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A Bayes-type formula is derived for the nonlinear filter where the observation contains both
general Gaussian noise as well as Cox noise whose jump intensity depends on the signal. This
formula extends the well-known Kallianpur-Striebel formula in the classical non-linear filter
setting. We also discuss Zakai-type equations for both the unnormalized conditional distribution
as well as unnormalized conditional density in case the signal is a Markovian jump diffusion.

1. Introduction

The general filtering setting can be described as follows. Assume a partially observable proc-
ess (X,Y ) = (Xt, Yt)0≤t≤T ∈ R

2 defined on a probability space (Ω,F,P). The real valued process
Xt stands for the unobservable component, referred to as the signal process or system process,
whereas Yt is the observable part, called observation process. Thus information about Xt can
only be obtained by extracting the information aboutX that is contained in the observation Yt

in a best possible way. In filter theory this is done by determining the conditional distribution
of Xt given the information σ-field FY

t generated by Ys, 0 ≤ s ≤ t. Or stated in an equivalent
way, the objective is to compute the optimal filter as the conditional expectation

EP

[
f(Xt) | FY

t

]
(1.1)

for a rich enough class of functions f .
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In the classical nonlinear filter setting, the dynamics of the observation process Yt is
supposed to follow the following Itô process

dYt = h(t, Xt)dt + dWt, (1.2)

where Wt is a Brownian motion independent of X. Under certain conditions on the drift
h(t, Xt) (see [1, 2]), Kallianpur and Striebel derived a Bayes-type formula for the conditional
distribution expressed in terms of the so-called unnormalized conditional distribution. In the
special case when the dynamics of the signal follows an Itô diffusion

dXt = b(t, Xt)dt + σ(t, Xt)dBt, (1.3)

for a second Brownian motion Bt, Zakai [3] showed under certain conditions that the unnor-
malized conditional density is the solution of an associated stochastic partial differential
equation, the so called Zakai equation.

In this paper we extend the classical filter model to the following more general setting.
For a general signal process X we suppose that the observation model is given as

Yt = β(t, X) +Gt +
∫ t

0

∫

R0

ςNλ(dt, dς), (1.4)

where

(i) Gt is a general Gaussian process with zero mean and continuous covariance func-
tion R(s, t), 0 ≤ s, t ≤ T , that is, independent of the signal process X;

(ii) Let FY
t (resp. FX

t ) denote the σ-algebra generated by {Ys, 0 ≤ s ≤ t} (resp. {Xs, 0 ≤
s ≤ t}) augmented by the null sets. Define the filtration (Ft)0≤t≤T through Ft :=
FX

T ∨ FY
t . Then we assume that the process

Lt :=
∫ t

0

∫

R0

ςNλ(dt, dς) (1.5)

is a pure jump Ft-semimartingale determined through the integer-valued random
measure Nλ that has an Ft-predictable compensator of the form

μ(dt, dς,ω) = λ(t, X, ς)dtν(dς) (1.6)

for a Lévy measure ν and a functional λ(t, X(ω), ς). In particular,Gt and Lt are inde-
pendent;

(iii) the function β : [0, T] × R
[0,T] → R is such that β(t, ·) is FX

t -measurable and
β(·, X(ω)) is in H(R) for almost all ω, where H(R) denotes the Hilbert space
generated by R(s, t) (see Section 2).
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The observation dynamics consists thus of an information drift of the signal disturbed
by some Gaussian noise plus a pure jump part whose jump intensity depends on the signal.
Note that a jump process of the form given above is also referred to as Cox process.

The objective of the paper is in a first step to extend the Kallianpur-Striebel Bayes type
formula to the generalized filter setting from above. When there are no jumps present in the
observation dynamics (1.4), the corresponding formula has been developed in [4]. We will
extend their way of reasoning to the situation including Cox noise.

