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It is difficult for an experimenter to study the emergence and survival of mutations, because
mutations are rare events so that large experimental population must be maintained to ensure
a reasonable chance that a mutation will be observed. In his famous book, The Genetical Theory
of Natural Selection, Sir R. A. Fisher introduced branching processes into evolutionary genetics as
a framework for studying the emergence and survival of mutations in an evolving population.
During the lifespan of Fisher, computer technology had not advanced to a point at which it became
an effective tool for simulating the phenomenon of the emergence and survival of mutations,
but given the wide availability of personal desktop and laptop computers, it is now possible
and financially feasible for investigators to perform Monte Carlo Simulation experiments. In this
paper all computer simulation experiments were carried out within a framework of self regulating
multitype branching processes, which are part of a stochastic working paradigm. Emergence and
survival of mutations could also be studiedwithin a deterministic paradigm, which raises the issue
as to what sense are predictions based on the stochastic and deterministic models are consistent.
To come to grips with this issue, a technique was used such that a deterministic model could be
embedded in a branching process so that the predictions of both the stochastic and deterministic
compared based on the same assigned values of parameters.

1. Introduction

Branching processes are a class of stochastic processes that deal with the dynamics of evolv-
ing populations and have an extensive literature dating back one hundred years or more.
Some references to this early literature may be found in the book of Harris [1]. Other books
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on branching processes include those ofMode [2], Athreya andNey [3], Jagers [4], Asmussen
and Hering [5], Kimmel and Axelrod [6], and Haccou et al. [7], which contain discussions
of these classes of stochastic processes and their applications to biology and other fields.
Branching processes continue to be an ongoing field of research as exemplified by the recent
master’s degree thesis of Alexander [8] as well as elsewhere. For more details, it is suggested
that an interested reader consult the Internet. The working paradigm used in these books and
in even more recent works have consisted, for the most part, of the applications of various
methods of classical mathematical analysis and probability theory to deduce properties of a
class of branching process under consideration. But with the development of user friendly
computers in more recent years, it has become feasible to use some numerical and graphical
methods to help elucidate some properties of a branching process, but the greater part of the
working paradigm for most investigators, working within this class of stochastic processes,
has been based on mathematics. In this paper, however, due to the nonlinear properties of
the class of branching process under consideration, after the basics of a branching process
have been formalized in terms of mathematics, the working paradigm used to analyze their
properties and deduce the evolutionary implications of these properties will be based on
Monte Carlo simulation methods. As will be shown by examples, even though branching
processes with nonlinearities are difficult to analyze, using classical methods of mathematical
methods, nevertheless, the application of Monte Carlo simulation methods yields results that
have interesting evolutionary implications.

Fisher [9], in Dover reprint of an edition of book first published in the late 1920s, was
the first to apply what is now known as a one-type Galton-Watson process to the study of the
survival of mutations in an evolving biological population. Mode and Gallop [10], in a review
paper on the applications of Monte Carlo simulation methods in the study and analysis of
the widely used Wright-Fisher process of evolutionary genetics, suggested that multitype
branching processes could be used to eliminate the assumption of constant population size
which characterizes most applications of this process in the study of biological evolution.
In this paper, an overview of multitype branching processes with discrete generations, as
described in the books Mode [2] and Harris [1], will be given. In most classical branching
processes, whether one type or multitype, under some conditions on the parameters which
are known as the super critical case, a population evolving according to a branching process
will increase geometrically so that total population size grows without bound, which is
contrary to what is frequently observed in nature where environmental and other conditions
limit total population size. To correct this undesirable property of classical branching process,
a class of self-regulating process such that population size is constrained within limits will
also be considered in this paper.

Another methodological issue will also be addressed in this paper. There are at least
two schools of thought concerning the applications of mathematical models to biology. In
one school, the view that predominates is that deterministic models are sufficient to describe
and analyze biological evolutionary phenomena mathematically, and that the introduction
of stochastic models leads to unnecessary complications. A second school holds that if an
investigator restricts attention to solely deterministic models, random effects, that are thought
by many to play a significant role in biological evolution, will be missed so that predictions
based on deterministic models may be misleading. In order to come to grips with this
methodological issue, methods will be described and implemented whereby it is possible
to embed deterministic models in a stochastic process. In such formulations, the embedded
deterministic model and the stochastic process have the same parameters so that for each
choice of numerical values of the parameters, the predictions based on the deterministic
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model can be compared with those of a statistical summary of a sample of Monte Carlo
realizations of the process. As will be shown in illustrative computer experiments, when the
emergence of new beneficial mutations in an evolving population are under consideration,
the predictions based on the embedded deterministic model can be misleading when com-
pared with of the results of a Monte Carlo simulation experiment. The technique of embed-
ding deterministic models in stochastic processes has been used extensively in other work,
see for example, Mode and Sleeman [11, 12].

A question that naturally arises is to what class of biological organisms will the
multitype branching processes described in this paper apply? A short answer to this question
is any class biological organisms that do not reproduce by sexual reproduction, that is, those
classes of organisms in which offspring arise only from the matings of females and males
such as in humans and other vertebrates. Another question that arises is when during the
process biological evolution on planet earth did such classes of organisms exits and flourish?
According to the interesting and compelling lectures by Martin and Hawks [13], on major
transitions in evolution, after the formation of our Earth and Solar System about 4.5 to 4.6
billions years ago and the earth cooled for about another 6 hundred million years or so, single
celled organisms, prokaryotes, arose and persisted for about 2 billion years. Interestingly,
some of these prokaryotes had evolved a capability for photosynthesis, which resulted in
the evolution of the earth’s atmospheric oxygen that in turn made it possible for plants and
animals of present-day earth to live and breathe.

Many single-cell organisms, such as bacteria, reproduce by a process called binary
fission, that is, a cell divides resulting in two daughter cells which in turn divide and so
on. The class of multitype branching processes, which will be the focus of attention in this
paper, will not only accommodate reproduction by binary fission but also other types of re-
production in which a multicellular organism may reproduce by releasing spores which sub-
sequently germinate and grow into bodies of cells resembling their parents. But, applications
of the class of branching processes described in this paper are not necessarily confined to
single or multicellular organisms. For they may also be applied to large chemical molecules
that have the capability of self-reproduction or replication. In this connection, it would be of
interest to consult lectures on the origin of life by Hazen [14].

Up until now, evolution in deep time has been the focus of attention, but when the
present is considered there is an abundance of examples for which the class of multitype
branching processes with mutations may be applied. An immediate example is the human
microbiome, which consists of a large number of species of microorganisms with very small
cells when compared to cells of humans. Indeed, it has been estimated that there are more
nonhuman cells than human cells in our bodies. Ordinarily, these cells live with us in a
state of symbiosis, but when mutations occur, a disease condition may result. Populations of
microorganisms also inhabit the bodies of plants and animals that we depend on for food
and when mutations in these organisms occur and cause disease, which in turn may have
devastating consequences for our food supply. These examples seem to be an adequate
biological justification for the class of branching processes that will be the focus of attention
in this paper, but in the discussion mention will be made of some further caveats. When
attempting to study the occurrence and survival of mutations experimentally, large popu-
lations must be maintained by an experimenter to ensure that the event of a rare mutation
that will occur will be likely. It seems reasonable, therefore, to use Monte Carlo simulation
methods to study the emergence and survival of mutations, because the evolutionary dy-
namics of a large population can be simulated on computers with relative ease.
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Although it may not be clear from the computer simulation experiments reported
in this paper that the embedded deterministic model plays an essential role in exploring
for and finding points in high-dimensional parameter spaces such that the evolutionary
trajectory computed using the embedded deterministic model suggests potentially interest-
ing biological implications, it is actually a necessary part of the working paradigm. For if
one were to carry out such exploratory experiments by computing samples of realizations
of the stochastic process, it would become clear that this approach would be prohibitive,
because of the long time periods required to complete Monte Carlo simulation experiments
when computing the number of replications of the process of a 100 or more takes hours and
sometimes days of computer time to complete. But, when using the embedded deterministic
model, the time needed to compute a trajectory corresponding to some point in a high-
dimensional parameter space may require only a few minutes or at most an hour or two.

This experimental process of exploring and finding points in a high-dimensional pa-
rameter space that suggests potentially interesting biological applications using the embed-
ded deterministic model also has the potential for connecting the stochastic behavior of the
class of branching processes under consideration with fields of deterministic dynamics that
have been studied extensively. For at some points in the high-dimensional parameter space,
the computed trajectories of embedded nonlinear deterministic model exhibit periodicity and
chaotic behavior, which provides a connection of branching processes to a field of nonlinear
deterministic dynamics called chaos with an extensive literature. If a reader is interested in
exploring the literature of this field, the book for the general reader by Gleick [15] may be
consulted. In this connection, it is interesting to observe the essential role that computer-
intensive methods played in the work of physicist Mitchell Feigenbaum whose numerical
work led to a more general development of the field of chaos and its connections with Benoit
Mandelbrot’s concept of fractals. Another more technical book on chaos is the that of Gulick
[16], and if a reader is interested in a series of informative lectures on this subject, the course
by Strogatz [17]may be viewed.

In this paper the implications of chaos in the embedded deterministic model on the
emergence of beneficial mutations in a population were not studied, but attention was
focused on only a few points in the parameter space that led to lead to “regular” behavior
of the trajectories of the embedded deterministic model. By considering these relatively few
points in the parameter space of the model, it was possible to simulate the emergence of
beneficial mutations in cases such that the driving forces of evolution were the reproductive
success of a mutant type or it ability to compete for limiting resources within a background of
lower probabilities of mutations per generation than those that had been studied heretofore
as well as a case of neutral evolution where rare mutations may occur. However, a reader
should be aware that before these few points in the parameter space were chosen, a rather
large series of preliminary experiments with the embedded deterministic model were carried
out.

2. Overview of Multitype Branching Processes with
Discrete Generations

In this section, the formulation of a multitype branching process evolving on a time scale
of discrete generations will be given along with a description of algorithms to compute a
sample of Monte Carlo realizations of such a multitype branching processes. To illustrate
the algorithms underlying a Monte Carlo simulation procedures to simulate a sample of
realizations of this stochastic process, for the sake of simplicity, attention will be focused
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on the case of m = 3 types, which will be referred as genotypes. Let G = {1, 2, 3} denote
the set of three genotypes. Initially, it will be assumed that two components, reproductive
success per individual and mutations among the three genotypes per generation, are the
forces driving the evolution of a population. Reproductive success will be characterized in
terms of random variables Nν for ν ∈ G, taking values in the set N = {n | n = 0, 1, 2, 3, . . .} of
nonnegative integers and representing the number of offspring produced by each genotype ν
per generation. The probability density functions of these random variables will be denoted
by

P[Nν] = gv(n), for n ∈ N, (2.1)

and ν ∈ G. A useful measure of reproductive success for each individual per generation is
the expected value

E[Nν] = λν ≥ 0, (2.2)

of the number of offspring per generation for each genotype ν ∈ G.
An experimenter is free to choose any parametric or nonparametric form of the

probability density functions for the random variables Nν, ν ∈ G, but for the sake of
simplicity and ease of computation and interpretation, it will be assumed in this paper that
these densities have the simple Poisson form

gv(n) = exp[−λν]
λnν
n!

