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The functional coefficient partially linear regression model is a useful generalization of the
nonparametric model, partial linear model, and varying coefficient model. In this paper, the local
linear technique and the L1 method are employed to estimate all the functions in the functional
coefficient partially linear regression model. The asymptotic properties of the proposed estimators
are studied. Simulation studies are conducted to show the validity of the estimate procedure.

1. Introduction

In this paper, we are concerned with a functional coefficient partially linear regression model
(FCPLR), that is,

Y = a0(X) +
p∑

j=1

aj(U)Zj + ε, (1.1)

where X and U are random explanatory variables, Z = (Z1, . . . , Zp)
′ is a random vector, and

aj(·) is some measurable function from R to R for j = 0, . . . , p. We call a0(·) the intercept
function, and {aj(·)}, j = 1, . . . , p, the coefficient functions. As usual, ε denotes the errors with
zero-mean and fixed variance.

The FCPLR model, first introduced by Wong et al. [1], is a generalization of the
nonparametric model, partial linear model, and varying coefficient model. Zhu et al. [2]
studied a similar functional coefficient model, a functional mixed model, using a new
Bayesianmethod.Model (1.1) reduces to a varying coefficient regressionmode if the intercept
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function a0(·) is a constant function and a partially linear regression model when the
coefficient functions {aj(·)}pj=1 are constants. Many researchers, for example, Aneiros-Pérez
and Vieu [3], made contributions to studying this kind of model. When X and U in model
(1.1) coincide, the model becomes a semiparametric varying coefficient model discussed
by Ahmad et al. [4]. Since the FCPLR model combines the nonparametric and functional
coefficient regression model, its flexibility makes it attractable in various regression problems
[1].

Statistical inference for the FCPLR model mainly includes the estimations of the
intercept function a0(·) and the coefficient functions {aj(·)}pj=1. To estimate the unknown
functions in the nonparametric/semiparametric regression models, many statistical inference
methods have been proposed over the past decades, such as the kernel estimate method
[5–7], spline smoothing [8, 9], and two-step estimation method [10, 11]. Wong et al.
[1] employed local linear regression method and integrated method to give the initial
estimates of all functions in the FCPLR model. All the papers mentioned above used the
least-squares technique to obtain the estimators of the unknown coefficient functions. The
least-squares estimators (L2 method), of course, have some good properties, especially
for the normal random errors case. It is well known that, however, the least-squares
method will perform poor when the random errors have a heavy-tailed distribution in
that it is highly sensitive to extreme values and outliers. This motivates us to find more
robust estimation methods instead of the aforementioned inference methods for model
(1.1).

Local linear approximation is a good method for nonparametric regression problems
[12], and the L1 method based on the least absolute deviations overcomes the sensitivity
caused by outliers. As noted in Wang and Scott [13] and Fan and Gijbels [12], among
many robust estimation methods, the L1 method based on the local least absolute deviations
behaves quite well. In this paper, we adopt the L1 method, accompany with the local linear
technique and the integrated method to estimate all the unknown functions in model (1.1).
Furthermore, the estimating problem can be reduced to a linear programming problem, and
the numerical solutions are obtained quickly by some available softwares subsequently (e.g.,
Matlab is very useful for this kind of problems). The main difficulty encountered in the proof
of the asymptotic normalities is that the L1 estimates have no closed form. This paper shows
the asymptotic normalities of L1 estimators through amethod completely different from those
based on the L2 method, and the simulation results show that the L1 method is a robust
method indeed.

The rest of this paper is organized as follows. In Section 2, we describe the estimation
method and the associated bandwidth selection procedure. Section 3 gives the the asymptotic
theories of the estimators. Simulation studies are conducted in Section 4. A real application is
given in Section 5. Section 6 gives the proofs of the main results.

