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We proposed a statistical method to construct simultaneous confidence intervals on all linear com-
binations of means without assuming equal variance where the classical Scheffé’s simultaneous
confidence intervals no longer preserve the familywise error rate (FWER). The proposed method
is useful when the number of comparisons on linear combinations of means is extremely large.
The FWERs for proposed simultaneous confidence intervals under various configurations of mean
variances are assessed through simulations and are found to preserve the predefined nominal level
very well. An example of pairwise comparisons on heteroscedastic means is given to illustrate the
proposed method.

1. Introduction

Multiple comparisons on a large number of linear combinations of means is of general
interest in many applications. If an inferential statistical procedure relies on the number
of comparisons, it may be quite challenge as the number of comparisons is increasing.
Additionally, oftentimes we may not be able to make the assumption that all variances of
means are equal. Many authors proposed variousmethods formultiple comparison onmeans
in the past. Scheffé [1] proposed a method to construct simultaneous confidence intervals for
all linear combinations of means while keeping Type I error under control. Since Scheffé’s
method constructs simultaneous confidence intervals for all possible linear combinations of
means, his method has its own advantage when dealing with a large number of comparisons
on linear combinations of means. It is understood that there are three major assumptions for
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Scheffé’s simultaneous confidence intervals to be constructed correctly. (1) The samples are
independent, (2) the populations are normally distributed, and (3) populations have an equal
variance. The third assumption, often referred to as homoscedasticity, is most vulnerable. The
violation of homoscedasticity often results in inflation of the familywise error rate (FWER).
As pointed out by Scheffé [2], his method has certain robustness when the group sample sizes
are the same even when the variances are not equal. However, the FWER is out of control
in situation where both the variances and sample sizes are unequal. No explicit formula is
available so far for simultaneous confidence intervals on all linear combinations of means in
the case of unequal variances.

The problem of comparisons on twomeans in the case of unequal population variances
is known as the Behrens-Fisher problem [3]. Dunnett [4, 5] and Nel and van der Merwe
[6] published simulation-based results on assessing different pairwise mean comparison
procedures in the unequal variance case. Kim [7] proposed a practical solution to the
Behrens-Fisher problem using the geometry of confidence ellipsoids for two mean vectors.
Wilcox [8] tackled the Behrens-Fisher problem via trimmed means. Christensen and Rencher
[9] compared Type I error rates and power levels in the Behrens-Fisher problem. Fouladi
and Yockey [10] conducted a Monte Carlo study to evaluate the performance of the tests
on means under the conditions of normality and abnormality. Hoover [11] discussed
behavioral interventions with heterogeneous subgroup effects in clinical trials. In this paper,
a method for constructing simultaneous confidence intervals on all linear combinations of
means with unequal variances is proposed. Since there is no limitation for the number
of linear combinations of means the proposed method may be used in situation where
the comparisons on a large number of linear combinations of means is deemed to be
necessary. The proposed simultaneous confidence intervals, to which we refer as the
generalized Scheffé’s confidence intervals, have an explicit format that is similar to their
classical counterparts. The equal mean variance assumption is no longer needed. In addition,
these simultaneous confidence intervals become the classical Scheffé’s confidence intervals
when all population variances and sample sizes are equal. Most importantly, the proposed
simultaneous confidence intervals preserve FWER in all configurations of variances and
sample sizes.

2. Generalized Scheffé Confidence Intervals

Suppose that we have I populations and let (μi, σ
2
i ) be the true mean and variance for

population i. Let (ni,Di, S
2
i ) be the sample size, sample mean, and sample variance of the

ith population. In the case of equal variance among I populations, that is, σ2
i ≡ σ2, Scheffé

simultaneous confidence intervals on all linear combinations of means
∑I

i=1 ciμi are given
by:

I∑

i=1

ciDi ±
√
I · Fα,I,N−I

√
√
√
√MSE ·

I∑

i=1

c2i
ni
, (2.1)

where the mean squared error MSE =
∑I

i=1(ni − 1)S2
i /(N − I) is the pooled estimate of the

common variance from I populations; Fα,I,N−I is the upper αth quantile from the F distribu-
tion with degrees of freedom I, N − I; N =

∑I
i=1 ni is the total sample size. If I constants
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c1, c2, . . . , cI satisfy
∑I

i=1 ci = 0, Scheffé’s simultaneous confidence intervals on all contracts
∑I

i=1 ciμi are given by:

I∑

i=1

ciDi ±
√
(I − 1) · Fα,I−1,N−I

√
√
√
√MSE ·

I∑

i=1

c2i
ni
. (2.2)