, (2.3)

for n ∈ N and ν ∈ G. It is easy to show that for the density in (2.3), E[Nν] = λν > 0 so
that the measure of reproductive success λv is the parameter for a Poisson density for each
genotype. In the experiments reported in this paper, a decision was made to consider only
the special case of Poisson distributions for the random variables Nν for ν = 1, 2, 3. It is well
known for this simple distribution that the expectation and variance both equal the parameter
λ. Thus, the use of the Poisson distribution with equal expectation and variance provides
a useful set of computer experiments for distributions with this property that may form a
basis for comparisons with other experiments depending on other values of parameters or
even offspring distributions belonging to other families of distributions. It also seems to be
a reasonable assumption for populations that reproduce by a process of binary fission, cell
division, that the Poisson distribution may be a reasonable choices for offspring distributions
for assignments of the parameters near the number 2. It should be mentioned that it would be
straightforward to replace the Poisson offspring distribution that is currently in the software
with some other distribution of interest to an investigator that would be appropriate model
for the mechanism of reproduction for a particular species under consideration.

Another family of parametric distribution that could be chosen for offspring
distributions is the two-parameter negative-binomial family. For this family, the expectation
and variance are not equal, and it seems reasonable to expect that if the variances of the
offspring distributions were greater than the expectation, then the variation among the
realizations of a process would be greater than that for the Poisson case. Given any distri-
bution with a finite variance, however, one would expect, a priori, that if one of the three
parameters (λ1, λ2, λ3) is greater than the other two, then the genotype corresponding to
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this number would become predominate in a population as evolutionary time progresses,
and, in this sense, the process may be robust to the choices of offspring distributions. It
should also be mentioned that if two parameter offspring distributions were used, then the
dimension of the parameter space of themodel would be increased, and, as will be mentioned
subsequently, high-dimensional parameter spaces complicate the design and execution of
computer simulation experiments.

A basic tenet of Darwinian evolution is that natural selection acts on variants, geno-
types, in a population so that those genotypes, which arose as a result of beneficial mutations,
become predominant in the long-run evolution of a population. Thus, to take into account
novel variations of genotypes that may occur in an evolving population, mutations need to
be taken into account. As a first step in formalizing the notion of mutation, let μij ≥ 0 denote
the conditional probability per generation that genotype i produces an offspring of genotype
j for i, j = 1, 2, 3. For a more complete interpretation of these conditional probabilities, it is
useful to represent them in the matrix form

M =

⎛
⎜⎜⎝

μ11 μ12 μ13

μ21 μ22 μ23

μ31 μ32 μ33

⎞
⎟⎟⎠. (2.4)

In this matrix, μ11, for example, is the conditional probability that an individual of genotype
1 produces an offspring of genotype 1, but μ12 and μ13 are, respectively, the conditional prob-
abilities that an individual of genotype 1 produces an offspring of genotype 2 or 3. For every
i ∈ G,

∑
j∈G

μij = 1, (2.5)

so that each row of the matrix M may be thought of as the vector of probabilities for a three
dimensional multinomial distribution. Let the row vector pi = (μi1, μi2, μi3) denote row i ∈ G

of the matrix M in (2.4). Because of condition (2.5), it can be seen that one is free to choose 6
parameters of the model. Then, given these choices, constraint (2.5) will determine the other
three parameters.

At this point, enough formal notation has been defined to begin a description of a set of
algorithms for computing Monte Carlo realizations of the multitype branching process under
consideration. Consider any individual of genotype i ∈ G in any generation. By assumption,
the number of offspring produced by any individual of genotype i ∈ G in any generation is a
realization ni of a Poisson random variable Ni with parameter λi. The set of possible values
of ni is N = {n | n = 0, 1, 2, 3, . . .}, the set of nonnegative integers. To take the possibility of
mutation into account, among the ni offspring, let xij ≥ 0 denote the number of offspring of
genotype j ∈ G produced by an individual of genotype i ∈ G such that these nonnegative
integers satisfy the constraint

ni =
∑
j∈G

xij . (2.6)
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Let xi = (xi1, xi2, xi3) denote a vector whose elements are in the sum (2.6). Then for ni /= 0, a
realization of the vector xi is computed as a realization from a multinomial distribution with
index, sample size, ni and probability vector pi = (μi1, μi2, μi3). If ni = 0, then xi = 0, the zero
vector. If a reader is interested in more details, Mode and Gallop [10] may be consulted for
a detailed description of an algorithm for computing realizations of a random vector from a
multinomial distribution, given an index n and a multinomial probability vector p.

In generation t, where t = 0, 1, 2, 3, . . ., let the random function Xi(t), taking values in
the set N, denote the number of individuals of genotype i ∈ G in generation t, and let

X(t) = (X1(t)), X2(t), X3(t) (2.7)

denote a vector of these random functions. For t = 0, an experimenter needs to assign initial
values in the set N to each of the elements in the vector (2.7). In generation t > 0, let the
random function Yj(t) denote the total number of offspring of genotype j ∈ G produced by
all three genotypes in generation t, and let the random function Yij(t) demote the number of
offspring of genotype j produced by the Xi(t) individuals of genotype i ∈ G in generation t.
If Xi(t) = 0, then Yij(t) = 0. But if Xi(t)/= 0, then, given Xi(t), let (x

(k)
ij ), for k = 1, 2, . . . , Xi(t),

denote a sequence of conditionally independent random variables defined as in (2.6). Then,
for every j ∈ G, the random function Yj(t) is given by the formula

Yj(t) =
3∑
i=1

Yij =
3∑
i=1

Xi(t)∑
k=1

x(k)ij . (2.8)

Not all the offspring in generation t will survive and produce offspring in generation
t + 1; consequently, in order to take into account those offspring who survive to produce
the next generation, a parametric from of a survival function will be introduced. Among the
canonical forms of widely used survival functions in applied probability is the Weibull-type
which has the parametric form

exp
[−(βt)α], (2.9)

where α and β are positive parameters. Usually, this function has the following interpretation.
LetR denote the set of points on the real number line and consider a random variable T taking
values in the set

[0,∞) = {x ∈ R | x ≥ 0} (2.10)

of nonnegative real numbers. Next suppose that the random variable T denotes the random
lifespan of some piece of equipment or individual. Then, the probability that this individual
survives beyond time t > 0 is assigned the probability

P[T > t] = exp
[−(βt)α], (2.11)

where, in most applications, the values of the parameters α and β must either be assigned or
estimated from data.



8 Journal of Probability and Statistics

In the class of self-regulating branching under consideration, however, the formula in
(2.11)will be used to formalize the conditional probability that an offspring of genotype j ∈ G

in some generation t survives to produce offspring in generation t + 1. In the formulation
under consideration, it will be assumed that this conditional probability depends on total
population size in generation t. By definition, total population size in generation t is given by
the random function

Z(t) =
∑
j∈G

Xj(t), (2.12)

see vector (2.7). Given a value of this random function in generation t, let Sj(t | Z(t)) denote
the conditional probability that an individual offspring of genotype j ∈ G in generation t
survives to produce offspring of generation t + 1. By assumption, this conditional probability
has the parametric form

Sj(t | Z(t)) = exp
[−(βjZ(t)

)αj
]
, (2.13)

where the pair of parameters (αj , βj) may vary among genotypes j ∈ G. For the sake of
simplicity, in all the computer experiments reported in this paper, it was assumed that αj = 2
for all j ∈ G. Observe that the survival function in (2.13) decreases as Z(t) increases and that
this decrease is more rapid for those t such that βjZ(t) > 1. For example, if βj = 10−8, then
the condition 10−8Z(t) > 1 implies that Z(t) > 108 so that when total population size reached
this level, an offspring of genotype j ∈ G is less likely to survive and produce offspring in the
next generation. The rationale for choosing the alpha a constant 2 will be discussed briefly in
the next section.

Given the parametric survival function in (2.13), a Monte Carlo realization of the
random function Xj(t + 1), the number of offspring of genotype j ∈ G in generation t who
survive to produce the offspring of generation t + 1 is easy to compute. Let p(t) = Sj(t | Z(t))
denote the conditional probability in (2.13) and let Yj(t) denote the random function in
(2.8). Then, by assumption, Xj(t + 1) is a realization of a binomial random variable with
index Yj(t) and probability p(t). In subsequent sections in which computer experiments on
quantifying selection and mutation are under consideration, rationales for choosing values
of the β parameters by genotype will be discussed.

Before proceeding to the next section, it will be of interest to mention an alternative
algorithm for computing realizations of the multitype branching process under considera-
tion. Of all the Monte Carlo simulation procedures discussed in this section, that entailed
in (2.8) will be the most time consuming, particularly if the random function Xi(t) has a
large value for some genotype. When Xi(t) is large, a realization of the random variable Yj(t)
may be computed more efficiently by using a central limit theorem approximation. Let Ni

denote a random variable representing the number of offspring produced by an individual
of genotype i ∈ G in any generation, and let ηi and σ2

i denote, respectively, the expectation
and variance of the random variable Ni. Then, let

(
N

(k)
i | k = 1, 2, . . . , Xi(t)

)
(2.14)
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be a collection of independent and identically distributed random variables whose common
distribution is that of the random variable Ni. Then, the random variable

Hi =
Xi(t)∑
k=1

N
(k)
i (2.15)

is approximately normally distributed with a conditional expectation of Xi(t)ηi and variance
Xi(t)σ2

i . Let Z be a realization of a standard normal random variable with expectation 0 and
variance 1. Then,

Ĥi =
[
Xi(t)ηi +

√
Xi(t)σiZ

]
, (2.16)

where the function [x] stands for the greatest nonnegative integer in the real number x, is a
central limit theorem approximation to the integer valued random variable Hi in (2.15). By
definition, if x < 1, then [x] = 0 and 1 < x ≤ 2, then [x] = 1 and so on. Let

Y(t) = (Y1(t), Y2(t), Y3(t)) (2.17)

denote the vector valued random function to be approximated, see (2.8). Then, in a Monte
Carlo simulation experiment such that Xi(t) is large, let the random function Yij(t) denote
the total number of offspring of genotype j produced by the Xi(t) individuals of genotype
i in generation t. Then, Yij(t) is component j in a vector realization from a multinomial
distribution with index Ĥi and probability vector pi = (μi1, μi2, μi3). Thus, the total number
of offspring of genotype j produced by the three genotypes in generation t is, by definition,
given by the random function

Yj = Y◦j =
3∑
i=1

Yij , (2.18)

for j = 1, 2, 3.
In the software used to carry out the simulation experiments reported in this paper, the

central limit theorem just outlined was used whenXi(t)was large and the random variable in
the collection in (2.14) had independent Poisson distributions. But, whenXi(t)was small, the
central limit approximation was not applied. It is easy to see that the procedures described
for the case of m = 3 genotypes may be easily extended to the case of m > 3 genotypes.
If one would like to see further details on computing Monte Carlo realizations of the class
of multitype branching processes under consideration, which have been omitted in this
overview, the book by Mode and Sleeman [12] may be consulted.

3. On Embedding a Deterministic Model in a Stochastic Process

Let (X(t) | t = 0, 1, 2, . . .) be stochastic process evolving in discrete time that takes values in
the set R of real numbers. Furthermore, suppose that E[X2(t)] is finite for all t = 0, 1, 2, . . ..
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Then, it is well known that for t + 1, if one wishes to find the best estimator X̂(t + 1) of the
random function X(t + 1) such that

E

[(
X(t + 1) − X̂(t + 1)

)2]
(3.1)

is a minimum, X̂(t + 1) must be chosen as the conditional expectation

X̂(t + 1) = E[X(t + 1) | X(t)]. (3.2)

For some stochastic processes, it is difficult to find a usable form of the conditional expectation
on the right, but for the sake of simplicity, before considering a self-regulating multitype
branching process, it will be helpful to consider the case of a one-type branching process,
which is also known as a one-type Galton-Watson process. In what follows the idea of a
conditional expectation will be used extensively.