In a second step we then derive a Zakai-type measure valued stochastic differential
equations for the unnormalized conditional distribution of the filter. For this purpose we
assume the signal process X to be a Markov process with generator Ot := Lt + Bt given as

Ltf(x) := b(t, x) ∂xf(x) +
1
2
σ2(t, x) ∂xxf(x),

Btf(x) :=
∫

R0

{
f
(
x + γ(t, x)ς

) − f(x) − ∂xf(x)γ(t, x)ς
}
υ(dς),

(1.7)

with the coefficients b(t, x), σ(t, x), and γ(t, x) and f(x) being in C2
0(R) for every t. Here,

C2
0(R) is the space of continuous functions with compact support and bounded derivatives

up to order 2. Further, we develop a Zakai-type stochastic parabolic integropartial differential
equation for the unnormalized conditional density, given it exists. In the case the dynamics
of X does not contain any jumps and the Gaussian noise Gt in the observation is Brownian
motion, the corresponding Zakai equation was also studied in [5]. We further refer to [6]
where nonlinear filtering for jump diffusions is considered. For further information on Zakai
equations in a semimartingale setting we refer to [7, 8].

The remaining part of the paper is organized as follows. in Section 2 we briefly recall
some theory of reproducing kernel Hilbert spaces. In Section 3 we obtain the Kallianpur-
Striebel formula, before we discuss the Zakai-type equations in Section 4.

2. Reproducing Kernel Hilbert Space and Stochastic Processes

AHilbert spaceH consisting of real valued functions on some set T is said to be a reproducing
kernel Hilbert space (RKHS), if there exists a function K on T × T with the following two
properties: for every t in T and g inH,

(i) K(·, t) ∈ H,

(ii) (g(·), K(·, t)) = g(t). (The reproducing property)

K is called the reproducing kernel of H. The following basic properties can be found in [9].

(1) If a reproducing kernel exists, then it is unique.

(2) If K is the reproducing kernel of a Hilbert space H, then {K(·, t), t ∈ T} spans H.

(3) If K is the reproducing kernel of a Hilbert space H, then it is nonnegative definite
in the sense that for all t1, . . . , tn in T and a1, . . . , an ∈ R

n∑
i,j=1

K
(
ti, tj

)
aiaj ≥ 0. (2.1)
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The converse of (3), stated in Theorem 2.1 below, is fundamental towards understand-
ing the RKHS representation of Gaussian processes. A proof of the theorem can be found in
[9].

Theorem 2.1 (E. H. Moore). A symmetric nonnegative definite function K on T × T generates
a unique Hilbert space, which we denote by H(K) or sometimes by H(K,T), of which K is the
reproducing kernel.

Now suppose K(s, t), s, t ∈ T, is a nonnegative definite function. Then, by
Theorem 2.1, there is a RKHS, H(K,T), with K as its reproducing kernel. If we restrict K
to T′ × T′ where T′ ⊂ T, then K is still a nonnegative definite function. Hence K restricted
to T′ × T′ will also correspond to a reproducing kernel Hilbert space H(K,T′) of functions
defined on T′. The following result from ([9, pp. 351]) explains the relationship between
these two.

Theorem 2.2. Suppose KT, defined on T × T, is the reproducing kernel of the Hilbert space H(KT)
with the norm ‖ · ‖. Let T′ ⊂ T and KT′ be the restriction of KT on T′ × T′. Then H(KT′) consists of
all f in H(KT) restricted to T′. Further, for such a restriction f ′ ∈ H(KT′) the norm ‖f ′‖H(KT′ ) is the
minimum of ‖f‖H(KT) for all f ∈ H(KT) whose restriction to T′ is f ′.

If K(s, t) is the covariance function for some zero mean process Zt, t ∈ T, then, by
Theorem 2.1, there exists a unique RKHS, H(K,T), for which K is the reproducing kernel. It
is also easy to see (e.g., see [10, Theorem 3D]) that there exists a congruence (linear, one-to-
one, inner product preserving map) between H(K) and spL2{Zt, t ∈ T} which takes K(·, t) to
Zt. Let us denote by 〈Z, h〉 ∈ spL2{Zt, t ∈ T}, the image of h ∈ H(K,T) under the congruence.

We conclude the section with an important special case.