2. Least Absolute Deviation Estimate

This section gives the main idea of the proposed estimation method; that is, local linear
polynomials are used to approximate the nonparametric function and the functional
coefficients, and the least absolute deviation technique is used to find the best approximation.
Bandwidth selection technique is also discussed in this section. Throughout this paper, we
suppose that {(Yi, Xi,Ui,Z

′
i)
′}ni=1 is an i.i.d. sample frommodel (1.1) and assume the following

conditions.
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Assumptions

(1) Ω = E(ZZ
′ | X = x0, U = u0) is a positive definite matrix, E(Z | X = x0, U = u0) = ω.

(2) Bandwidth h subjects to h ∼ n−1/6.

(3) Random error ε, with zero mean and zero median, is independent of Z conditional
on (X,U). The conditional probability density g(·|x, u) of ε given random variables
X andU is continuous in a neighborhood of the point 0, and g(0|x, u) > 0. ε1, . . . , εn
are independent and identically distributed.

(4) The density functions f(x, u), f1(x), f2(u) of (X,U), X, and U are continuous in
neighborhoods of (x0, u0), x0 and u0, and f(x0, u0) > 0.

(5) All functions aj(u), j = 1, . . . , p and a0(x) are twice continuously differentiable in
neighborhoods of u0 and x0, respectively.

(6) Kernel functions Kk(·), k = 1, 2 are bounded, nonnegative, and compactly
supported.

(7) max1≤i≤n‖Zi‖ = op(n1/3).

To simplify typesetting, we introduce the following symbols:

μi(k) =
∫
viKk(v)dv, γi(k) =

∫
viK2

k(v)dv for k = 1, 2. i = 1, 2, . . . . (2.1)

2.1. Local Linear Estimate Based on Least Absolute Deviation

The main idea is to approximate the functional coefficients aj(·) by linear functions for j =
0, . . . , p, that is, a0(x) can be approximated by

a0(x) ≈ a0(x0) + a′
0(x0)(x − x0) (2.2)

for x in a neighborhood of x0 within the closed support of X, and aj(u) by

aj(u) ≈ aj(u0) + a′
j(u0)(u − u0), j = 1, . . . , p (2.3)

for u in a neighborhood of u0 within the closed support ofU. For simplicity, denoting a0(x0),
a′
0(x0) as a0, b0, and aj(u0), a′

j(u0) as aj , bj for j = 1, . . . , p. The local linear least absolute
deviation estimate (L1 estimate) of the unknown parameters a0, b0, a := (a1, . . . , ap)′ and b :=
(b1, . . . , bp)′, denoted, respectively, by â0, b̂0, â, b̂, is the optimal solution of the minimization
problem as follows:

min
n∑

i=1

∣∣Yi − a0 − b0(Xi − x0) − a′Zi − b′(Ui − u0)Zi

∣∣K1,h(Xi − x0)K2,h(Ui − u0), (2.4)
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where Kk,h(·) = Kk(·/h), k = 1, 2 are the given kernel functions and h is the chosen
bandwidth. The optimization problem is equivalent to the following linear programming
problem:

min
n∑

i=1

(
e+i + e−i

)
K1,h(Xi − x0)K2,h(Ui − u0)

s.t. a0 + b0(Xi − x0) + a′Zi + b′(Ui − u0)Zi + e+i − e−i = Yi,

e+i ≥ 0, e−i ≥ 0, i = 1, . . . , n.

(2.5)

There are many algorithms available for the optimal solution of problem (2.5); for example,
the feasible direction method can be directly used to compute the optimal solution [14], and
the numerical solution of (2.5) can be quickly computed by a series of Matlab functions.

By the integrated method [1], the estimator of the intercept function a0(x) is defined
by

ã0(x0) =
1
n

n∑

k=1

â0(x0, Uk), (2.6)

and the estimators of the coefficient functions aj(u0), j = 1, . . . , p are defined by

ãj(u0) =
1
n

n∑

k=1

âj(Xk, u0), j = 1, . . . , p. (2.7)

We focus our main task in establishing the asymptotic distributions of the estimators ã0(x0)
and ãj(u0) for j = 1, . . . , p.