For the case of a Galton-Watson process, let (X(t) | t = 0, 1, 2, . . .) denote a sequence
of random functions taking values in the set N of nonnegative integers and interpret X(t)
as the number of individuals in a population in generation t ∈ N. Suppose that for each
of these individuals, the number of offspring contributed to the generation t + 1 is a
realization of a random variable N taking values in the set of nonnegative integers N that
has a Poisson distribution with parameter λ > 0. Let the random function X(t) denote
the number of individuals in the population in generation t, and given X(t), let Nk for
k = 1, 2, . . . , X(t) denote a collection of conditionally independent and identically distributed
random variables whose common distribution is that on the random variable N. Then, if
X(t) = 0, X(t + 1) = 0, but if X(t) > 0, then X(t + 1) is the random sum

X(t + 1) =
X(t)∑
k=1

Nk. (3.3)

For each k = 1, 2, . . . , X(t), E[Nk] = λ. Therefore, for this process,

E[X(t + 1) | X(t)] = E

[
X(t)∑
k=1

Nk | X(t)

]
= X(t)λ. (3.4)

At generation t, let η(t) = E[X(t)] denote the unconditional expectation of the random
function X(t). Then, from (3.4), it follows that

η(t + 1) = E[E[X(t + 1) | X(t)]] = E[X(t)]λ = η(t)λ. (3.5)

Therefore, if X(0) = x0 is some assigned positive integer, which is interpreted as the number
of individuals in the initial population, then (3.5) implies that

η(t) = x0λ
t, (3.6)
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for every generation t ∈ N. Thus, if λ is such that 0 < λ < 1, then η(t) → 0 as t → ∞. And if
λ = 1, then η(t) = x0 for all t ∈ N. But, if λ > 1, then η(t) → ∞ as t → ∞ so that the growth of
the population is unbounded. As indicated in the introduction, such a model for an evolving
population is not acceptable, because the size of any real biological population is limited by
the available environmental resources.

To remove this limitation, it will be assumed that the process is self-regulating. For any
realization X(t) = x(t) of a one-type branching process in generation t, let

S(t | X(t)) = exp
[−(βX(t)

)α] (3.7)

denote the conditional probability that any offspring in generation t survives to produce
offspring for generation t+ 1, where α and β are positive parameters which are to be assigned
numerical values. Then, let Y (t) denote the total number of offspring produced in generation
t and suppose Y (t) given by the random sum

Y (t) =
X(t)∑
k=1

Nk. (3.8)

Next suppose, as in Section 2, thatX(t+1) is a realization of a binomial random variable with
index Y (t) and probability S(t | X(t)). Then, the conditional expectation of X(t + 1), given
Y (t), is

E[X(t + 1) | Y (t)] = Y (t)S(t | X(t))

=

(
X(t)∑
k=1

Nk

)
S(t | X(t)),

(3.9)

see (3.8). Therefore,

E[X(t + 1) | X(t)] = E

[(
X(t)∑
k=1

Nk

)
S(t | X(t)) | X(t)

]

= X(t)S(t | X(t))λ.

(3.10)

The random function on the right is the best predictor of the random function X(t + 1)
for the self-regulating branching process under consideration. But, this value is completely
known from a computational point of view only for the case t = 0. For in this case, it is
assumed that X(0) = x0, an assigned positive integer. Hence,

X̂(1) = x0S(t | x0)λ. (3.11)

But, this result for t = 1 suggests that, because X̂(1) is known, it would be of interest to
consider

X̂(2) = X̂(1)S
(
t | X̂(1)

)
λ (3.12)
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as an estimate of the random function X(2). Of course, this result is not the best estimate of
the random functionX(2) in the sense of (3.1) and (3.2), but it is useful from a computational
point of view, because it reduces to a single value that may be easily computed. In general,
we could continue this estimation procedure so that for t ≥ 0, the random function X(t + 1)
may be estimated according to the recursive formula

X̂(t + 1) = X̂(t) × S
(
t | X̂(t)

)
× λ. (3.13)

By definition, (3.13) may be viewed as a recursive deterministic model embedded in the
self-regulating Galton-Watson process. Just as for the process, the trajectories based on the
recursive relation in (3.13) depend only the three positive parameters α, β, and λ. Moreover,
as will be shown in subsequent sections of this paper, by computing a sample of realizations
of a multitype Galton-Watson process, it will be possible to compare such trajectories of the
stochastic process such as quantiles, mean, and standard deviation trajectories to those based
on the embedded recursive deterministic model in (3.13).

In (3.13) for the sake of simplifying the notation, let x(t) denote the estimate X̂(t) and
let f(x) denote the function of the right in (3.13). Note that the function f(x) is a continuous
function of x for x ≥ 0. Then, if a sequence (x(t) | t = 0, 1, 2, . . .) that is computed recursively,
where x(0) is an assigned positive number, converges to a number x as t ↑ ∞, then x = f(x).
For the case when the offspring distribution is a Poisson with parameter λ and the survival
function is Weibull with parameters α and β, it is possible to show that the fixed point x as
a simple function of the parameters α, β, and λ. Explicit forms of this function are given in
the book Mode and Sleeman [12] for two choices of survivals functions in chapter 9 but these
formulas will not be listed here for the sake of brevity. Furthermore, for these simple cases, it
is possible to derive conditions, expressed in terms of the parameters, when the fixed point x
is attracting (stable) or not attracting. For the case the fixed point x is attracting, the formula
for x represents the total population size that a population evolving according the embedded
deterministic model would attain in the limit.

From this result, for the Poisson case one may do simple numerical experiments by
considering a set of values of the three parameters α, β, and λ as they affect asymptotic
total population size in the stable case. Alternatively, by inspecting the form of this simple
function for the fixed point x, it is possible to develop some intuition as what parameters are
most important in determining population size in the limit. It should also be mentioned in
passing that in chapter 9 referenced above, a different parametric form of the survival form
was also used, and in this case the formula for the fixed point differs significantly from the
Weibull case. As it turns out, for an embedded deterministic model in the multitype model
that will be described below, it does not seem possible to derive a simple formula for the
vector-valued fixed point in a three- or higher-dimensional space. Thus, from the biological
and evolutionary point of view a one-type model is not very interesting, because it does not
accommodatemutation, even though it may provide useful insights for the dynamic behavior
of multitype models in the limit.

For the multitype branching process considered in section, a vector valued recursive
deterministic model may be embedded in the stochastic process by extending the ideas
outlined for the one-type case. Let the random row vector X(t) = (X1(t), X2(t), X3(t)) denote



Journal of Probability and Statistics 13

the number of individuals of each of the three genotypes in generation t ∈ N. Then, let
M(t;X(t)) denote a 3 × 3 random matrix such that row i has the form

Si(t | Z(t))λi
(
μi1, μi2, μi3

)
, (3.14)

where Si(t | Z(t)) is the survival function for individuals of genotype i, λi is the expected
number of offspring produced by an individual of genotype i per generation and Z(t) is total
population size in generation t. Observe that the matrix M(t;X(t)) contains the conditional
expectations of the number of offspring of each genotypes contributed by individuals in
generation t to the next generation, given the random vector X(t). For more details see in
Section 2 see (2.4), (2.12), and (2.13). Then if X̂(0) = X(0) = x(0), an assigned vector
of nonnegative integers, the embedded deterministic model for self-regulating multitype
branching process is the recursive vector-matrix equation

X̂(t + 1) = X̂(t)M
(
t; X̂(t)

)
, (3.15)

for t ≥ 0. In subsequent sections of this paper, the results of Monte Carlo simulation exper-
iments will be reported in which the evolutionary trajectories based on (3.15) will be com-
pared with stochastic trajectories estimated from a Monte Carlo sample of realizations of the
stochastic process.

At this point in the discussion, it is helpful to mention the rational underlying the
decision to consider only cases in which the three alpha parameters for the three genotypes
were set equal to two in all subsequent computer experiments reported in the paper. The
dimension of the parameter space for the three-type model is six with respect to the survival
component of the process, and when such large dimensional spaces are under consideration,
it is helpful in planning computer experiments to reduce the dimension of the parameter
space as much as feasible. To lend more clarity to the discussion, it will be useful to have
access to the fixed point for the one-type case for the case of a Poisson offspring distribution
and a Weibull-type survival function. In this simple case, the formula for the fixed point has
the simple form x = (lnλ)1/α/β, where α > 0, β > 0 and λ > 1. From this simple formula,
it can be seen that of the fixed values of α and λ, x is large when β is small and large values
of β will result in small values of x. For this simple case, for fixed values of β and λ, let x(α)
denote the fixed point of a function of α. Then it is easy to see that x(1) > x(2). Thus, for this
case, if alpha is assigned the value α = 1, the limiting population size would be larger than
if alpha were assigned the value α = 2. Although there is no proof that this result will also
hold in a multidimensional case, it is thought that for a case in which all parameters were
chosen as alpha equal to one, the limiting population size for each type would be larger than
for alpha equal to two.

From an inspection of the fixed point formula shown above for the one type case, it
was clear that the values of the beta parameter would be most important in determining final
population size for the case the fixed was attracting or stable. It seems plausible that values
of the beta parameters in the multitype case would be the most important for determining
limiting population size for all genotypes in multitype models, but this conclusion was based
on the results of exploratory computer experiments that are not reported in this paper. A
possible exception to this statement is the case when the parameter α is small, but such cases
were not considered. The lambda parameters also have clear biological interpretations as
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ameasure of reproductive success for individuals of each of the three genotypes. Consequent-
ly, from the biological point of view, it seemed to be of significant interest to allow a measure
of reproductive success for each of the three genotypes under consideration. The assumption
that the alpha parameters were constant reduced the dimension of parameter space with
respect to the survival component of the model from 6 to 3 and thus simplified the problem of
choosing interesting values of the parameters in computer simulation experiment. However,
it should also be kept in mind that in the mutation matrix we are free to choose two values
in each row of the matrix of mutation probabilities so that the dimension of the parameter
space for the full model is 9, which will force an investigator to reduce the dimension of the
parameter by making simplifying assumption whenever they seem reasonable. The decision
of set all alpha parameters equal to 2 was subjective and was done primarily for the sake
of simplicity, even at the time it was thought that if all alpha parameters were set equal to
1, the results would differ only quantitatively with respect to the limiting sizes of the sub-
populations for each of the three genotypes.

To some readers it may seem strange, because little mention was made that it is well
known that most mutations are deleterious and are either fatal or render the mutant genotype
less fit than the parental genotype. But, the study of a two-type process accommodating a
wild-type and deleterious mutant are not very interesting, because in such cases the wild
type will predominate in the long-run evolution of the process, even though the mutant type
may persist in the population in the long run because of recurrent mutations. However, in
three-type models, it is possible to consider cases in which it is supposed that one genotype
is the wild type of the founding population and the two mutant types may be such that one
is deleterious and the other is beneficial so that, in principle, both types of mutations may
be studied in a computer simulation experiment. In the computer simulation experiments
that are reported in subsequent sections of this paper, these two types of mutations were
tacitly assumed to be in force, and these ideas were quantified by choosing what seemed to
be interesting assignments of parameter values that had not been considered heretofore.