2.1. A Useful Example

Suppose the stochastic process Zt is a Gaussian process given by

Zt =
∫ t

0
F(t, u)dWu, 0 ≤ t ≤ T, (2.2)

where
∫ t
0 F

2(t, u)du < ∞ for all 0 ≤ t ≤ T and Wu is Brownian motion. Then the covariance
function

K(s, t) ≡ E(ZsZt) =
∫ t∧s

0
F(t, u)F(s, u)du, (2.3)

and the corresponding RKHS is given by

H(K) =

{
g : g(t) =

∫ t

0
F(t, u)g∗(u)du, 0 ≤ t ≤ T

}
(2.4)
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for some (necessarily unique) g∗ ∈ spL2{F(t, ·)1[0,t](·), 0 ≤ t ≤ T}, with the inner product

(
g1, g2

)
H(K) =

∫T

0
g∗
1(u)g

∗
2(u)du, (2.5)

where

g1(s) =
∫s

0
F(s, u)g∗

1(u)du, g2(s) =
∫s

0
F(s, u)g∗

2(u)du. (2.6)

For 0 ≤ t ≤ T , by taking K(·, t)∗ to be F(t, ·)1[0,t](·), we see, from (2.3) and (2.4), that K(·, t) ∈
H(K). To check the reproducing property suppose h(t) =

∫ t
0 F(t, u)h

∗(u) du ∈ H(K). Then

(h,K(·, t))H(K) =
∫T

0
h∗(u)K(·, t)∗du =

∫ t

0
h∗(u)F(t, u)du = h(t). (2.7)

Also, in this case, it is very easy to check (cf. [11], Theorem 4D) that the congruence between
H(K) and spL2{Zt, t ∈ T} is given by

〈
Z, g

〉
=
∫T

0
g∗(u)dWu. (2.8)

3. The Filter Setting and a Bayes Formula

Assume a partially observable process (X,Y ) = (Xt, Yt)0≤t≤T ∈ R
2 defined on a probability

space (Ω,F,P). The real valued process Xt stands for the unobservable component, referred
to as the signal process, whereas Yt is the observable part, called observation process. In par-
ticular, we assume that the dynamics of the observation process is given as follows:

Yt = β(t, X) +Gt +
∫ t

0

∫

R0

ςNλ(dt, dς), (3.1)

where

(i) Gt is a Gaussian process with zero mean and continuous covariance function
R(s, t), 0 ≤ s, t ≤ T , that is, independent of the signal process X;

(ii) the function β : [0, T] × R
[0,T] → R is such that β(t, ·) is FX

t -measurable and
β(·, X(ω)) is in H(R) for almost all ω, where H(R) denotes the Hilbert space
generated by R(s, t) (see Section 2);

(iii) let FY
t (resp., FX

t ) denote the σ-algebra generated by {Ys, 0 ≤ s ≤ t} (resp., {Xs, 0 ≤
s ≤ t}) augmented by the null sets. Define the filtration (Ft)0≤t≤T through Ft :=
FX

T ∨ FY
t . Then we assume that the process

Lt :=
∫ t

0

∫

R0

ςNλ(dt, dς) (3.2)
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is a pure jump Ft-semimartingale determined through the integer-valued random
measure Nλ that has an Ft-predictable compensator of the form

μ(dt, dς,ω) = λ(t, X, ς)dtν(dς) (3.3)

for a Lévy measure ν and a functional λ(t, X(ω), ς);

(iv) the functional λ(t, X, ς) is assumed to be strictly positive and such that

∫T

0

∫

R0

log2(λ(s,X, ς))μ(ds, dς) < ∞ a.s.,

∫T

0

∫

R0

log2(λ(s,X, ς))dsν(dς) < ∞ a.s.,

(3.4)

Λt := exp

{∫ t

0

∫

R0

log
(

1
λ(s,X, ς)

)
Ñλ(ds, dς)

+
∫ t

0

∫

R0

(
log

(
1

λ(s,X, ς)

)
− 1
λ(s,X, ς)

+ 1
)
μ(ds, dς)

} (3.5)

is a well-defined Ft-martingale. Here Ñλ(ds, dς) stands for the compensated jump measure

Ñλ(ds, dς) := Nλ(ds, dς) − μ(dt, dς). (3.6)

Remark 3.1. Note that the specific from of the predictable compensator μ(dt, dς,ω) implies
that Lt is a process with conditionally independent increments with respect to the σ-algebra
FX

T , that is,

EP

[
f(Lt − Ls)1A | FX

T

]
= EP

[
f(Lt − Ls) | FX

T

]
EP

[
1A | FX

T

]
, (3.7)

for all bounded measurable functions f , A ∈ Fs, and 0 ≤ s < t ≤ T (see, e.g., in [12, Theorem
6.6]). Also, it follows that the processes G is independent of the random measureNλ(ds, dς).