If pairwise comparisons are of interest, we can set one pair of (ci, cj) to be (1,−1) and rest
cis to be zero. This is a special case of contrast. Note that Scheffé’s intervals are useful
when dealing with a large number of linear combinations of means. When the total number
of observations and the number of populations are determined, the quantity Fα,I,N−I stays
the same regardless the number of simultaneous confidence intervals. For the Bonferroni
approach, the width of the confidence intervals tend to be wider if the number of linear
combinations of means is increasing. Suppose that we have 10 populations each with a
sample size 10. If we have 100 simultaneous confidence intervals for the linear combinations
of means, the

√
F in Scheffé’s method is

√
10 × F0.05,10,100−10 = 1.9635. If we apply Bonferroni’s

approach the |t(0.05/200, 100 − 10)| = 3.6118. This means that the width of Scheffé’s intervals
may be shorter than the width of the Bonferroni’s intervals. There is a breakdown point such
that Scheffé’s intervals may be shorter than the Bonferroni’s intervals when the number of
linear combinations of means gets larger. This alerts the common perception that Scheffé’s
intervals are more conservative than Bonfferoni’s intervals.

We now consider the problem of constructing simultaneous intervals without assum-
ing equal variance. Let ai = σ2

i /
∑I

i=1 σ
2
i and define

R1 =
I∑

i=1

ai

(
Di − μi

σi/
√
ni

)2

=
I∑

i=1

aiYi, R2 =
I∑

i=1

ai

ni − 1
(ni − 1)S2

i

σ2
i

=
I∑

i=1

ai

ni − 1
Zi. (2.3)

Note that Yi ∼ χ2
1 andZi ∼ χ2

(ni−1). Therefore, R1 and R2 are linear combinations of χ2 variables
with E(R1) = E(R2) = 1.

Finding the exact distribution of linear combination of χ2 variables, known as
Satterthwaite’s problem, is rather difficult. Satterthwaite tried to approximate this type of
variable as a χ2

ν random variable divided by its degrees of freedom ν (see [12]). This degree
of freedom ν is then solved via the method of moment estimation. As noted in Casella and
Berger [12], for a variable Y ∼ χ2

ν/ν, we have E(Y ) = 1. Hence

ν =
2(EY )2

Var(Y )
=

2
Var(Y )

. (2.4)

We then set R1 ∼ χ2
ν1/ν1, and R2 ∼ χ2

ν2/ν2, where ν1 and ν2 are the respective degrees
of freedom for R1 and R2. By applying the results above we can estimate ν1 and ν2. First we
consider ν1, which can be found as

ν1 =
2

∑I
i=1 a

2
i Var(Yi)

=
1

∑I
i=1 a

2
i

=

(∑I
i=1 σ

2
i

)2

∑I
i=1 σ

4
i

. (2.5)
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A natural estimate of ν1 is given by ν̂1 = (
∑I

i=1 S
2
i )

2
/
∑I

i=1 S
4
i . For ν2, we have

ν2 =
2

∑I
i=1

(
a2
i /(ni − 1)2

)
Var(Zi)

=
1

∑I
i=1 a

2
i /(ni − 1)

=

(∑I
i=1 σ

2
i

)2

∑I
i=1 σ

4
i /(ni − 1)

. (2.6)

It can be estimated by ν̂2 and ν̂2 = (
∑I

i=1 S
2
i )

2/
∑I

i=1 S
4
i /ni − 1. Furthermore, note that R1 is

independent of R2, therefore, R = R1/R2 has approximately the F distribution with degrees
of freedom ν1 and ν2. It turns out that R = R1/R2 has a very simple form

R =
R1

R2
=
∑I

i=1 ni

(
Di − μi

)2

∑I
i=1 S

2
i ∼ Fν1,ν2

. (2.7)

Note that if the I populations have equal variance, σ2
i ≡ σ2, we have ν1 = I; additionally, if all

populations have the same sample size, that is, ni ≡ n, then ν2 = N − I.
To derive the generalized Scheffé’s interval we would need the following projection

lemma (see [13] pages 231-232). For I real numbers z1, z2, . . . , zI and all a = (a1, a2, . . . , aI) ∈
RI to satisfy the following inequality:

I∑

i=1

aiyi − r

(
I∑

i=1

a2
i

)1/2

≤
I∑

i=1

aizi ≤
I∑

i=1

aiyi + r

(
I∑

i=1

a2
i

)1/2

, (2.8)

the necessary and sufficient condition is
∑I

i=1(zi − yi)
2 ≤ r2. We then choose zi =

√
niμi

and let z = (z1, z2, . . . , zI) satisfy
∑I

i=1(zi −
√
niDi)