It can be shown that for some choices of parameter values in the parameter space, the
iterates of (3.13) and (3.15) can become chaotic, but such examples will not be presented in
this paper. If a reader is interested in pursuing the subject of chaos, it is suggested that the
book by Gulick [16] be consulted. Among the models considered by Gulick was the logistic
equation, which has the form

f(x) = μx(1 − x), (3.16)

where μ > 0 and 0 ≤ x ≤ 1. The properties of the iterates of (3.16) depend on the value of
the parameter μ, and for some values of μ the iterates of the function in (3.16) will become
chaotic. Actually, the function in (3.16) belongs to a class of functions whose iterates may
become chaotic. Evidently, the function on the right in (3.13) also belongs to this class of
functions. Moreover, the function on the right in (3.15) belongs to a class of vector-valued
functions whose iterates may become chaotic at some points in the parameter space, but a
discussion of the technical details characterizing these classes will not be given in this paper.
If a reader is interested in more details regarding the embedding of a deterministic model in
a self-regulating multitype branching process in cases in which the iterates of the embedded
deterministic become chaotic, chapters 9 and 10 in the book by Mode and Sleeman [12] may
be consulted.
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To some, perhaps many, the computer experiments reported in this paper do not
provide insights to a path toward a more general theoretical understanding of the class of
stochastic process under consideration with embedded deterministic models that may have
predictive value regarding realizations of a stochastic process. But, in the present state of the
development of the art, well thought out computer simulation experiments are the best way,
at the moment, for exploring what the implications of a formulation may have for useful
interpretations for the study of biological evolution and in some cases chemical evolution. Of
course, for one-type model, it is easier to do the analytics required for a deeper theoretical
understanding of the system, but one-type models are not of significant biological interest
when mutations are considered.

Given the present state of the art, computer simulation experiments can contribute
information that will be useful in a more theoretical analysis of the implications of a system
for biological evolution. For example, through computer experimentation it is known that
large values for the lambda parameters will result in periodic and chaotic behavior of the
iterates of the embedded deterministic model and such behavior is also reflected in the prop-
erties of the sample functions of the stochastic process. It is also known that smaller values
of the lambda parameters will lead to a more stable behavior of the embedded deterministic
model that is also reflected in the behavior of the sample functions of the stochastic process.
Indeed, from a historical point of view, many subfields of probability and statistics, as well
as mathematics in general, are rooted in practical problems from experience and the use of
numerical experimentation to gain insights into solutions of these problems.

In the best of all worlds, a team of investigators would be working on the class of
processes with embedded deterministic models such as that under consideration. Among the
members of such a team would be an expert probabilistic analyst who would be potentially
capable of handling the high dimensionality of parameter spaces that often arises when con-
sidering biological evolution and, at the same time, be acquainted with some of the literature
on equations of deterministic dynamical systemswith nonlinearities, whichmay have chaotic
solutions. At times such a person may wish to call in a symbolic computation engine to do
the messy algebra and numerical computations that often arise in dealing with problems of
coping with multidimensional parameter spaces. For example, when the mutation matrix
has relatively many rows and columns and is reducible, such a model would be of significant
interest in the study of speciation in evolution but was not considered in this paper. Other
members of such a team would include someone with extensive experience with modelling
and a person with computer expertise. Another person of such a team would include a
biologist who would assist in motivating the research problems to be considered and would
also play role constructive criticism. Should any readers of this paper have the expertise of a
probabilistic analyst, the existing team would welcome a cooperative arrangement with such
an individual or individuals.

4. Beneficial Mutations and Differential Reproductive Success as
Driving Forces of Evolution

The objective in this section is to report the results of a computer simulation experiment
in which beneficial mutations and differential reproductive success were the driving forces
of evolution. Within this framework, a beneficial mutation will be characterized in terms
of whether one of the three genotypes under consideration has a reproductive advantage
over the other two. To quantify this idea, a genotype will have a reproductive advantage, if,
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on average, individuals of this genotype contribute more offspring to the next generation
than individuals of the other two genotypes. In the experiment reported in this section,
as well as those in subsequent sections, the evolutionary timespan considered was 6,000
generations, and in each Monte Carlo simulation experiment, 6,000 generations of evolution
were replicated 100 times, which provided a sample of realizations of the stochastic process
that could subsequently be used to compute statistically informative summarizations of the
simulated data. Because the embedded deterministic model was, by definition, not stochastic,
it sufficed to compute only one trajectory of this model for 6,000 generations of evolution.

A question that naturally arises at this point in the description of the experiment under
consideration is why was the number 100 chosen as the number of replications?Whenever an
investigator is in the process of designing a Monte Carlo simulation experiments, a question
as to what sample size is needed to produce an informative statistical summarization of the
simulated data will always arise. Answers to this question will depend on theoretical as well
as practical considerations. When one is contemplating a Monte Carlo simulation experiment
with a large number of replications, it will be necessary to make a large number of calls to
the random number generator used in the experiment. All random number generators will
have a large but finite period and when the number of calls to the generator exceeds the
period, questions will arise as to whether the random numbers used in the experiment had a
sufficiently long period to assure credibility of the simulated data as to its randomness. This
issuewas discussed in some detail inMode andGallop [10] in Section 2 of that paper. From an
example given in that paper, if an investigator wished to do a large Monte Carlo simulation
experiment based on the Wright-Fisher process, the default random number generator in
many software packages did not have a sufficiently long period to assure the randomness of
the simulated data. Consequently, an alternative random number generator with a very long
period was used in the paper published in 2008, and if a reader is interested in the details
Section 2 of the paper by Mode and Gallop [10] may be consulted as well as the references
cited therein. This random number generator with a very long period was also used in all
computer simulation experiments reported in this paper to help assure the “randomness” of
the simulated data.

With regard to practical considerations, the choice of sample size for a Monte Carlo
simulation experiment will depend on the computer platform available to an experimenter.
All the computer simulation experiments reported in this paper, as well as those reported
in the book by Mode and Sleeman [12], were done on personal desktop or laptop com-
puters. Before a Monte Carlo simulation experiment was attempted, a number of exploratory
experiments were conducted using the embedded deterministic model with various combi-
nations of parameter values. When an interesting result, which was judged subjectively, was
found, a decision was made to run a preliminary Monte Carlo simulation experiment with
sample size as small as 10. Such a small sample size is often sufficient to give an experimenter
some idea as to how well the embedded deterministic model will predict the behavior of the
process. If a judgement was made that it would be worthwhile to conduct a confirmatory
Monte Carlo simulation experiment with a larger number of replications, then such an ex-
periment was executed.

On personal desktop or laptop computers, preliminary experiments based on the
embedded deterministic model may be executed within minutes or about an hour. But to
finish a Monte Carlo simulation with 100 replications of 6,000 generations of evolution may
require a timespan of a few hours or, in some cases, over 24 or more hours were needed to
finish a Monte Carlo simulation experiment. Indeed, it is interesting to note that the times
needed to complete a Monte Carlo simulation experiment, increase beyond 24 hours with
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increasing complexity of the model under consideration. If an investigator was confined
to using only one or two personal computers and the accomplishment of multitude tacks
and there were required to be accomplished each day, then having a computer tied up for a
day or more can be very disruptive for a research schedule. Based on this experience over
a timespan of a decade or more, the idea that 100 replications were sufficient to provide
an informative statistical summarization of the simulated data was made by trial and error.
Of course, if an investigator has access to a network of computers, which may run for days
without disruption of a research schedule, it would be practical to entertain larger numbers of
replications from which judgements could be made as to whether such sample sizes would
be sufficient to have confidence that statistical summarizations of the simulated data were
sufficiently informative. In this and subsequent sections of the paper, for each experiment
considered, remarks regarding the sufficiency of the number of replications will be made.

There is another case that is worthy of mention when a decision is being made as
to whether an increase in the number of replications after a preliminary confirmatory ex-
periments has been completed would be justified. If there is evidence that the process had
converged to a quasistationary distribution based on the observation that the statistical quan-
tiles appear to relatively flat after some number of generations of evolution, then increasing
the number of replications in a follow-up experiment may not be sufficient to justify the
computer time needed to complete a simulation experiment with a larger number of replica-
tions.

In the experiment reported in this section, as well as those in subsequent sections, only
one set of numerical values of the parameters were under consideration. For example, λ, the
components of the 1 × 3 vector denoting the expected number of offspring contributed to the
next generation by each of the three genotypes were assigned the values

λ = (1.02, 1.02, 1.05). (4.1)

If the three genotypes are denoted by the symbolsA1, A2, andA3, then themutationA1 → A2

would not be beneficial but the mutation A1 → A3 would, by definition, be beneficial. In the
experiment under consideration, the probabilities of mutations among the three genotypes
were assigned the values indicated in the matrix

M =

⎛
⎜⎜⎝

μ11 10−7 0

10−12 μ22 10−14

10−15 10−17 μ33

⎞
⎟⎟⎠, (4.2)

where the principal diagonal elements are chosen such that the sum of each row of the matrix
is 1. By way of interpretation of this matrix, in the first row the assigned probability for the
mutation A1 → A2 was μ12 = 10−7 per generation, but it was assumed that the mutation
A1 → A3 would not occur in this experiment so that, by assumption, μ13 = 0. As can be seen
from the second row of the matrix, it was assumed that the probability of the favorable
mutation A2 → A3 was μ23 = 10−14 so in this computer experiment this mutation was rare,
which raised the question as to whether it would actually appear in a simulated population.
In conversations with biologists, who study mutations in bacteria, the probabilities of a mu-
tational event were somewhere in the interval (10−10, 10−6) per generation. Thus, based on this
anecdotal information, the value 10−7 was within range of observed values but experiments
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suggest that the value 10−14 would be a probability for a rare event. It should also be men-
tioned in passing, that if the expected number of offspring produced by mutant genotype 2
were assigned the value λ2 = 1, then from the point of view of reproductive success, this
mutation would be deleterious in the sense that individual of this genotype would be at a
selective disadvantage, because λ2 = 1, but the lambda parameters for the other two genotype
were greater than 1. Thus, in such an experiment, the evolution of deleterious and beneficial
mutation could be considered simultaneously in a computer simulation experiment.

The next step in the assignment of parameter values consisted of assigning values for
the regulation of total population size. As was mentioned in a previous section, the vector
of alpha parameters in the Weibull survival function were assigned the values α = (2, 2, 2),
and, moreover, these values will be used in all experiments reported in subsequent sections.
Recall that the rationale underlying these parameter assignment was discussed in a previous
section. The second set of parameters for the regulation of population size was the vector of
beta parameters for each genotype. For the experiment under consideration, the parameters
in this vector were assigned the values β = (10−6, 10−6, 10−6), indicating that the maximum
total number of individuals for each of the three genotypeswas about onemillion individuals.
Because all the alpha and beta parameters for the three genotype were assumed to be equal
in this experiment, the regulation of population size was not a component of natural selec-
tion. The last numerical input in the experiment was that of assigning values to the three
component vector X(0), the number of individuals of each genotype in the initial population.
In the experiment reported in this section this vector had the components

X(0) = (10, 000, 0, 0). (4.3)

Thus, it was assumed that the initial population consisted only of 10, 000 individuals of geno-
typeA1 and the appearance of genotypesA2 andA3 as the population evolved would be due
to mutations. Subsequently, in this and following sections this experiment will be referred to
as experiment 1.

Because the model under consideration is stochastic, the structure to be predicted in
a computer experiment is the dynamic distribution of the numbers of the three genotypes in
any generation of the evolutionary process. From the analytic point of view, the problem of
deriving a useful form for this dynamic distribution would be very difficult. However, given
a sample ofMonte Carlo realizations of the process, informative properties of this distribution
can be estimated and inferred. As discussed inMode and Gallop [10], it is feasible to estimate
such summary statistics of this dynamic distribution, including the extreme value trajectories
denoted by MIN and MAX as well as quantile trajectories denoted by Q25, Q50, and Q75.
Two other trajectories of interest would be mean and standard deviation denoted by MEAN
and SD. Unlike the stochastic process, whose predictive structure is a dynamic distribution,
the predictive structure of the embedded deterministic model consists of estimates of the
numbers of each of the three genotypes as the population evolves on a time scale of gener-
ations. There is also another property differentiating the stochastic process from the embed-
ded deterministic model. The sample functions of the stochastic model always take values
in the set N of nonnegative integers whereas the numerical values of the trajectories of
the embedded deterministic model take values in the set R

+ = [0,∞) of nonnegative real
numbers.

