣
∣
∣
∣
∣
+ sup

ε≤t≤1

1
Vn

∣
∣
∣
∣
∣

∫ [nt]+1

nt

S[x] − [x]μ
x

dx

∣
∣
∣
∣
∣

+ sup
ε≤t≤1

1
Vn

∣
∣
∣
∣
∣

∫ [nt]+1

[nε]+1

(
S[x] − [x]μ

)
(
1
x
− 1
[x]

)

dx

∣
∣
∣
∣
∣

≤ maxk≤n
∣
∣Sk − μk

∣
∣

Vn
sup
ε≤t≤1

(
2
nε

+
2
nt

+
1
nε

)

≤ C
maxk≤n

∣
∣Sk − μk

∣
∣

nVn
≤ C

maxk≤n
∑k

i=1

∣
∣Xi − μ

∣
∣

nVn

=
C

Vn

∑n
i=1

∣
∣Xi − μ

∣
∣

n
a.s.−→ 0.

(3.35)

Therefore, uniformly for t ∈ [ε, 1], we have

1
Vn

[nt]∑

k=[nε]+1

Sk − μk

k
=

1
Vn

∫nt

nε

S[x] − [x]μ
x

dx + oP (1) =
∫ t

ε

Wn(t)
x

dx + oP (1), (3.36)
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where Wn(t) := (S[nt] − [nt]μ)/Vn. Notice that Hε(·) is a continuous mapping on the space
D[0, 1]. Thus, using the continuous mapping theorem (c.f., Theorem 2.7 of Billingsley [10]),
it follows that

Yn,ε(t) = Hε(Wn) (t) + oP (1)
d−→ Hε(W)(t), in D[0, 1], as n −→ ∞. (3.37)

Hence, (3.32), (3.34), and (3.37) coupled with Theorem 3.2 of Billingsley [10] lead to (3.30).
The proof is now completed.

4. Application to U-Statistics

A useful notion of a U-statistic has been introduced by Hoeffding [11]. Let a U-statistic be
defined as

Un =

(
n

m

)−1
∑

1≤i1<···<im≤n
h(Xi1 , . . . , Xim), (4.1)

where h is a symmetric real function of m arguments and {Xi; i ≥ 1} is a sequence of i.i.d.
random variables. If we take m = 1 and h(x) = x, then Un reduces to Sn/n. Assume that
Eh(X1, . . . , Xm)

2 < ∞, and let

h1(x) = Eh(x,X2, . . . , Xm),

Ûn =
m

n

n∑

i=1

(h1(Xi) − Eh) + Eh.
(4.2)

Thus, we may write

Un = Ûn + Rn, (4.3)

where

Rn =

(
n

m

)−1
∑

1≤i1<···<im≤n
H(Xi1 , . . . , Xim),

H(x1, . . . , xm) = h(x1, . . . , xm) −
m∑

i=1

(h1(xi) − Eh) − Eh.

(4.4)

It is well known (cf. Resnick [12]) that

Cov
(
Ûn, Rn

)
= 0,

nVar

⎛

⎝

(
n

m

)−1

Rn

⎞

⎠ −→ 0, as n −→ ∞.

(4.5)

Theorem 2.1 now is extended to U-statistics as follows.
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Theorem 4.1. Let Un be a U-statistic defined as above. Assume that Eh2 < ∞ and P(h(X1,
. . . , Xm) > 0) = 1. Denote μ = Eh > 0 and σ2 = Var(h1(X1))/= 0. Then,

(
[nt]∏

k=m

Uk

μ( n
m )

)μ/mVn

d−→ exp

{∫ t

0

W(x)
x

dx

}

, in D[0, 1], as n −→ ∞, (4.6)

whereW(x) is a standard wiener process, and V 2
n =

∑n
i=1(Xi −X)2.

In order to prove this theorem, by (3.17), we only need to prove

μ

m
√
n

[nt]∑

k=m

(
Uk

μ( n
m )

− 1
)

d−→ σ

∫ t

0

W(x)
x

dx, in D[0, 1], as n −→ ∞. (4.7)

If this result is true, then with the fact that ( n
m )−1Un

a.s.→ Eh = μ deduced from E|h| < ∞ (see
Resnick [12]) and (4.3), Theorem 4.1 follows immediately from the method used in the proof
of Theorem 2.1 with Sk/k replaced by ( n

m )−1Un. Now, we begin to show (4.7). By (4.3), we
have

μ

m
√
n

[nt]∑

k=m

(
Uk

μ( n
m )

− 1
)

=
μ

m
√
n

[nt]∑

k=m

(
Ûk

μ( n
m )

− 1

)

+
μ

m
√
n

[nt]∑

k=m

Rk

μ( n
m )

. (4.8)

By applying (3.30) to random variables mh1(Xi) for i ≥ 1, we have

μ

m
√
n

[nt]∑

k=m

(
Ûk

μ( n
m )

− 1

)

=
μ√
n

(
n∑

k=1

(∑k
i=1 h1(xi)
μk

− 1

)

−
m−1∑

k=1

(∑k
i=1 h1(xi)
μk

− 1

))

d−→ σ

∫ t

0

W(x)
x

dx,

(4.9)

inD[0, 1], as n → ∞, since the second expression converges to zero a.s. as n → ∞. Therefore,
for proving (4.7), we only need to prove

μ

m
√
n

[nt]∑

k=m

Rk

μ( n
m )

p−→ 0, as n −→ ∞, (4.10)

and it is sufficient to demonstrate

R̃n :=
μ

m
√
n

n∑

k=m

Rk

μ( n
m )

p−→ 0, as n −→ ∞. (4.11)

Indeed, we can easily obtain ER̃2
n → 0 as n → ∞ from Hoeffding [11]. Thus, we complete

the proof of (4.7), and, hence, Theorem 3.1 holds.
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