2 ≤ Fα,ν̂1,ν̂2

∑I
i=1 S

2
i which constitutes the

interior of a I-dimensional sphere centered at the point (
√
n1D1,

√
n2D2, . . . ,

√
nIDI) with

radius
√
Fα,ν̂1,ν̂2

∑I
i=1 S

2
i . By applying the projection lemma to vector a, where a = (c1/

√
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c2/
√
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√
nI), we have
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⎭
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(2.9)

Choosing Fα,ν̂1,ν̂2 , the 1 − α quantile of an F distribution with ν̂1 and ν̂2 degrees of freedom,
based on the results in (2.7), we have

P

{
I∑

i=1

(√
niDi −

√
niμi

)2 ≤ Fα,ν̂1,ν̂2

I∑

i=1

S2
i

}

= 1 − α. (2.10)
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Applying the projection lemma this probability can be pivoted to give the following general-
ized 1 − α simultaneous confidence intervals for

∑I
i=1 ciμi,

I∑

i=1

ciDi ±
√
Fα,ν̂1,ν̂2

√
√
√
√

I∑

i=1

S2
i

√
√
√
√

I∑

i=1

c2i
ni
. (2.11)

For population mean μi’s and their pairwise differences μi − μj , the generalized Scheffé’s
confidence intervals are

Di ±
√
Fα,ν̂1,ν̂2

√
√
√
√

I∑

i=1

S2
i

√
1
ni
, (2.12)

Di −Dj ±
√
Fα,ν̂1,ν̂2

√
√
√
√

I∑

i=1

S2
i

√
1
ni

+
1
nj

, (2.13)

where 1 ≤ i /= j ≤ I. By comparing (2.1)with (2.11), it can be seen that the generalized Scheffé’s
confidence intervals are very similar to their classical counterparts.

3. Assessment of Familywise Error Rate

The Type I error in multiple comparisons is referred to as the probability of incorrectly reject-
ing at least one of the null hypotheses that make up the family. The validity of the proposed
generalized Scheffé’s confidence intervals largely lies in successfully controlling the FWER at
a given nominal level α.

There are two major factors, population sample sizes and variances, which affect the
performance of the Scheffé’s confidence intervals. We will show through simulation that the
FWER will be inflated in the situation where population variances are unequal.

A variety of configurations of variances and sample sizes will be selected to assess
the performance of the generalized Scheffé method. To this end, the number of groups is
chosen to be I = 4. Without loss of generality, we use 0 for all population means, that is,
(μ1, μ2, μ3, μ4) = (0, 0, 0, 0). The specification of sample sizes and variances is given in Table 1.

Although Scheffé’s intervals apply to inference on all linear combinations, for
simplicity, we have focused on two sets of inferences only: population means and their
pairwise differences. For each configuration we conducted 5,000 simulation runs and for each
run 95% Scheffé’s intervals and generalized Scheffé’s intervals on both population means
and pairwise mean differences were computed. We then obtained the coverage rates that the
proposed intervals contain the true means, which all equal 0.

Table 1 reports the coverage rates based on both methods. Note that the empirical
FWER would be one minus the coverage rate. Clearly, in the case of equal variances, both
methods give very similar rates of coverage for balanced design or unbalanced design.
In the unequal variance case, the coverage rate of Scheffé’s method drops. However, its
FWER still stays well within the nominal level, that is, around α = 0.05, for balanced
designs. This confirms the notion of Scheffé that his method is robust to heterosce-
dasticity when sample sizes from populations are equal. We notice that the FWER is
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Table 1: Coverage rates of 95% Scheffé’s intervals (S) and generalized Scheffé (GS) intervals: two sets of
inferences are considered, the population means and pairwise mean differences.

Sample size Equal variances Unequal variances
(0.1, 0.1, 0.1, 0.1) (1, 1, 1, 1) (0.3, 0.3, 0.1, 0.1) (3, 3, 1, 1)

Balanced S GS S GS S GS S GS
(5, 5, 5, 5) 98.00 98.60 98.45 99.00 93.60 96.85 94.05 97.35
(10, 10, 10, 10) 97.90 98.45 98.20 98.65 94.75 97.10 95.10 97.30
(20, 20, 20, 20) 97.70 97.90 98.20 98.35 93.90 96.25 94.80 96.45
(50, 50, 50, 50) 97.90 97.95 98.35 98.35 94.35 96.75 94.55 96.60