It was observed in a preliminary experiment that in the embedded deterministic
model, estimates of the number of individuals of genotypeA3 converged to a constant within
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Table 1: Comparisons of numerical values of stochastic and deterministic trajectories for experiment 1.

(a) Stochastic trajectories for genotype 1

GEN MIN Q25 Q50 Q75 MAX MEAN SD

2200 129749 137196 138686 140035 142339 138556.82 2116.18
2201 130070 137337 138512 140068 142463 138581.65 2099.05
2202 129457 137403 138583 140117 143120 138632.99 2123.60
2203 129224 137541 138738 140075 142707 138632.62 2135.92
2204 129302 137223 138918 140126 143430 138667.74 2208.46

(b) Stochastic trajectories for genotype 2

GEN MIN Q25 Q50 Q75 MAX MEAN SD

2200 65 1154 1932 2742 11321 2181.62 1623.22
2201 62 1163 1912 2757 11209 2180.71 1623.55
2202 68 1174 1893 2743 11126 2178.24 1624.77
2203 69 1163 1901 2769 11133 2173.69 1623.14
2204 66 1155 1909 2726 11082 2178.11 1627.84

(c) Stochastic trajectories for genotype 3

GEN MIN Q25 Q50 Q75 MAX MEAN SD

2200 0 0 0 0 0 0 0
2201 0 0 0 0 0 0 0
2202 0 0 0 0 0 0 0
2203 0 0 0 0 0 0 0
2204 0 0 0 0 0 0 0

(d) Deterministic trajectories of genotypes 1, 2, and 3

GEN genotype 1 genotype 2 genotype 3

2200 3.96 × 10−5 8.78 × 10−9 220884.96
2201 3.85 × 10−5 8.54 × 10−9 220884.96
2202 3.74 × 10−5 8.30 × 10−9 220884.96
2203 3.63 × 10−5 8.07 × 10−9 220884.96
2204 3.53 × 10−5 7.85 × 10−9 220884.96

2,200 generations. Therefore, a decision was made to examine the estimated trajectories of the
stochastic process for generation 2,200 and four generations thereafter. Presented in Table 1
are estimated trajectories for each of the three genotypes for the stochastic process as well as
those for the deterministic model for five generations 2,200 through 2,204.

Observe that in the first columns of this table, the symbol GEN denotes generations.
By viewing the numerical values in this table, it is straight forward to compare the predicted
values of the numbers of each of genotype based on the embedded deterministic model
with the estimated trajectories of the stochastic process. When rounded up to the nearest
integer, the embedded deterministic predicts that the number of individuals of genotypes 1
and 2 would be 0 at the generations displayed. However, as can be seen from the estimated
trajectories for the numbers of genotypes 1 and 2 for the stochastic model in the upper two
subtables of Table 1, all these numbers differ significantly from 0. But, there is a greater
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Figure 1: The evolutionary trajectories of the three genotypes as predicted by the embedded deterministic
model.

difference in the predictions of the embedded deterministic model and the stochastic process
for genotype 3. For according to the predictions of the embedded deterministic model in the
subtable at the bottom of Table 1, the number of individuals in the population of genotype
3 would be about 220,884.96. But, in the subtable immediately above that for the predictions
of the deterministic model, the numbers for the stochastic model are uniformly 0, indicating
that in the sample of Monte Carlo simulations of the process, the mutant genotypeA3 did not
appear in 100 replications of 6,000 generations of evolution.

To get a more informative overview of the predictions of the embedded deterministic
model, the trajectories of the three genotypes were graphed for the first 2,200 generations of
the experiment. Presented in Figure 1 are the graphs of the trajectories of the three genotypes
for the embedded deterministic model.

From an inspection of the graphs of the trajectories for the three genotypes, it can
be seen that the estimated number of individuals of genotype 1 began a steep decline
somewhere between 1,300 and 1,400 generations into the simulated evolutionary time period.
Accompanied by this steep decline in the estimated number of individuals of genotype 1
was a steep increase in the number of individuals of genotype 3. By generation 1,800 the
number of individuals of genotype 3 had reached a level value at about a midpoint between
the numbers 2 × 105 and 2.5 × 105 whereas the number of individuals of genotype 1 has
declined to a value near zero. Throughout the 2,200 generations displayed in Figure 1, the
number of individuals of mutant genotype 2 remained at relatively low numbers. Because
it was assumed that individuals of genotype 3 had a reproductive advantage, the forms of
the graphs of the trajectories in Figure 1 were expected, but at the outset of the experiment it
was not clear as to the number of generations required before the number of individuals of
genotype 3 rose to predominance in the population.

It is of methodological interest to ask the question: in what sense are the trajectories
computed from the embedded deterministic model measures of central tendencies of realized
sample functions of the process. Because the median trajectories,Q50, for the three genotypes
were estimated from the simulated Monte Carlo data for each of the three genotypes and is
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Figure 2: A comparison of deterministic and stochastic Q50 trajectories for genotypes 1 and 2.

a measure of central tendency for the sample functions of the process, it is of interest to plot
the deterministic and Q50 trajectories for the three genotypes. But, in the experiment under
consideration, no individuals of mutant genotype 3 appeared in 100 replications of 6,000
generations of evolution. Consequently, for the experiment under consideration, it is possible
to focus attention only on the trajectories of genotypes 1 and 2. Presented in Figure 2 are
graphs of the deterministic and Q50 trajectories for the numbers of individuals of genotypes
1 and 2 for the first 2,200 generations of simulated evolution.

As can be seen from Figure 2, the deterministic trajectory for genotype, denoted by
genotype 1, and the Q50 trajectory, which was estimated from a sample of Monte Carlo
realizations of the process, are quite close in relative terms for nearly 1,400 generations of the
2,200 generations of evolution presented in the figure. But, after 1,400 generations, genotype
1, the deterministic trajectory for genotype 1 declines steeply until somewhere between 1,600
and 1,800 generations it reaches a value near zero, but the Q50 trajectory for genotype 1
remains nearly constant at a value less than 15 × 104 throughout the remaining generations
shown in the figure. But, the deterministic trajectory, genotype 2, and the stochastic trajectory
Q50 for genotype 2 remain at low values throughout a period of 2,200 generations of
simulated evolution. According to the predictions of the embedded deterministic model as
displayed in Figure 1, genotype 3 rises to predominance in the population after about 1,500
generations of evolution. But, in theMonte Carlo simulation experiment under consideration,
individuals of mutant genotype 3 did not appear in the simulated population for 100
replications of 6,000 generations of evolution. Hence, because individuals of genotype 3 did
not rise to predominance in the Monte Carlo simulation experiment, the expected decline in
the Q50 trajectory for genotype 2 did not occur in the simulated realizations of the stochastic
process but remained relatively constant during generations in the timespan of 1,600 to 2,200
as shown in the figure.

It has been observed in a number of computer experiments not reported here that
even if the probability that a beneficial mutation occurs is small, when the trajectories for
the embedded deterministic model are computed, the rare mutation will always occur and
become predominant in the population in the long run. However, the event that the rare
mutation occurs and becomes predominate in a Monte Carlo simulation experiment may not
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be observed in a simulated sample of realizations of the stochastic process. As mentioned
previously, in a deterministic projection, the range of the set of values for the number of each
of the three genotypes is the set R

+ = [0,∞) of nonnegative real numbers. A subset of this
set is the interval [0, 1) = {x ∈ R | 0 ≤ x < 1} and at the beginning of every projection based
on the deterministic model small positive numbers in the interval [0, 1)will be observed, but
eventually these numbers increase until they exceed the number 1. Apart from the number
0, all numbers in this interval represent fictional individuals, because the actual count of
the number of individuals in a real population must be some whole number in the set N of
nonnegative integers. Because there is ample evidence that many events that have occurred
during the evolution of any species were, in some sense, due to chance or stochastic effects,
a stochastic model seems to be a better approximation to the evolution of a real population,
but, nevertheless, as will be shown in subsequent section, the computed trajectories based on
an embedded deterministic model are quite often reasonable measures of central tendency
for the sample functions of a stochastic process.

In retrospect, it may of been have interest to test whether the beneficial mutation A3

would eventually appear in a simulated population if larger number of generations and
replications of the simulated process were considered. Given the results of the experiment
with 6,000 generations of evolution replicated 100 times, it seems unlikely that an experiment
with more generations of evolution and a greater number of replications would justify the
computer time needed to complete such an experiment. However, this was a value judgement
and other investigators may entertain another judgement and do an experiment with a larger
number of generations and replications of the stochastic process.

It should be mentioned that the results of this experiment were not arrived on a de
novo basis. Rather they were motivated by an experiment with a more complex two-sex
model in which genotypes resulting from beneficial mutation did not appear in a simulated
population in a simulation experiment consisting of 6,000 generations of evolution replicated
100 times. Unlike the experiment reported in this section, the result with the two-sex model
was found serendipitously and was not preplanned. An interested reader may consult Mode
et al. [18] for details.

5. Smaller Probabilities of Beneficial Mutations and
Differential Reproductive Success

This section will be devoted to the question: if the parameter assignments used in the
experiments reported in Section 4 were held constant except for the mutation probability μ23,
thenwhat range of values of this probability would be needed to insure that beneficial mutant
genotype A3 would eventually appear and become predominant in an evolving population?
The goal of this section is to report on the results of two computer experiments in which
the probability of a beneficial mutation, A2 → A3, was assigned larger probabilities than
those in Section 4. In the first of these experiments, the probability of the beneficial mutation
was assigned the value μ23 = 10−10 in contrast to the value μ23 = 10−14, that was used
in experiment 1 reported in Section 4. Before this values was chosen, several preliminary
experiments were conducted. For this set of assigned values for the parameters, individuals
of mutant genotype A3 did eventually become predominant in the population as one might
expect, because, on average, individuals of genotype 3 contributed more offspring to the next
generation than those of genotypes A1 and A2. In this computer experiment, however, there
was greater variation among the numbers of individuals of genotypes 1 and 2 than in the
experiment reported in Section 4. One approach to having an idea as to the amount of this
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variation is to compute the fraction or the frequency of the realizations among the 100 Monte
Carlo replications of 6,000 generations of evolution considered in the experiment that had
no individuals of each of the three genotypes in generation 6,000. For the experiment under
consideration, these frequencies were 0.23, 0.21, and 0, respectively, for genotypes 1, 2, and 3.
By way of contrast for the experiment reported in Section 4, these three frequencies were 0, 0,
and 1, indicating that in all the 100Monte Carlo replications of 6,000 generations of evolution,
the numbers of genotypes 1 and 2 were always positive and those for genotype 3 were always
0 in generation 6,000.

Rather than reporting the results of this experiment in more detail, in this section
attention will be focused on a similar experiment in which the probability of the mutation
A1 → A2 was assigned a lower value than the value μ12 = 10−7 used in the experiment
reported in Section 4 as well as the one briefly described in this section. From now on in this
section the values assigned for the mutations A1 → A2 and A2 → A3 were μ12 = μ23 = 10−10.
With this assignment, it was expected that the waiting time until an appearance of the mutant
genotype A2 and the subsequent appearance of the beneficial mutant A3 would, on average,
be longer. All other parameters of the model were assigned the same values as those used in
the experiment reported in Section 4. In the discussion that follows, this experiment will be
referred to as experiment 2. Shown in Table 2 are statistical summaries of simulated data for
five generations of evolution for genotypes 1, 2 and 3 as well as the deterministic trajectories
after the embedded deterministic model had reached a point at which the trajectory for
genotype 3 was constant in experiment 2.