Given a Borel measurable function f , our nonlinear filtering problem then comes
down to determine the least square estimate of f(Xt), given the observations up to time t.
In other words, the problem consists in evaluating the optimal filter

EP

[
f(Xt) | FY

t

]
. (3.8)
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In this section wewant to derive a Bayes formula for the optimal filter (3.8) by an extension of
the reference measure method presented in [4] for the purely Gaussian case. For this purpose,
define for each 0 ≤ t ≤ T with β(·) = β(·, X)

Λ′
t := exp

{
−〈G, β〉t −

1
2
∥∥β∥∥2

t

}
. (3.9)

Then the main tool is the following extension of Theorem 3.1 in [4].

Lemma 3.2. Define

dQ := ΛtΛ′
t dP. (3.10)

Then Qt is a probability measure, and under Qt we have that

Yt = G̃t + Lt, (3.11)

where G̃s = β(s,X) +Gs, 0 ≤ s ≤ t, is a Gaussian process with zero mean and covariance function R,
Ls, 0 ≤ s ≤ t, is a pure jump Lévy process with Lévy measure ν, and the process Xs, 0 ≤ s ≤ T has the
same distribution as under P. Further, the processes G̃, L, and X are independent under Qt.

Proof. Fix 0 ≤ t ≤ T . First note that since β(·) ∈ H(R) almost surely, we have by Theorem 2.2
that β|[0,t] ∈ H(R; t) almost surely. Further, by the independence of the Gaussian process G
from X and from the random measure Nλ(ds, dς) it follows that

EP

[
ΛtΛ′

t

]
= EP

[
EP

[
Λt | FX

T

]
EP

[
Λ′

t | FX
T

]]
. (3.12)

Since for f ∈ H(R; t) the random variable 〈G, f〉t is Gaussian with zero mean and variance
‖f‖2t , it follows again by the independence of G from X and the martingale property of Λt

that EP[ΛtΛ′
t] = 1, and Qt is a probability measure.

Now take 0 ≤ s1, . . . , sm ≤ t, 0 ≤ r1, . . . , rp ≤ t, 0 ≤ t1, . . . , tn ≤ T and real numbers
λ1, . . . , λm, γ1, . . . , γp, α1, . . . , αn and consider the joint characteristic function

EQt

[
e
i
∑n

j=1 αjXtj
+i
∑m

i=1 λiG̃si
+i
∑p

k=1 γk(Lrk
−Lrk−1 )

]

= EP

[
e
i
∑n

j=1 αjXtj
+i
∑m

i=1 λiG̃si
+i
∑p

k=1 γk(Lrk
−Lrk−1 )ΛtΛ′

t

]

= EP

[
e
i
∑n

j=1 αjXtj EP

[
ei
∑m

i=1 λiG̃siΛ′
t | FX

T

]
EP

[
ei
∑p

k=1 γk(Lrk
−Lrk−1 )Λt | FX

T

]]
.

(3.13)

Here, for computational convenience, the part of the characteristic function that concerns L is
formulated in terms of increments of L (where we set r0 = 0). Now, as in in [4, Theorem 3.1],
we get by the independence of G from X that

EP

[
ei
∑m

i=1 λiG̃siΛ′
t | FX

T

]
= e−

∑m
i,l=1 λiλlR(si,sl), (3.14)
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which is the characteristic function of a Gaussian process with mean zero and covariance
function R.