2.2. Selection of Bandwidth

It is well known that the choice of the bandwidth strongly influences the adequacy of the
estimators. We use an automatic bandwidth choice procedure in this paper; that is, the
absolute cross-validation (ACV) method, and the ACV bandwidth hACV is defined as

hACV = arg minACV(h) =
1
n

n∑

k=1

∣∣∣∣∣∣
Yk − â−k

0 (Xk) −
p∑

j=1

â−k
j (Uk)Zkj

∣∣∣∣∣∣
, (2.8)

where a−k
0 (Xk) and a−k

j (Uk), j = 1, . . . , p are constructed based on observations with size n− 1
by leaving out the kth observation ((Yk,Xk,Uk)′,Z′

k
)′. According to Wang and Scott [13], this

bandwidth is better than cross-validation (CV) bandwidth hCV. The latter one is suggested
by Rice and Silverman [15] and often used in curve regression as in Hoover et al. [6] and Wu
et al. [7].
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3. Asymptotic Theory

This section gives the asymptotic distribution theories of the estimators. Using Taylor’s
expansion, for |Xi − x0| ≤ Ch and |Ui − u0| ≤ Ch, we have

a0(Xi) = a0(x0) + a′
0(x0)(Xi − x0) +

1
2
a′′
0(ξi)(Xi − x0)2,

aj(Ui) = aj(u0) + a′
j(u0)(Ui − u0) +

1
2
a′′
j

(
ηij
)
(Ui − u0)2, for j = 1, . . . , p,

(3.1)

where ξi is between x0 and Xi, and ηij is between Ui and u0. Let a(u0) = (a1(u0), . . . , ap(u0))
′,

b(u0) = (a′
1(u0), . . . , a′

p(u0))
′, c(u0) = (a′′

1(u0), . . . , a′′
p(u0))

′, then we have

(
â0, b̂0, â′, b̂′

)′

= arg min
n∑

i=1

∣∣Yi − a0 − b0(Xi − x0) − a′Zi − b′(Ui − u0)Zi

∣∣K1,h(Xi − x0)K2,h(Ui − u0)

= arg min
n∑

i=1

⎧
⎨

⎩

∣∣∣∣∣∣

√
nh2

[
(a0 − a0(x0)) +

(
b0 − a′

0(x0)
)
(Xi − x0)

] 1√
nh2

+
√
nh2

[
(a − a(u0))′Zi + (b − b(u0))′(Ui − u0)Zi

] 1√
nh2

−
⎡

⎣1
2

⎛

⎝a′′
0(ξi)(Xi − x0)2 +

p∑

j=1

a′′
j

(
ηij
)
(Ui − u0)2Zij

⎞

⎠ + εi

⎤

⎦

∣∣∣∣∣∣

−
∣∣∣∣∣∣
1
2

⎛

⎝a′′
0(ξi)(Xi − x0)2 +

p∑

j=1

a′′
j

(
ηij
)
(Ui − u0)2Zij

⎞

⎠ + εi

∣∣∣∣∣∣

⎫
⎬

⎭

×K1,h(Xi − x0)K2,h(Ui − u0).
(3.2)

The aim of this paper is to study the asymptotic behavior of
√
nh(ã0 − a0(x0)) and√

nh(ã−a(u0)). Combining some technique reasons, we first introduce the new variables α0 =√
nh2(a0−a0(x0)), α =

√
nh2(a−a(u0)), β0 =

√
nh2[(b0−a′

0(x0))h], and β =
√
nh2[(b−b(u0))h]

[16] and form a new equivalent problem as follows:

(
α̂0, β̂0, α̂

′, β̂′
)′

= arg min
n∑

i=1

⎧
⎨

⎩

∣∣∣∣∣∣

[
α0 + β0

(
Xi − x0

h

)]
1√
nh2

+
[
α′Zi + β′

(
Ui − u0

h

)
Zi

]
1√
nh2

−
⎡

⎣1
2

⎛

⎝a′′
0(ξi)(Xi − x0)2 +

p∑

j=1

a′′
j

(
ηij
)
(Ui − u0)2Zij

⎞

⎠ + εi

⎤

⎦

∣∣∣∣∣∣

−
∣∣∣∣∣∣
1
2

⎛

⎝a′′
0(ξi)(Xi − x0)2 +

p∑

j=1

a′′
j

(
ηij
)
(Ui − u0)2Zij

⎞

⎠ + εi

∣∣∣∣∣∣

⎫
⎬

⎭

×K1,h(Xi − x0)K2,h(Ui − u0).
(3.3)
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Let

Fn = E(Sn),

Rn = Sn − Fn +
n∑

i=1

{[
α0 + β0

(
Xi − x0

h

)]
1√
nh2

+
[
α′Zi + β′

(
Ui − u0

h

)
Zi

]
1√
nh2

}
K1,h(Xi − x0) K2,h(Ui − u0) sgn(εi)

:= Sn − Fn +
n∑

i=1

Lni,

(3.4)

where Sn is the objective function of the equality above and sgn(·) is the sign function.
Since the L1 estimators have no closed forms, we first give the limit form of the

function Fn, which is critical to obtain the asymptotic properties of the estimators.

Theorem 3.1. Suppose Assumptions (1)–(7) hold, and n → ∞, then for any fixed α0, β0, α, β, Fn

converges to F(α0, β0, α, β), which is defined as

g(0 | x0, u0)f(x0, u0)
{(

α2
0 + 2α0β0μ1(1) + β20μ2(1)

)

+
(
α′Ωα + 2μ1(2)α′Ωβ + μ2(2)β′Ωβ

)
+ 2α0

(
α′ω + μ1(2)β′ω

)

+ 2β0μ1(1)
(
α′ω + μ1(2)β′ω

)

− a′′(x0)
(
α0μ2(1) + β0μ3(1) + μ2(1)α′ω + μ2(1)μ1(2)β′ω

)

− c(u0)′
(
α0μ2(2)ω + β0μ1(1)μ2(2)ω + μ2(2)Ωα + μ3(2)Ωβ

)}
.

(3.5)

Remark 3.2. If the kernel functions K1(·), K2(·) are symmetric about zero and Lipschitz
continuous, the limit form of F(α0, β0, α, β) can be simplified as

F
(
α0, β0, α, β

)

= g(0 | x0, u0)f(x0, u0)
{
α2
0 + μ2(1)β20 + α′Ωα + μ2(2)β′Ωβ

+2α0α
′ω − μ2(1)a′′(x0)

(
α0 + α′ω

) − μ2(2)c(u0)′(α0ω + Ωα)
}
.

(3.6)

Now we are in the position to state the asymptotic properties of the estimators.
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Theorem 3.3. Suppose Assumptions (1)–(7) hold and n → ∞, then one has

√
nh

(
ã0(x0) − a0(x0) −

h2[μ2
2(1) − μ3(1)μ1(1)

]
a′′(x0)

2
[
μ2(1) − μ2

1(1)
]

)
d−→ N

(
0, σ2

α0

)
, (3.7)

√
nh

(
ã(u0) − a(u0) −

h2[μ2
2(2) − μ1(2)μ3(2)

]
c(u0)

2
[
μ2(2) − μ2

1(2)
]

)
d−→ Np(0,Σα), (3.8)

where

σ2
α0

=

⎧
⎨

⎩

(
1 −ω′Ω−1ω

)
γ0(1)r22(x0)

4
+
μ2
1(1)

[
μ2
1(1)γ0(1) − 2μ1(1)γ1(1) + γ2(1)

]
r22(x0)

4g2(0 | x0, u0)f2(x0, u0)
[
μ2
1(1) − μ2(1)

]2

−
(
1 −ω′Ω−1ω

)
μ1(1)

[
μ1(1)γ0(1) − γ1(1)

]
r22(x0)

2g(0 | x0, u0)f(x0, u0)
[
μ2
1(1) − μ2(1)