As can be seen from the lower subtable of Table 2, by generation 2,105 the deterministic
trajectory for genotype 3 had converged to a constant of about 220,884 individuals and that
the numbers of individuals of genotypes 1 and 2 were essentially zero. On the other hand,
the estimated stochastic trajectories for genotypes 1, 2, and 3 present a different story. For
example, in the subtable for genotype 1, in which the estimated predictive trajectories of the
stochastic process for this genotype are displayed, the estimated trajectories are signatures of
high levels of variation, stochasticity, among the 100 Monte Carlo realizations of the process
for generations 2,105 through 2,109. For example, the value of MIN trajectory is 0 for all
these generations, which indicated that among some of the 100 Monte Carlo realizations of
the process, no individuals of genotype 1 were present in the simulated population during
these generations. Interestingly, apart from two exceptions, the values of the Q25, Q50, and
Q75 trajectories were 1 during these generations. It is also interesting to note that the median
Q50 = 1 trajectory is near that predicted by the embedded deterministic model for these
generations. The high level of stochasticity displayed among the 100Monte Carlo realizations
of the process is displayed very clearly by the MAX, MEAN, and SD trajectories in the
right-most three columns of the subtable for genotype 1. For in these columns, the MAX
exceeds 141,000 individuals, the MEAN trajectory exceeds 6,800, and the standard deviation
trajectory, SD, exceeds the value 29,000 in all generations. Observe that values of SD are 4- to
5-times grater than the values of the mean in these generations, which is also a signature of
high levels of stochasticity.

The estimated stochastic trajectories for the stochastic process in the generations under
consideration in the subtables for genotypes 2 and 3, however, display signatures of more
moderate levels of stochasticity among the 100 Monte Carlo realizations of the process.
In particular, it is interesting to note that values of the Q50 trajectory in the subtable for
genotype 2, which exceed the value 220,000 in all five generations, are much greater than that
predicted by the embedded deterministic model, but rather closely match those predicted by
the embedded deterministic model for genotype 3 which were also greater than 220,000 in
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Table 2: Comparisons of numerical values of stochastic and deterministic trajectories for experiment 2.

(a) Stochastic trajectories for genotype 1

GEN MIN Q25 Q50 Q75 MAX MEAN SD

2105 0 1 1 1 141357 6915.43 30084.44
2106 0 0 1 1 141866 6892.56 30002.01
2107 0 1 1 1 141905 6879.54 29960.46
2108 0 0 1 1 142067 6874.84 29949.86
2109 0 1 1 1 142875 6860.15 29895.47

(b) Stochastic trajectories for genotype 2

GEN MIN Q25 Q50 Q75 MAX MEAN SD

2105 0 219892 220873 221502 223817 210124.57 46984.89
2106 0 219777 220764 221457 223816 210044.14 46937.52
2107 0 220039 220542 221381 223952 210087.86 46921.99
2108 0 219893 220751 221191 224191 210111.26 46892.89
2109 0 219958 220799 221469 224603 210195.93 46865.36

(c) Stochastic trajectories for genotype 3

GEN MIN Q25 Q50 Q75 MAX MEAN SD

2105 0 219892 220873 221502 223817 210124.57 46984.89
2106 0 219777 220764 221457 223816 210044.14 46937.52
2107 0 220039 220542 221381 223952 210087.86 46921.99
2108 0 219893 220751 221191 224191 210111.26 46892.89
2109 0 219958 220799 221469 224603 210195.93 46865.36

(d) Deterministic trajectories for the Three genotypes

GEN genotype 1 genotype 2 genotype 3

2105 6.04 × 10−5 9.00 × 10−11 220884.96
2106 5.87 × 10−5 8.97 × 10−11 220884.96
2107 5.70 × 10−5 8.93 × 10−11 220884.96
2108 5.54 × 10−5 8.90 × 10−11 220884.96
2109 5.38 × 10−5 8.87 × 10−11 220884.96

all generations. From the subtable for genotype 3 it can be seen that the Q50 trajectory is also
close to that predicted by the embedded deterministic model, but the MIN trajectory for
genotype 3 has the constant value 0 in all generations and this together with the SD, which
exceeds 46,000 in all generations, are indicative of significant levels of variation among the
100 Monte Carlo realizations of the process.

The reported values in Table 2 provide detailed insights for the evolution of the
stochastic process for the five generations considered, but to obtain broader overview of the
simulated data three graphs will be presented. Presented in Table 2 are the estimatedQ50 and
deterministic, DET, trajectories for genotype 1 for the first 2200 generations of 6,000 simulated
generations of evolution.

From this figure a clearer picture of the evolution of the numbers of individuals of
genotype 1 during the first 2,200 generations of the experiment emerges as predicted by
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Figure 3: Estimated Q50 and DET trajectories for genotype 1 in experiment 2.

the stochastic process and the embedded deterministic model. Thus, it can be seen from this
figure that the Q50 trajectory of the process and that for the embedded deterministic model
essentially agree for nearly 800 generations of the simulation experiment. But, at about 800
generations into the experiment, theQ50 trajectory of the stochastic process declines to values
near 0 by generation 1,000. On the other hand, the DET trajectory remains essentially constant
until about 1,300 generations into the experiment and then declines steeply to values near 0 by
generation 1,600. The observation that the generation times needed to reach near zero values
for the Q50 and DET trajectories differ by about 600 generations confirms that in experiment
2, the predictions for genotype 1 according to the embedded deterministic model were not
good measures of central tendencies of the process throughout the first 2,200 generations
of the experiment. Note, however, that the two trajectories are both essentially 0 after 1,600
generations of simulated evolution.

For the sake of brevity, a graph showing the Q50 and DET trajectories for genotype
2 will not be displayed in this section, but suffice to mention that these trajectories did not
coincide throughout the 2,200 generations considered in Figure 3. In the following two figures
attention will be focused on genotype 3, which was expected to become predominant in
the population as it evolved after a sufficiently long period of time. Presented in Figure 4
are the estimated Q50 and DET trajectories for individuals of genotype 3 for the first 2,200
generations of the experiment.

When this figure is viewed, it becomes clear that also for genotype 3, the trajectory
computed using the embedded deterministic model was not a good measure of central
tendency for the stochastic process throughout the first 2,200 simulated generations of ev-
olution. For in this case, the Q50 and DET trajectories essentially agreed for the first 600
generations of the experiment but thereafter differed significantly until about generation
1,600. Thus, it can be seen that by about 700 generations into the experiment, the Q50
trajectory had reached an essentially constant value between 2× 105 and 2.5× 105 individuals
but the DET trajectory did not rise to this nearly constant value until about 1,400 generations
into the experiment. Thus, in this experiment the number of generations in which there
was not good agreement between the stochastic and deterministic trajectories was about
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Figure 4: Estimated Q50 and DET Trajectories for Genotype 3 in Experiment 2.

700 generations. But after 1,600 generations of evolution, these two trajectories essentially
coincided.

Figures 3 and 4 represent transitory evolutionary periods in which the numbers of
individuals of genotype 1 were decreasing and those of genotype 3 were increasing, due to
its selective advantage. It is during this transitory period that the trajectory of the embedded
deterministic model is not a good measure of central tendency for the sample functions of the
stochastic process, but, outside this transitory period, the Q50 trajectory of the process and
that of the embedded deterministic model, DET, are quite close. A question that naturally
arises is how close are these two trajectories for each genotype near the end of 6,000 gener-
ations of simulated evolution. Presented in Figure 5 are graphs of the trajectories, Q50 and
DET, for individuals of genotype 3 in the last 200 generations of the experiment.

As can be seen from this figure, the trajectory of embedded deterministic model is flat,
as one would expect after viewing the graph of this trajectory in Figure 4 for genotype 3. In
Figure 5, however, it can be seen that Q50 trajectory of the process varies around the DET
trajectory, but in terms of actual numbers of individuals in the population of genotype 3 this
variation is relatively small. It is known that for some classes of branching processes, the
process converges in distribution to a quasistationary distribution. There is a rather extensive
literature on quasistationary distributions that may be found by consulting the Internet, but
the technical ideas underlying such distributions here will be confined to some brief remarks.

Consider a vector-valued stochastic Markov process, X(t) for t = 0, 1, 2, 3, . . ., taking
values in the set N

(3) of three-dimensional nonnegative integers. Let S1 denote the set of
absorbing states and let S2 denote the set of transient states. To illustrate these ideas, for
the branching process under consideration, N

(3) is the state space and 0 = (0, 0, 0) is called an
absorbing state, because in the absence of immigration, if the population enters this state, it is
extinct and evolution ends for this species. Thus, in this example, the set of absorbing states
is S1 = {0}, the set consisting of only the zero vector 0. And the set S1 = {x ∈ N

(3) | x/= 0}
is the set of transient states in which the population evolves. Next, let E(t) denote the event
that process is in some transient state in generation t ∈ N. Then, the conditional probability
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Figure 5:Graphs of the trajectoriesQ50 and DET of genotype 3 for generations 5,800 to 6,000 in experiment
2.

that the process is in some transient state x ∈ S2 in generation t, given that it started in state
x0 ∈ S2 at time t = 0, is

P[E(t) | X(0) = x0] =
∑
x
P[X(t) = x | X(0) = x0], (5.1)

where the sum ranges over all states x ∈ S2. Therefore, the conditional probability that the
population is in some transient state y ∈ S2 in generation t, given the event E(t), is

P[X(t) = y ∈ S2 | E(t)] =
P[X(t) = y | X(0) = x0]
P[E(t) | X(0) = x0]

, (5.2)

for every y ∈ S2. For some cases, it has been shown that

lim
t↑∞

P[X(t) = y ∈ S2 | E(t)] = π(y), (5.3)

for y ∈ S2 and the limit does not depend on the initial condition X(0) = x0 ∈ S2. When
it can be proven that this limit exists, it is called the quasistationary distribution on the set
S2 of transient states. No attempt will be made in this paper to prove that this limit exists,
but the experimental evidence, such as that displayed in Figure 5 and in subsequent figures,
suggests that the process under consideration did converge to a quasistationary distribution
as t ↑ ∞, because in none of these experiments extinction of the population within 6,000
generations of evolution has not been observed. It will be noted from Figure 5 that even
though the embedded deterministic model has converged to a constant for genotype 3, the
Q50 trajectory for this genotype fluctuates around this constant, which is indicative of the
concept of convergence in distribution. For if a process converges in distribution, the sample
functions of the process continue to fluctuate around some measure of central tendency, and,
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in many cases, the stationary distribution will have a constant and finite expectation and
variance but the variation among the realizations of the process continues indefinitely as the
population evolves in time. The graphs for genotypes 1 and 2 were not displayed for the last
200 generations of experiment 2, because they were noninformative. In particular, the Q50
trajectory was a constant 1 and the DET was essentially 0 throughout the last 200 generations
for both genotypes 1 and 2, indicating that both these genotypeswere present in the simulated
population only in small numbers.

6. Differential Capacities to Compete as Driving Forces of Evolution

In this section, the results of two computer simulation experiments will also be reported. In
both of these experiments, the vector denoting the expected number of offspring produced
per generation for each of the genotype was assigned as

λ = (2, 2, 2), (6.1)

so that a population would grow at a faster rate than those considered in Sections 4 and
5. The assignment of expected number of 2 offsprings of each genotype was considered,
because it was assumed that each individual in the population was a cell that reproduced by
binary cell division. According to these assignments, reproductive success as a component of
natural selection in these experiments was, by definition, neutral. It was also supposed that
the probability of the mutation A2 → A3 was μ23 = 10−14, which was the same values as
that for experiment 1 reported in Section 4. To expedite the reading of this section, it will be
helpful to present all the probabilities of mutation among the three genotypes used in these
experiments as indicated in the 3 × 3 matrix

M =

⎛
⎜⎜⎝

μ11 10−10 0

10−14 μ22 10−14

10−15 10−17 μ33

⎞
⎟⎟⎠, (6.2)

where elements on the principal diagonal are chosen such that all rows of the matrix add up
to one. Differential capacities to compete for food and other resources among the three geno-
types were quantified in terms of the vector

β =
(
10−14, 10−14, 10−16

)
. (6.3)

According to these assignments, the total size of a population attained in a computer simula-
tion experiment would be much larger than those in experiments 1 and 2 reported in Sections
4 and 5, and genotype 3 would have a selective advantage over the other two genotypes,
because the parameter assignment β3 = 10−16 allowed individuals of genotype 3 to compete
more successfully for resources in large populations than those of genotypes 1 and 2. This
assignment of parameter values was motivated by the desire to let the population grow to
a sufficient size so as to increase the likelihood that a mutational event of low probability
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would actually occur. The initial vector, denoting the numbers of each of the three genotypes
in the population at generation 0 was chosen as

X(0) = (10, 000, 0, 0), (6.4)

indicating, by assumption, that there are 10,000 individuals of genotype 1 in the initial
population, but the number of individuals of each of the genotypes 2 and 3 was 0. All other
parameters of the model were assigned the same values as used in experiments 1 and 2
reported in Sections 4 and 5.