Further, by the conditional independent increments of L we get like in the proof of in
[12, Theorem 6.6] that

EP

[
e
∫u
r

∫
R0

δ(s,X,ς)Ñλ(ds,dς) | FX
T

]
= e

∫u
r

∫
R0

(eδ(s,X,ς)−1−δ(s,X,ς))μ(dt,dς) (3.15)

for 0 ≤ r ≤ u ≤ T . So that for one increment one obtains

EP

[
eiγ(Lu−Lr)Λt | FX

T

]

= EP

[
exp

{∫u

r

∫

R0

(
iγς + log

(
1

λ(s,X, ς)

))
Ñλ(ds, dς)

+
∫u

r

∫

R0

(
iγς + log

(
1

λ(s,X, ς)

)
− 1
λ(s,X, ς)

+ 1
)
μ(dt, dς)

}
| FX

T

]

= EP

[
exp

{∫u

r

∫

R0

(
eiγς+log(1/λ(s,X,ς)) − 1 − iγς − log

(
1

λ(s,X, ς)

))
μ(dt, dς)

+
∫u

r

∫

R0

(
iγς + log

(
1

λ(s,X, ς)

)
− 1
λ(s,X, ς)

+ 1
)
μ(dt, dς)

}
| FX

T

]

= EP

[
exp

{∫u

r

∫

R0

(
eiγς+log(1/λ(s,X,ς)) − 1

λ(s,X, ς)

)
λ(t, X, ς)dtν(dς)

}
| FX

T

]

= exp

{
(u − r)

∫

R0

(
eiγς − 1

)
ν(dς)

}
.

(3.16)

The generalization to the sum of increments is straightforward, and one obtains the char-
acteristic function of the finite dimensional distribution of a Lévy process (of finite variation):

EP

[
ei
∑p

k=1 γk(Lrk
−Lrk−1 )Λt | FX

T

]
= exp

{
p∑

k=1

(rk − rk−1)
∫

R0

(
eiγkς − 1

)
ν(dς)

}
. (3.17)

All together we end up with

EQt

[
e
i
∑n

j=1 αjXtj
+i
∑m

i=1 λiG̃si
+i
∑p

k=1 γk(Lrk
−Lrk−1 )

]

= EP

[
e
i
∑n

j=1 αjXtj

]
· e−

∑m
i,l=1 λiλlR(si,sl) · e

∑p

k=1(rk−rk−1)
∫
R0

(eiγkς−1)ν(dς)
,

(3.18)

which completes the proof.
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Remark 3.3. Note that in case G is Brownian motion Lemma 3.2 is just the usual Girsanov
theorem for Brownian motion and random measures. In this case, it follows from Cameron-
Martin’s result and the fact that X is independent of G that ΛtΛ′

t is a martingale and dQ is a
probability measure.

Now, the inverse Radon-Nikodym derivative

dP

dQt
= (Λt)−1

(
Λ′

t

)−1 (3.19)

is Qt-a.s. by condition (3.4) and an argument like in [4, p. 857] given through

(Λt)−1 = exp

{∫ t

0

∫

R0

log(λ(s,X, ς))Ñ(ds, dς)

+
∫ t

0

∫

R0

(
log(λ(s,X, ς)) − λ(s,X, ς) + 1

)
dsν(dς)

}
,

(
Λ′

t

)−1 = exp
{〈

G̃, β
〉
t
− 1
2
∥∥β∥∥2

t

}
.

(3.20)

Here

Ñ(ds, dς) := Nλ(ds, dς) − dtν(dς) (3.21)

is now a compensated Poisson random measure under Qt. Then we have by the Bayes
formula for conditional expectation for any FX

T -measurable integrable function g(T,X)

EP

[
g(T,X) | FY

t

]
=

EQt

[
g(T,X)(Λt)−1

(
Λ′

t

)−1 | FY
t

]

EQt

[
(Λt)−1

(
Λ′

t

)−1 | FY
t

] . (3.22)

From Lemma 3.2 we know that the processes (G̃s)0≤s≤t, (Ls)0≤s≤t, and (Xs)0≤s≤T are inde-
pendent under Qt and that the distribution of X is the same under Qt as under P. Hence
conditional expectations of the form EQt[φ(X, G̃, L) | FY

t ] can be computed as

EQt

[
φ
(
X, G̃, L

)
| FY

t

]
(ω) =

∫

Ω
φ
(
X(ω̂), G̃(ω), L(ω)