]

⎫
⎬

⎭,

Σα =

⎧
⎨

⎩
(Ω −ωω′)−1γ0(2)r21(u0)

4
+
μ2
1(2)

[
μ2
1(2)γ0(2) − 2μ1(2)γ1(2) + γ2(2)

]
r21(u0)Ω−1

4g2(0 | x0, u0)f2(x0, u0)
[
μ2
1(2) − μ2(2)

]2

− μ1(2)
[
μ1(2)γ1(2) − γ1(2)

]
r21(u0)

2g(0 | x0, u0)f(x0, u0)
[
μ2
1(2) − μ2(2)

]
}

(3.9)

with r21(u0) =
∫
f2
1 (u)f(u, u0)du and r22(x0) =

∫
f2
2 (u)f(x0, u)du.

Remark 3.4. If the kernel functions K1(·), K2(·) are symmetric about zero and Lipschitz
continuous, the results of Theorem 3.3 can be simplified as

√
nh

(
ã0(x0) − a0(x0) −

h2μ2(1)a′′(x0)
2

)
d−→ N

(
0,

(
1 −ω′Ω−1ω

)
γ0(1)r22(x0)

4

)
,

√
nh

(
ã(u0) − a(u0) −

h2μ2(2)c(u0)
2

)
d−→ Np

(
0,

(Ω −ωω′)−1γ0(2)r21(u0)
4

)
.

(3.10)

Remark 3.5. Here, we have considered estimation method and asymptotic distributions for
the case that two bandwidths are same. It is important to note that similar asymptotic theories
can be obtained for the case that two bandwidths with the same order are different.

Remark 3.6. If we consider different bandwidth h1, h2 for kernel functions K1 and K2.
Furthermore, suppose the Assumptions (2) and (7) are replaced by h5

1h2 = o(1/n) and
h1h

5
2 = o(1/n), for example, h1 ∼ n−1/6, h2 ∼ n−1/5, and max ‖Zi‖ = op(min{h−2

2 ,
√
nh1h2}),

respectively. Similar results also will be obtained except that all the second-order derivatives
in the results will disappear.

Remark 3.7. This paper restricts the study to one-dimensional variable X. The ideas used
here can be adapted to higher dimensional variable X, for example, consider d-dimensional
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variable X for the case of same bandwidths. Similar asymptotic distribution results for√
nhd(ã(x0) − a(x0)) and

√
nh(ã(u0) − a(u0)) can be obtained under the assumptions with

Assumptions (2) and (7) being replaced by h ∼ n−1/(5+d) and max ‖Zi‖ = op(n2/(5+d)),
respectively.

4. Simulations

In this section, we carry out some simulations to illustrate the performance of L1-method,
and compare the performance of our L1-method with that of the L2-method. All the following
simulations are conducted for sample size n = 100.

The following example is considered:

Y = a0(X) + a1(U)Z1 + a2(U)Z2 + ε, (4.1)

where a0(x) = x + 4 exp(−8x2), a1(u) = 2 sin(1.5πu + u), a2(u) = 4u(1 − u), (X,U)′ ∼
U([−0.5, 0.5]2), Z1, Z2 are normally distributed with correlation coefficient 1/

√
2, the

marginal distributions of Z1 and Z2 are standard normal, ε ∼ N(0, 0.22), and ε, (X,U) and
Z1, Z2 are mutually independent.

In each simulation, the L1 estimators of a0(x), a1(u), a2(u) were computed by solving
the minimization problem (2.5) and using the integrated method described in (2.6) and (2.7).
We use the Epanechnikov kernel, K(u) = (3/4)(1 − u2)I|u|<1, for every Kl(·), l = 1, 2. All
bandwidths in a model are selected by the method proposed in Section 2.

To evaluate the asymptotic results given in Theorem 3.3, the quantile-quantile
plots of the estimators are constructed. Figure 1 presents the quantile-quantile plots for
ã0(0), ã1(0), ã2(0) with sample size n = 100 and 100 replications, respectively, and these plots
reveal that the asymptotic approximation is reasonable.