Given the small values for the β displayed in (6.3), large population sizes that were
permitted to occur in a computer experiment, so it was expected that the rare beneficialA2 →
A3, which occurred with probability μ23 = 10−14 per generation, would be more likely to arise
in this experiment and eventually become predominant in the population. This expectation
was realized as indicated the frequencies of the events that number of individuals of each of
the three genotypes in generation 6,000 of the experiment was 0. The observed frequencies of
these event were 0, 0.1 and 0. Thus, for genotypes 1 and 3, among all the 100 Monte Carlo
replications of 6,000 generations of simulated evolution, the number of individuals of each of
the genotype 1 and 3 was at least 1. But, for the case of genotype 2, in generation 6,000 of this
experiment, in 10 of theMonte Carlo replications, there were no individuals of genotype 2 but
in the other 90 replications there was at least one individual of genotype 2. Given the very
small probabilities of the back mutations, A3 → A2 and A3 → A1, see row 3 of the matrix
in (6.2), it seems plausible that in the 10 Monte Carlo replications in which the number of
individuals of genotype 2 was 0 in generation 6,000, this rare back mutation did not occur.

Instead of discussing the results of this experiment more thoroughly in the remainder
of this section, attention will be focused on an experiment in which all the parameters were
chosen as above but the initial vector for the population was chosen as

X(0) = (1, 0, 0), (6.5)

indicating that in the initial population there was only one individual of genotype 1. To
motivate this choice of initial condition, think of one individual, a spore for example, being
dispersed to a new environment and the evolution of this very small founder population was
subsequently followed for a long period of time. In such a situation, it seems natural to think
about whether the offspring of the single initial individual would survive and evolve into a
large population or would the population become extinct. From now on, this computer run
will be referred to as experiment 4.

As expected in this experiment, the evolution of the population occurred at a more
rapid pace than in the experiments reported in the preceding sections. Presented in Table 3
are five generations of statistically summarized simulated data for each of the three genotypes
after the embedded deterministic model had converged.

All values in the subtable for the stochastic trajectories of genotype 3 should be
multiplied by 1015, indicating that in experiment 4 the number of individuals of genotype
3 had become very large after a short period of 150 generations of evolution. A feature
common to all statistically summarized Monte Carlo simulation data in Table 3 is that for
genotypes 1, 2, and 3, the trajectories MIN and Q25 are all zero. After this observation, these
trajectories were inspected for 6,000 generations of evolution, and it was observed that in all
these generations the MIN and Q25 trajectories were 0. This observation indicates that in at
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Table 3: Comparisons of numerical values of stochastic and deterministic trajectories for experiment 4.

(a) Stochastic trajectories for genotype 1

GEN MIN Q25 Q50 Q75 MAX MEAN SD

150 0 0 5 8 16 5.18 3.99
151 0 0 6 8 18 5.45 4.14
152 0 0 5 8 17 5.17 3.91
153 0 0 5 9 14 5.48 4.07
154 0 0 6 8 15 5.38 3.94

(b) Stochastic trajectories for genotype 2

GEN MIN Q25 Q50 Q75 MAX MEAN SD

150 0 0 1 1 1 0.70 0.46
151 0 0 1 1 1 0.68 0.47
152 0 0 1 1 1 0.65 0.48
153 0 0 1 1 1 0.67 0.47
154 0 0 1 1 1 0.65 0.48

(c) Stochastic trajectories for genotype 3

GEN MIN Q25 Q50 Q75 MAX MEAN SD

150 0 0 8.33 8.33 8.33 6.16 3.67
151 0 0 8.33 8.33 8.33 6.16 3.67
152 0 0 8.33 8.33 8.33 6.16 3.67
153 0 0 8.33 8.33 8.33 6.16 3.67
154 0 0 8.33 8.33 8.33 6.16 3.67

(d) Deterministic trajectories for the three genotypes

GEN genotype 1 genotype 2 genotype 3

150 8.33 0.08 8.33 × 1015

151 8.33 0.08 8.33 × 1015

152 8.33 0.08 8.33 × 1015

153 8.33 0.08 8.33 × 1015

154 8.33 0.08 8.33 × 1015

least 25 of the 100 Monte Carlo replications considered, the population had become extinct.
Thus, this experiment suggests that with probability of at least 0.25, a population evolving
from a single individual of genotype 1 would become extinct and in the contrary case the
population of individuals of genotype 3 would continue to grow until the carrying capacity
of the environment limited total population size, but the number of individuals of genotypes
1 and 2 would remain relatively small. Interestingly, in generation 6,000 of this experiment,
the fractions of the 100 realizations of the process that contained zero individuals for each of
the three genotype were 0.27, 0.3, and 0.26 for genotypes 1, 2, and 3, respectively.

From the point of view of evolutionary dynamics, the most interesting period of
simulated evolution is that in which the stochastic process is in a transient phase before
converging in distribution to a quasistationary distribution. Presented in Figure 6 are the
graphs of Q50 and DET trajectories for the first 160 generations of evolution.
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Figure 6: Estimated Q50 and DET trajectories for genotype 1 in experiment 4.

At the outset, it should be realized that the estimated trajectories in Figure 6, as well
as in the two figures that follow, are based on those realizations of the process in which the
population did not become extinct. As can be seen from this figure, in the rapidly evolving
population of experiment 4, the median number of individuals of genotype 1 evolved from
a single individual of genotype 1 in the initial generation to a median population size of
over 8 × 1013 in a little over 40 generations. During this transitory period of evolution, the
Q50 and DET trajectories nearly coincide until about generation 90, when the Q50 trajectory
declines to small values. But, the DET trajectory does not undergo this steep decline until
about 120 generations into the simulation experiment, and after 120 generations the two
trajectories nearly coincide. This pattern is similar to those reported in previous section, but
in experiment 4 evolution progressed much more rapidly.

In this experiment, the evolutionary pattern in the transitory phase of the evolving
stochastic process for genotype 2 was also very interesting. Presented in Figure 7 are graphs
of the Q50 and DET trajectories for genotype 2.

Throughout the 160 generations of evolution displayed in Figure 7, the DET trajectory
for genotype 2 remains essentially near zero, but the Q50 trajectory begins to rise steeply
after about 40 generations and then reaches a plateau of less than 4.5 × 1010 individuals and
remains there until about generation 90, when it declines to nearly zero. This steep increase
to about 4.5 × 1010 individuals of this genotype was a crucial event in the evolution of the
population, because evidently the population of genotype 2 had reached a sufficiently high
number to make it probable that the rare beneficial mutation A2 → A3 with probability
μ23 = 10−14 per generation occurs. After individuals of genotype 3 appeared in the evolving
population, they soon rose to predominance by outcompeting individuals of genotypes 1 and
2. To complete the picture of the transitory period of evolution of the process, presented in
Figure 8 are graphs of the Q50 and DET and for genotype 3 during this period.

Just as one would expect after viewing Figure 7 for genotype 2, the steep rise of
the Q50 trajectory for genotype 3 to predominance in the population begins after about 90
generations of evolution and soon reaches a number of over 8×1015 individuals, at which the
carrying capacity of the environment limits further growth of the population of individuals
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Figure 7: Estimated Q50 and DET trajectories for genotype 2 in experiment 4.
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Figure 8: Estimated Q50 and DET trajectories for genotype 3 in experiment 4.

of genotype 3. The steep rise of the DET trajectory, however, does not begin until about 120
generations of evolution and thereafter coincides with the stochastic Q50 trajectory.

After inspecting the stochastic trajectories for genotype 3 in Table 3, one may get the
impression that, given that the population did not become extinct and had converged to a
quasistationary distribution, at stationarity there was essentially no variation around theQ50
trajectory. But, after viewing the trajectories MEAN and SD for genotype 3 in Table 3, it can
be seen that such an impression was not entirely correct. From this table it can be seen that
the Q50 trajectory of the quasistationary distribution is about 8.33 × 1015 for this genotype,
which is very dependent on those realizations of the process in which the population did not
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become extinct. But the MEAN and SD trajectories also take into account those replications
of the experiment in which the population became extinct. According to Table 3, the values
of these trajectories for the mean and standard deviation were about MEAN = 6.16 × 1015

and SD = 3.67× 1015. Thus, if one examined the variations among the sample functions of the
process after it had converged to a quasistationary distribution and examined them for many
decimal places, variation would be present but its range would be small in relative terms.

7. Neutral Evolution—Mutation but No Selection

Within the class of branching processes under consideration, evolution is said to be neutral if
all components of natural selection for each of the three genotypes are assigned equal values.
In the model under consideration, there are two components of natural selection, namely,
differences in reproductive success, expressed in terms of the expected number of offspring
contributed by members of each genotype to the next generation, and competitive abilities
among members of the three genotypes to compete for environmental resources expressed
in terms of parameters that regulate the total population size for each genotype. Thus, in
the experiment reported in this section, the components of the 1 × 3 vector λ were assigned
the same values as those in (6.1) so that on average each member of the three genotypes in
any generation would contribute two offspring to the next generation. Given these assigned
parameters values, it was expected that total population size would increase rapidly and
thus increase the likelihood that mutant genotypes would actually appear in a simulation
experiment.

To expedite comparisons among the experiments presented in the preceding sections,
the 3× 3 matrix of mutation probabilities M, containing probabilities of mutations among the
three genotypes per generation, were assigned the same values as in (6.2). Unlike the β vector
displayed in (6.3), however, in the experiment under consideration, the values in this vector
were assigned as

β =
(
10−14, 10−14, 10−14

)
, (7.1)

so that there were no differences in the abilities to compete among the three genotypes. To
initiate the simulated evolution of the population, the elements in the initial vector X(0)were
assigned the same values as in (6.4). Underlying the choice of this initial vector was the desire
to make it possible to study the long-term effects an initial population of consisting only
10,000 individuals of genotype 1 under the assumption of neutral evolution. In subsequent
evolution of such a population, individuals of genotypes 2 and 3 could appear only from
the process of mutation among the three genotypes. To further simplify the description of
the experiment, all other assignments of parameter values were chosen just as in the first
experiment described in Section 6.

In the three figures that follow, the DET and Q50 trajectories are plotted for the first
200 generations of evolution for each of the three genotypes. Then, in order to arrive at an
understanding as to how these trajectories will appear after a long period of evolution, these
trajectories were also plotted for the last 200 generations of the 6,000 generations considered
in the experiment.