)
Qt(dω̂)

=
∫

Ω
φ
(
X(ω̂), G̃(ω), L(ω)

)
P(dω̂) = E

P̂

[
φ
(
X(ω̂), G̃(ω), L(ω)

)]
,

(3.23)

where (ω, ω̂) ∈ Ω × Ω and the index P̂ denotes integration with respect to ω̂. Consequently,
we get the following Bayes formula for the optimal filter.
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Theorem 3.4. Under the above specified conditions, for any FX
T -measurable integrable function

g(T,X)

EP

[
g(T,X) | FY

t

]
=

∫
Ω g(T,X(ω̂))αt(ω, ω̂)α′

t(ω, ω̂)P(dω̂)∫
Ω αt(ω, ω̂)α′

t(ω, ω̂)P(dω̂)

=
E

P̂

[
g(T,X(ω̂))αt(ω, ω̂)α′

t(ω, ω̂)
]

E
P̂

[
αt(ω, ω̂)α′

t(ω, ω̂)
] ,

(3.24)

where

αt(ω, ω̂) = exp

{∫ t

0

∫

R0

log(λ(s,X(ω̂), ς))Ñ(ω, ds, dς)

+
∫ t

0

∫

R0

(
log(λ(s,X(ω̂), ς)) − λ(s,X(ω̂), ς) + 1

)
dsν(dς)

}
,

α′
t(ω, ω̂) = exp

{〈
G̃(ω), β(·, ω̂)

〉
t
− 1
2
∥∥β(·, ω̂)

∥∥2
t

}
.

(3.25)

4. Zakai-Type Equations

Using the Bayes formula from above we now want to proceed further in deriving a Zakai-
type equations for the unnormalized filter. This equation is basic in order to obtain the filter
recursively. To this end we have to impose certain restrictions on both the signal process and
the Gaussian part of the observation process.

Regarding the signal processX, we assume its dynamics to be Markov. More precisely,
we consider the parabolic integrodifferential operator Ot := Lt + Bt, where

Ltf(x) := b(t, x)∂xf(x) +
1
2
σ2(t, x)∂xxf(x),

Btf(x) :=
∫

R0

{
f
(
x + γ(t, x)ς

) − f(x) − ∂xf(x)γ(t, x)ς
}
υ(dς),

(4.1)

for f ∈ C2
0(R). Here, C2

0(R) is the space of continuous functions with compact support and
bounded derivatives up to order 2. Further, we suppose that b(t, ·), σ(t, ·), and γ(t, ·) are in
C2

0(R) for every t and that υ(dς) is a Lévy measure with second moment. The signal process
Xt, 0 ≤ t ≤ T , is then assumed to be a solution of the martingale problem corresponding to
Ot, that is,

f(Xt) −
∫ t

0

(Ouf
)
(Xu)du (4.2)

is a FX
t -martingale with respect to P for every f ∈ C2

0(R).
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Further, we restrict the Gaussian processG of the observation process in (3.1) to belong
to the special case presented in Section 2.1, that is,

Gt =
∫ t

0
F(t, s)dWs, (4.3)

where Wt is Brownian motion and F(t, s) is a deterministic function such that
∫ t
0 F

2(t, s) ds,
0 ≤ t ≤ T . Note that this type of processes both includes Ornstein-Uhlenbeck processes as
well as fractional Brownian motion. Then β(t, X)will be of the form

β(t, X) =
∫ t

0
F(t, s)h(s,Xs)ds. (4.4)

Further, with

W̃t :=
∫ t

0
h(s,Xs)ds +Wt (4.5)

we get 〈G̃, β〉t =
∫ t
0 h(s,Xs) dW̃s and ‖β‖2t =

∫ t
0 h

2(s,Xs) ds, and α′
t(ω, ω̂) in Theorem 3.4

becomes

α′
t(ω, ω̂) = exp

{∫ t

0
h(s,Xs(ω̂)) dW̃s(ω) − 1

2

∫ t

0
h2(s,Xs(ω̂))ds

}
. (4.6)