Figure 2 displays the true function curves of a0(x), a1(u), and a2(u) and their
estimated curves with sample size n = 100 and one replication. We can see from the figure
that the L1 estimates perform well.

In order to illustrate that the L1 method is a robust method. Figure 3 displays the
estimated curves with four outliers, that is, (−0.4538,−0.4402,−10), (0.13377, 0.1393, 20),
(0.2703, 0.3085, 20), (0.4174, 0.4398, 18) for the three element array (x, u, y). From Figure 3, we
can see that the L1 estimate also has a good performance even in the presence of four large
singular points of Y . The fact that outliers have little influence on the L1 estimates is displayed
in Figure 3, so it is a robust method.

By solving the following minimization problem:

min
n∑

i=1

(
Yi − a0 − b0(Xi − x0) − a′Zi − b′(Ui − u0)Zi

)2
K1,h(Xi − x0)K2,h(Ui − u0), (4.2)

we can obtain similarly the L2 estimators of the functions a0(x), a1(u), a2(u) by the equations
(2.6) and (2.7). For comparing the L1-method with the L2 method. We simulated the function
a0(x) by L2 method and display the fitted curves with (without) outliers for sample sizes n =
100 and 1000 replications in Figure 4. We can see that L2 estimate cannot perform well for the
data sparsity and singularity, and three small outlying data points make the estimated curve
by the L2 method deviate from the true curve significantly. Combining Figures 2, 3, and 4,
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Figure 1: Normal QQ-plot for ã0(0), ã1(0) and ã2(0) (n = 100).

we conclude that the L1 method performs better than the L2 method, the L1 method is a robust
method.

Finally, for further comparing the L1-estimate with the L2-estimate method, we also
assess their performance via the weighted average squared error (WASE), which is defined
as

WASE =
1
n

n∑

i=1

(
(a0(xi) − â0(xi))

2

(
range(a0)

)2 +
(a1(ui) − â1(ui))

2

(
range(a1)

)2 +
(a2(ui) − â2(ui))

2

(
range(a2)

)2

)
, (4.3)

where range (ak) for k = 0, 1, 2 are the ranges of the functions a0(x), a1(u), and a2(u). The
weights are introduced to account for the different scales of the functions. We conducted 200
replications with sample size n = 100. For the bandwidths and the Epanechnikov kernels
used in the simulations, we obtain the mean and standard deviation of the WASE are 0.1201
and 0.0183 for the L1 method, and 1.6613 and 0.8936 for the L2 method. We can see that L1

method outperforms L2 method.
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Figure 2: Simulation results, for example. Dotted curves are L1 estimators; solid curve are the true curves.
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Figure 3: Simulation results, for example, with outliers. Dotted curves are L1 estimators; solid curve are
the true curves.
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Figure 4: Simulation results for â0(x). Dotted curves are L2 estimators; solid curve are the true curves. (N)
plot without outliers, (Y) plot with three outliers (x, y) = (−0.4538,−5), (0.1948, 8), and (0.4649, 5).

5. Application

A real data is analyzed by the proposed L1-method in this section. The classic gas furnace
data was studied recently by Wong et al. [1]. The data set includes 296 samples (It, Ot), (t =
1, . . . , 296)measured at a fixed interval of 9 seconds, where It’s represent the input gas rate in
cubic feet per minute, and Ot’s represent the concentration of carbon dioxide in the gas out
of the furnace. Similar to the procedures of Wong et al. [1], the original data are transformed
as xt = (It + 2.716)/5.55, yt = (Ot − 45.6)/14.9 for t = 1, . . . , 296 such that both x’s and y’s are
limited in the interval [0, 1], and the model

yt = a0(xt−3) +
4∑

j=1

aj

(
yt−3

)
yt−j + εt (5.1)

is used to fit the data. The first 250 samples are used to establish the model, and the remained
46 samples are used for prediction.