As can be seen from Figure 9(a), the graphs of the DET and Q50 trajectories for
genotype 1 virtually coincide for the first 200 generations of the experiment. Therefore, for
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Figure 9: Graphs of the DET and Q50 trajectories for genotype 1.
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Figure 10: Graphs of the DET and Q50 trajectories for genotype 2.

genotype 1, the DET trajectory was a good predictor of central tendency for the stochastic
process during the first 200 generations of the experiment. As can be seen, however, from
Figure 9(b) for the last 200 generations, at first site it appears that the flat Q50 trajectory is
uniformly below that of DET trajectory, but when one takes a closer look of the vertical scale
of the graph, where the range of points is from 8.3253 × 1013 to 8.3255 × 1013, it can be seen
that the distance between the two trajectories is small. Thus, theDET trajectory is also a good
predictor of the central tendency of the stochastic process for the last 200 generations of the
experiment, but these trajectories do not coincide as they did in Figure 9(a).

By design, in the experiment under consideration, individuals of genotypes 2 and 3
could appear in the evolving population only if one or more mutations had been realized,
since, by assumption, the initial population was composed of only individuals of genotype 1.
In Figure 10(a) depicting the first 200 generations of evolution for individuals of genotype 2,
it can be seen that DET trajectory rises steeply between 20 and 40 generations into the
experiment and thereafter levels off at a value near 2.5 × 109. But, in this experiment, the Q50



Journal of Probability and Statistics 35

0 20 40 60 80 100 120 140 160 180 200
0
10
20
30
40
50
60
70
80

Generations

N
um

be
r
of

in
d
iv
id
ua

ls

Q50

Genotype 3

DET

(a)

Q50

5800 5840 5880 5920 5960 6000
0

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

Generations

N
um

be
r
of

in
d
iv
id
ua

ls

Genotype 3

DET

(b)

Figure 11: Graphs of the DET and Q50 trajectories for genotype 3.

trajectory remained near 0 throughout the first 200 generations of evolution. Therefore, it
appears that, under an assumption of neutral evolution and individuals of genotype 2 could
arise only through the process of mutation, the DET trajectory was not a good predictor for
the central tendency of the process. As can be seen from Figure 10(a) depicting the last 200
generations of evolution for individuals of mutant genotype 2, the distance between the DET
and Q50 trajectories remained apart for rather large distances so that, even in the long run,
the DET trajectory was not a good predictor of central tendency for the stochastic process.

From Figure 11(a), it can be seen that the Q50 trajectory for the number of individuals
of mutant genotype 3 in the simulated population had increased steadily from 0 in the initial
generation to a level of about 70 individuals by generation 200. This result indicated that
among the 100 Monte Carlo replications of the stochastic process, 50 contained more than 70
individuals in generation 200 and 50 of the other replications of the process in this generation
contained less than 70 individuals. From Figure 11(b), it can be seen that by generation
5,800, the Q50 trajectory for individuals of genotype 3 had reached a number between 9,000
and 10,000 and remained in this range thereafter, indicating the number of individuals of
genotype 3 had risen to significant numbers in the population but had remained relatively
small when compared with the numbers of individuals of genotypes 1 and 2 in generation
6,000. This result was expected, because before individuals of genotype 3 could appear in
the population, a mutation from genotype 1 to genotype 2, A1 → A2, would need to appear
and grow to a sufficiently large number before the mutation A2 → A3 could occur. On the
other hand, the DET trajectory for mutant genotype 3 had remained near 0 for the first and
last 200 generations of the 6,000 generations of simulated evolution. Thus, like the situation
for mutant genotype 2, the trajectory computed using the embedded deterministic model
was not a good predictor for the central tendency of the stochastic process with respect to
genotype 3 as it evolved in time. It should be mentioned in passing that if the simulated
population were a real population observed after a long period of evolution, in the absence
of data on reproductive success of each genotype as well as their competitive abilities, it
would be difficult for an observer to decide whether the observed population had arisen as a
result of mutation and selection or it was the result of neutral evolution with mutation.

When thinking about a population in which genotype 1 was predominate, it would
be tempting to conclude that this genotype had a selective advantage over the other two,
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Table 4: Deterministic Estimates of the Number Individuals of Each of the Three Genotypes in the Last
Five Generations of the Experiment.

Generation genotype 1 genotype 2 genotype 3

5996 8.325541120 × 1013 49, 919, 959.52 0.001496350936
5997 8.325541119 × 1013 49, 928, 285.06 0.001496850136
5998 8.32551118 × 1013 49, 936, 610.60 0.001497349419
5999 8.32554117 × 1013 49, 944, 936.14 0.001497848785
6000 8.325441116 × 1013 49, 953, 261.68 0.001498348234

but, by design, in this experiment, the predominance of genotype 1 in the population was
due to the long-term effects of the founding population consisting of 10,000 individuals of
genotype 1, for in this case, the momentum of population growth coupled with no selection,
let the population of individuals of genotype 1 to continue to grow until it had reached the
carrying capacity of the environment. Evidently, the observation that at 6,000 generations into
the experiment, the number of individuals of genotype 2 was greater than that of genotype 3
was due primarily to the fact that in the simulation experiment, mutant genotype 2 appeared
earlier than genotype 3.

Rather than relying totally on the above plots to get an impression of the magnitude
of estimates of the number of individuals of each of the three genotypes as computed
using the embedded deterministic model, it is of interest to actually view these numbers as
displayed in Table 4 for the last 5 generations of the experiment as predicted by the embedded
deterministic model.

As one can see, the estimates for the number of individuals of genotype 1 are indeed
large, but the deterministic model had not converged during the last 5 generations of the
experiment, because there was agreement in all five generations at only three decimal places.
Interestingly, the estimate of the number of individuals of genotype 2 was nearly 50 million,
but as can be seen from Figure 10(b), this number was relatively small when compared
with 2.5 × 109. The small estimates of the number of individuals of genotype 3 in the last
5 generations are small as actually shown in the lower figure of Figure 11. The rather noisy
numbers presented in Table 4 are representative of the behavior of the embedded determin-
istic model under the assumption of neutral evolution. In those experiments reported in
this paper, in which the driving force of evolution was some component of selection, it was
observed that, in the long run, the deterministic trajectories were less noisy than for the case
of neutral evolution.

8. Discussion

The class of self-regulating branching processes described and applied in this paper may be
extended in several ways that would expedite a wider range of applications. An assumption
underlying the class of branching processes applied in the foregoing sections had the prop-
erty that generations are distinct and nonoverlapping, which implies, for the case reproduc-
tion by division of a mother cell into two daughter cells, that division of all cells in the
population must be synchronized. In many cell populations, however, this is not the case,
because, in general, divisions in these populations are not synchronized. There is a class of
branching process that evolves in continuous time and has the property that reproduction is
not synchronized among individuals. This class of branching processes is sometimes referred
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to as general branching processes. For a treatment of the one-type case see Jagers [4] and
for a treatment of the multitype case Mode [2] may be consulted. In both these books, the
branching processes considered are not self-regulating andwould thus need to be generalized
to render them more realistic from the biological point of view. However, in chapter 12
of Mode and Sleeman [12] a formal treatment is given to a class of self-regulating age-
dependent two-sex branching processes with partnership formation and dissolution, which
from the genetic point of view, accommodates a single autosomal locus with two alleles.
Moreover, a simplification of this class of processes could be accomplished mathematically
and used to conduct computer simulation experiments by writing the appropriate software
in a programming language of a developer’s choosing. Given such software, computer ex-
periments, which would be extensions of those reported in this paper, could be executed.

There is another and perhaps more important field of research that has a rich potential
for applications of self-regulating branching processes. For nearly a decade or more, there has
been an extensive research effort involving many investigators to find signals of the impact
of recent natural selection in genome-wide sweeps of the human genome and those of other
species. The recent review paper by Stranger et al. [19] may be consulted for details along
with a long list of references. Another reference with a long list of cited papers on regions of
the human genome that have been implicated as sites of positive selection is that of Sabeti
et al. [20] in the supporting online material. Among the many statistical techniques used
in these research efforts are those that apply computer simulation methods which simulate
the evolution of model genomes with up to one million base pairs under the influence of
mutation, linkage and natural selection. Chapter 14 in the work by Mode and Sleeman
[12] contains an overview of these simulation methods, which have been proposed and
applied by several teams of investigators. Also contained in this chapter is a critique of these
methods, because of the lack of transparency in the description of the mathematical algo-
rithms underlying their methods so that, in general, it is not clear to a reader literate in
mathematics as to the fundamental mathematical nature of these algorithms.

Under these circumstances, many readers of such papers will view the reported results
of simulation experiments using various methods with considerable skepticism, because
of a lack of mathematical transparency of the algorithms implemented in the simulation
software. As a first step in overcoming this lack of transparency, in chapter 14 of the work
by Mode and Sleeman [12], an attempt has been made to write a transparent account of
a set of preliminary algorithms designed to simulate the evolution of model genomes that
accommodate various types of mutations, linkage, and natural selection. Included in the
types of mutations are nucleotide substitutions, deletions, inversions, and gene conversions.
A goal of such a research program would be that of incorporating such software within a
branching process framework so that the components of natural selection could be quantified
and the combined effects of mutation and selection could be simulated at the genomic level.
In contrast with the abstract level at which mutations have been treated in this paper with no
formal connection to changes in the genome, linking the effects of mutations and selection to
a model genome would be more informative and satisfying.

In carrying out such a program, a detailed account of the mathematics underlying
the algorithms would increase the transparency of the methods used to obtain the results
of computer simulation experiments and would thus increase their credibility to a reader. It
should be mentioned, in passing, that in this paper an attempt has been made to present
the mathematics underlying the software in a transparent fashion so that a reader can
view the reported results of simulated experiments with confidence. For, in principle, given
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the mathematics outlined in this paper, software could be written by a reader to check the
validity and reproducibility of the reported experimental results.

Whenever an investigator is considering the computer implementation of somemathe-
matical structure of interest, an issue that always arises is that of deciding what programming
language or combination of programming languages and available software packages to use
in conducting and reporting the results of computer simulation experiments. In the computer
experiments reported in this paper, a version of a programming language called APL 2000
was used to write the software that implemented the underlying mathematics as well as
the procedures to produce statistical summarizations of simulated data produced by using
Monte Carlo methods. Awell-known software package calledMATLABwas used to produce
the graphs and the widely used spreadsheet software called excel, produced by Microsoft,
was used to transfer simulated data among the computers used by the research team. These
choices of software were made, primarily, because the principal investigator had many years
of experience with the APL programming language and the software packages. But, given
the mathematics underlying our software, any team of investigators would be free to write
software, using programming languages and software packages that worked best for them.

After the required software packages had been developed, they could be used not only
in cutting-edge research but also in beginning and advanced courses on biological evolution
to graphical illustrate the processes of mutation and various components of selection as
driving forces of the evolutionary process. In advanced courses, populated by people using
statistical software packages or students with a grasp of the principles underlying stochastic
processes and statistical inference, the technical details could be presented and discussed.
But, for beginning courses on evolution, such software could be used in connection with the
development of computer animation of difficult concepts underlying the science of evolution
that would aid beginning students to get a firmer grasp of the subject.

It was decided at the outset to use Monte Carlo simulation methods to study the emer-
gence and survival of mutations in an evolving population, because it is difficult to maintain
sufficiently large experimental populations to ensure that a rare mutation will appear in an
experiment with reasonably high probability. But, nevertheless, it would be of interest to
investigate whether the class of branching processes under consideration, could be used as
dynamic models for statistical inference in the experimental study of an evolving population.
Such an investigation is beyond the scope of this paper, but it may be of interest for an
interested reader to consider a Bayesian-Monte Carlo integration strategy proposed in work
by Mode [21] for dealing with interfacing stochastic models of HIV/AIDS epidemics with
data. At the moment, it appears to be plausible that the strategy used in that paper could
also be used in the experimental study of the class of evolving populations considered in this
paper, but the details regarding the actual implementation of such a strategy will be left as a
research project for the future.
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