Note that in this case W̃s, 0 ≤ s ≤ t, is a Brownian motion under Qt.
For f ∈ C2

0(R) we now define the unnormalized filter Vt(f) = Vt(f)(ω) by

Vt

(
f
)
(ω) :=

∫

Ω
f(Xt(ω̂))αt(ω, ω̂)α′

t(ω, ω̂)P(dω̂) = E
P̂

[
f(Xt(ω̂))αt(ω, ω̂)α′

t(ω, ω̂)
]
. (4.7)

Then this unnormalized filter obeys the following dynamics.

Theorem 4.1 (Zakai equation I). Under the above specified assumptions, the unnormalized filter
Vt(f) satisfies the equation

dVt

(
f(·))(ω) = Vt

(Otf(·)
)
(ω)dt + Vt

(
h(t, ·)f(·))(ω)dW̃t(ω)

+
∫

R0

Vt

(
(λ(t, ·, ς) − 1)f(·))(ω)Ñ(ω, dt, dς).

(4.8)

Proof. Set

gt(ω̂) := f(XT (ω̂)) −
∫T

t

(Osf
)
(Xs(ω̂))ds. (4.9)
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Then, by our assumptions on the coefficients b, σ, γ and on the Lévy measure υ(dς), we have
|gt| < C for some constant C. Since f(Xt) −

∫ t
0 Otf(Xs)ds is a martingale we obtain

E
P̂

[
gt | FX(ω̂)

t

]
= f(Xt), 0 ≤ t ≤ T. (4.10)

If we denote

Γt(ω, ω̂) := αt(ω, ω̂)α′
t(ω, ω̂), (4.11)

then, because Γt(ω, ω̂) is FX(ω̂)
t -measurable for each ω, (4.10) implies that

Vt

(
f
)
= E

P̂

[
f(Xt(ω̂))Γt(ω, ω̂)

]

= E
P̂

[
E

P̂

[
gt(ω̂)Γt(ω, ω̂) | FX(ω̂)

t

]]

= E
P̂

[
gt(ω̂)Γt(ω, ω̂)

]
.

(4.12)

By definition of gt,

dgt(ω̂) =
(Otf

)
(Xt(ω̂))dt. (4.13)

Also, Γt = Γt(ω, ω̂) is the Doléans-Dade solution of the following linear SDE:

dΓt = h(t, Xt(ω̂))Γt dW̃t(ω) +
∫

R0

(λ(t, Xt(ω̂), ς) − 1)Γt Ñ(ω, dt, dς). (4.14)

So we get

E
P̂

[
gt(ω̂)Γt

]
= E

P̂

[
g0(ω̂)Γ0

]
+ E

P̂

[∫ t

0

(Osf
)
(Xs(ω̂))Γsds

]

+ E
P̂

[∫ t

0
h(s,Xs(ω̂))gs(ω̂)Γs dW̃s(ω)

]

+ E
P̂

[∫ t

0

∫

R0

(λ(s,Xs(ω̂), ς) − 1)gs(ω̂)Γs Ñ(ω, ds, dς)

]
.

(4.15)

The first term on the right hand side equals f(X0), and for the second one we can invoke Fu-
bini’s theorem to get

E
P̂

[∫ t

0

(Osf
)
(Xs(ω̂))Γsds

]
=
∫ t

0
E

P̂

[(Osf
)
(Xs(ω̂))Γs

]
ds =

∫ t

0
Vs

(Osf(·)
)
(ω)ds. (4.16)
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For the third term we employ the stochastic Fubini theorem for Brownian motion (see, for
Example 5.14 in [13]) in order to get

E
P̂

[∫ t

0
h(s,Xs(ω̂))gs(ω̂)Γs dW̃s(ω)

]

=
∫ t

0
E

P̂

[
h(s,Xs(ω̂))gs(ω̂)Γs

]
dW̃s(ω)

=
∫ t

0
E

P̂

[
h(s,Xs(ω̂))ΓsEP̂

[
gs(ω̂) | FX(ω̂)

s

]]
dW̃s(ω)

=
∫ t

0
E

P̂

[
h(s,Xs(ω̂))Γsf(Xs(ω̂))

]
dW̃s(ω)

=
∫ t

0
Vs

(
h(s, ·)f(·))(ω)dW̃s(ω).