Unbalanced
(5, 5, 10, 10) 98.20 98.75 98.20 98.70 87.70 97.50 87.20 97.40
(5, 5, 20, 20) 98.40 99.10 97.90 98.45 73.00 96.20 76.50 96.65
(10, 10, 20, 20) 97.95 98.05 98.35 98.35 88.40 97.30 87.05 96.65
(10, 10, 50, 50) 98.60 98.80 98.70 98.65 73.95 96.70 72.55 97.10

inflated when sample sizes are different among the populations. It can be found from
Table 1 that when (σ1, σ2, σ3, σ4) = (0.3, 0.3, 0.1, 0.1), for sample sizes (n1, n2, n3, n4) =
(5, 5, 10, 10), (5, 5, 20, 20), (10, 10, 20, 20), (10, 10, 50, 50) the FWERs are 12.3%, 27%, 11.6%,
and 26.5%, respectively. When (σ1, σ2, σ3, σ4) = (3, 3, 1, 1), for sample sizes (n1, n2, n3, n4) =
(5, 5, 10, 10), (5, 5, 20, 20), (10, 10, 20, 20), (10, 10, 50, 50), the FWERs are 12.8%, 23.5%, 12.95%,
and 27.45%, respectively. Note that these FWERs are all significantly greater than the nominal
level α = 0.05%. It can be seen that the greater the difference in sample sizes is the larger the
corresponding FWER will be. On the other hand, the performance of the generalized Scheffé
method is much more robust. For the same configuration settings, the FWERs based on the
generalized Scheffé‘s intervals are between 0.025% and 0.038%. Although it is conservative,
but it stays well within the nominal level of α = 0.05.

It would also be interesting to see how different in width the two types of intervals
are. Comparing (2.1)with (2.12), one can see that the difference between them are due to the
following two terms:

Q1 =
√
Fα,I,N−I · I ·MSE,

Q2 =
√
Fα,ν̂1,ν̂2 ·

∑
S2
i .

(3.1)

The averaged Q1 and Q2 from 5,000 simulation runs are presented in Table 2.
It can be seen that they are very close to each other in the case of equal variances.

However, in the case of unequal variances, Q1 becomes over optimistically smaller than Q2,
which leads to the inflation of FWER. Finally, Scheffé’s intervals are derived from the fact that
the F statistic

F =
∑I

i=1
(
Di − μi

)2
/I

MSE
, (3.2)

follows the FI,N−I distribution under a number of assumptions. When these assumptions are
violated, the performance of Scheffé’s intervals would depend on how the above F statistic
deviates from the distribution FI,N−I . For the generalized Scheffé’s intervals, the FWER
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Table 2: Comparison of interval widths between Scheffé’s and generalized Scheffé’s methods. Their inter-

val widths differ in quantities:Q1 =
√
I · Fα,I,N−I ·MSE in Scheffé’s method andQ2 =

√
Fα,ν̂1 ,ν̂2 ·

∑
S2
i in the

generalized Scheffé’s method (α = 0.05).

Sample size Equal variances Unequal variances
(0.1, 0.1, 0.1, 0.1) (1, 1, 1, 1) (0.3, 0.3, 0.1, 0.1) (3, 3, 1, 1)

Balanced Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

(5, 5, 5, 5) 0.343 0.370 3.422 3.680 0.754 0.909 7.598 9.182
(10, 10, 10, 10) 0.322 0.331 3.229 3.323 0.718 0.813 7.166 8.105
(20, 20, 20, 20) 0.315 0.319 3.153 3.194 0.703 0.778 7.032 7.780
(50, 50, 50, 50) 0.310 0.312 3.105 3.120 0.694 0.759 6.945 7.595

Unbalanced
(5, 5, 10, 10) 0.329 0.350 3.284 3.490 0.602 0.905 6.052 9.125
(5, 5, 20, 20) 0.318 0.340 3.196 3.423 0.489 0.905 4.894 9.093
(10, 10, 20, 20) 0.318 0.326 3.173 3.250 0.597 0.812 5.951 8.092
(10, 10, 50, 50) 0.312 0.321 3.128 3.218 0.466 0.810 4.669 8.138

largely depends on how accurately R1/R2 approximates Fν1,ν2 . Figure 1 plots the empirical
distribution function of R1/R2 and the F statistic in (2.13), along with their designated F
distribution. We selected the following four different configurations of variances and sample
sizes, which correspond to homoscedastic/heteroscedastic and balanced/unbalanced cases:

(1) (σ1, σ2, σ3, σ4) = (1, 1, 1, 1), (n1, n2, n3, n4) = (10, 10, 10, 10), (10, 10, 50, 50),

(2) (σ1, σ2, σ3, σ4) = (3, 3, 1, 1), (n1, n2, n3, n4) = (10, 10, 10, 10), (10, 10, 50, 50).