(4.17)

Further, one easily sees that the analogue stochastic Fubini theorem for compensated Poisson
random measures holds, and we get analogously for the last term

E
P̂

[∫ t

0

∫

R0

(λ(s,Xs(ω̂), ς) − 1)gs(ω̂)Γs Ñ(ω, ds, dς)

]

=
∫ t

0

∫

R0

Vs

(
(λ(s, ·, ς) − 1)f(·))(ω)Ñ(ω, ds, dς),

(4.18)

which completes the proof.

If one further assumes that the filter has a so-called unnormalized conditional density
u(t, x) then we can derive a stochastic integro-PDE determining u(t, x) which for the Brown-
ian motion case was first established in [3] and usually is referred to as Zakai equation.

Definition 4.2. We say that a process u(t, x) = u(ω, t, x) is the unnormalized conditional den-
sity of the filter if

Vt

(
f
)
(ω) =

∫

R

f(x)u(ω, t, x)dx (4.19)

for all bounded continuous functions f : R → R.

From now on we restrict the intergo part Bt of the operator Ot to be the one of a pure
jump Lévy process, that is, γ = 1, and we assume the initial value X0(ω) of the signal process
to possess a density denoted by ξ(x). Then the following holds.
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Theorem 4.3 (Zakai equation II). Suppose the unnormalized conditional density u(t, x) of our filter
exists. Then, provided that a solution exists, u(t, x) solves the following stochastic integro-PDE:

du(t, x) = O∗
t u(t, x)dt + h(t, x)u(t, x)dW̃t(ω) +

∫

R0

(λ(t, x, ς) − 1)u(t, x)Ñ(ω, dt, dς),

u(0, x) = ξ(x).

(4.20)

Here O∗
t := L∗

t + B∗
t is the adjoint operator of Ot given through

L∗
t f(x) := −∂x

(
b(t, x)f(x)

)
+
1
2
∂xx

(
σ2(t, x)f(x)

)
,

B∗
t f(x) :=

∫

R0

{
f(x − ς) − f(x) + ∂xf(x)ς

}
υ(dς),

(4.21)

for f ∈ C2
0(R).

For sufficient conditions on the coefficients underwhich there exists a classical solution
of (4.20) see, for example, [5]; in [14] the existence of solutions in a generalized sense of sto-
chastic distributions is treated.

Proof. By (4.8) and (4.19) we have for all f ∈ C∞
0 (R)

∫

R

f(x)u(t, x)dx =
∫

R

f(x)ξ(x)dx +
∫ t

0

∫

R

u(s, x)Osf(x)dxds

+
∫ t

0

∫

R

u(s, x)h(s, x)f(x)dxdW̃s(ω)

+
∫ t

0

∫

R0

∫

R

u(s, x)(λ(s, x, ς) − 1)f(x)dxÑ(ω, ds, dς).

(4.22)

Now, using integration by parts, we get

∫

R

u(s, x)Lsf(x)dx =
∫

R

f(x)L∗
su(s, x)dx. (4.23)

Further it holds again integration by parts and by substitution that

∫

R

u(s, x)Bsf(x)dx =
∫

R

f(x)B∗
su(s, x)dx. (4.24)
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Fubini together with (4.23) and (4.24) then yields

∫

R

f(x)u(t, x)dx =
∫

R

f(x)ξ(x)dx +
∫

R

f(x)

(∫ t

0
O∗

su(s, x)ds

)
dx

+
∫

R

f(x)

(∫ t

0
u(s, x)h(s, x)dW̃s(ω)

)
dx

+
∫

R

f(x)

(∫ t

0

∫

R0

u(s, x)(λ(s, x, ς) − 1)Ñ(ω, ds, dς)

)
dx.

(4.25)

Since this holds for all f ∈ C∞
0 (R), we get (4.20).
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