The configuration (1) indicates the equal variance for the 4 means with equal or different
sample sizes. The configuration (2) indicates the unequal variances for the 4 means with
equal or different sample sizes. We calculate the empirical distribution function of R1/R2,
and it can be seen that they are nearly overlaps with Fν1,ν2 in all four cases of configurations
of variance and sample sizes (1(a)–4(a) in Figure 1). The overlapping between edf of R1/R2

and Fν1,ν2 suggests an excellent approximation of the F distribution to the ratio of R1 and R2.
In addition, the edf of the F statistic also matches well with the distribution FI,N−I (1(b)–3(b)
in Figure 1), except in the unbalanced heteroscedastic case where Scheffé’s method fails (4(b)
in Figure 1). This explains why the FWER is inflated in the case of unequal variances.

One last comment, the above simulation results suggest that the widths of the
generalized Scheffé intervals tend to be wider than that of the Scheffé intervals. This is our
overall impression, but may not always be true in general. In the simulations, from time to
time, we observed narrower generalized Scheffé intervals. We will see this feature from the
data analysis example in the next section.

4. Example of Data Analysis

Solomon et al. [14] studied smoking behavior in pregnant women. They examined the
women’s determination to quit smoking while pregnant. They interviewed 349 women
at their first prenatal visit, all of whom were smokers when they became pregnant, and
were classified into four groups: precontemplation (PC), contemplation (C), preparation (P),
and action (A). Their intention was to look at the subsequent smoking behavior of these
subjects during the course of pregnancy, but one important consideration was how much
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Figure 1: Empirical density plots: each density curve is generated from 5000 simulation runs. The solid line
is for the F statistic or R1/R2 and the dotted line is for their designated F distribution.



Journal of Probability and Statistics 9

Table 3: The simultaneous Scheffé intervals and Generalized Scheffé’s intervals on means and pairwise
mean differences in the cigarette example.

Parameters Scheffé Generalized Scheffé
Mean

μPC (20.66, 28.94) (20.76, 28.84)
μC (10.95, 22.25) (11.08, 22.12)
μP (26.02, 31.58) (26.09, 31.51)
μA (10.08, 17.32) (10.16, 17.24)

Pairwise comparisons
μPC − μC (1.19, 15.21) (1.36, 15.04)
μPC − μP (−8.98, 0.98) (−8.87, 0.87)
μPC − μA (5.59, 16.60) (5.73, 16.47)
μC − μP (−18.49, −5.90) (−18.35, −6.05)
μC − μA (−3.81, 9.61) (−3.65, 9.45)
μP − μA (10.53, 19.67) (10.64, 19.56)

Table 4: Sample sizes, means, and sample standard deviations of 349 womenwho stopped smoking during
pregnancy period [14].

Label Condition Description ni yi si

PC Precontemplation Smokes and has no plan to quit smoking 69 24.8 13.3
C Contemplation Smokes but is thinking of quitting 37 16.6 5.2
P Preparation Smokes but has made some effort at quitting 153 28.8 12.2
A Action Has already quit 90 13.7 8.8

these women smoked when they became pregnant. The sample sizes, means, and standard
deviations of these four groups, in terms of cigarettes smoked per day when they became
pregnant, are given in Table 4. Noting that the smallest sample size is 37, we do not need to
worry about the normality assumption even if the response of interest is count or integer.

Table 3 presents the 95% Scheffé’s intervals and the generalized Scheffé intervals for
the four group means and their differences. Since both sample sizes and variances are quite
different from each other, the generalized Scheffé intervals are more reliable.

One may make a number of inferences with a joint confidence level of 95%. For
example, women in the preparation (P) group have an average number of cigarettes every
day ranging from 26.09 to 31.51, which seems to be the most frequent smoker group. There is
no significant difference found between group P and group PC, because their difference has
a confidence interval (−8.87, 0.87) that includes 0. It is also quite interesting to notice that the
generalized Scheffé’s intervals are even narrower than the Scheffé intervals.

5. Discussion

Among others, the Scheffé method is one of the commonly-used method to make
simultaneous inference on all linear combinations of means. Scheffé intervals are for all
possible linear combinations of means and this brings benefit if a large number of linear
combinations of means need to be compared. Assumption of equal variance for all means is
needed to control type I error. When this assumption is violated the proposed method can
be conveniently used for constructing simultaneous confidence intervals where type I error
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is controlled at a prespecified nominal level. Results from simulations show that the FWER
of the proposed simultaneous confidence intervals are well preserved at a nominal level and
the equal variance assumption can be simply ignored.
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