In the proposed method, Epanechnikov kernel is used and all the bandwidths hj(j =
0, . . . , 4) are selected as 0.14 via cross validation for simplicity. Themean absolute error (MAE)
and the mean squared error (MSE) for fitting and forecasting are listed as follows.

Fitting: MAE = 0.3189, MSE = 0.1584; forecasting: MAE = 0.3705, MSE = 0.2127.
Since the model is chosen based on the L2 errors, the results are not perfect as that in

Wong et al. [1]. Moreover, the data set does not contain obvious outliers, so the advantage
of the L1 estimation method is not apparent. Compared to the results showed in Wong et al.
[1], the difference between the fitting MAE/MSE and the forecasting MAE/MSE is small.
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Figure 5: (a) Fitted values of Ot(t = 5, . . . , 250) for gas data; (b) Predictive values Ot(t = 251, . . . , 296) for
gas data. Dotted lines are fitted or predicted; solid lines are observed.

The reason is that L1-methods are employed in our method. The fitted values {Ôt}
250
t=5 and

predictive values {Ôt}
296
t=251 are shown in Figure 5. These results indicate that the estimated

results are reasonable.

6. Proofs of the Main Results

Before completing the proofs of the main results, we give the following useful lemma first.

Lemma 6.1. Suppose Assumptions (1)–(7) hold, then for any fixed α0, β0, α, β, Rn converges to 0 in
probability, that is, Rn = op(1) as n → ∞.

Proof of Lemma 6.1. Let

dn = max
1≤i≤n

⎧
⎨

⎩

∣∣∣∣
[
α0 + β0

(
Xi − x0

h

)]
1√
nh2

+
[
α′Zi + β′

(
Ui − u0

h

)
Zi

]
1√
nh2

∣∣∣∣

+
1
2

∣∣∣∣∣∣
a′′
0(ξi)(Xi − x0)2 +

p∑

j=1

a′′
j

(
ηij
)
(Ui − u0)2Zij

∣∣∣∣∣∣

⎫
⎬

⎭.

(6.1)

Note that |Xi −x0| ≤ Ch, |Ui −u0| ≤ Ch and Assumptions (2), (5), and (7), for any fixed α0, β0,
α and β, we have that

dn = op(1) as n −→ ∞. (6.2)
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Let

Tni = Lni +

⎧
⎨

⎩

∣∣∣∣∣∣

[
α0 + β0

(
Xi − x0

h

)]
1√
nh2

+
[
α′Zi + β′

(
Ui − u0

h

)
Zi

]
1√
nh2

−
⎡

⎣1
2

⎛

⎝a′′
0(ξi)(Xi − x0)2 +

p∑

j=1

a′′
j

(
ηij
)
(Ui − u0)2Zij

⎞

⎠ + εi

⎤

⎦

∣∣∣∣∣∣

−
∣∣∣∣∣∣
1
2

⎛

⎝a′′
0(ξi)(Xi − x0)2 +

p∑

j=1

a′′
j

(
ηij
)
(Ui − u0)2Zij

⎞

⎠ + εi

∣∣∣∣∣∣

⎫
⎬

⎭

×K1,h(Xi − x0)K2,h(Ui − u0).

(6.3)

It can be easily seen that Tni = 0 if |εi| ≥ dn. Hence we have

|Tni| ≤ 2
∣∣∣∣
{[

α0 + β0

(
Xi − x0

h

)]
+
[
α′Zi + β′

(
Ui − u0

h

)
Zi

]}∣∣∣∣
1√
nh2

×K1,h(Xi − x0)K2,h(Ui − u0)I{|εi|<dn},

(6.4)

where I(·) is the indicator function. For any ε > 0, δ > 0, we have

P{|Rn| > ε} ≤ P{dn ≥ δ} + P
{
I{dn<δ}|Rn| > ε

}
. (6.5)

Since E(sgn(εi)) = 0, we have

E
(
I{dn<δ}R

2
n

)
= E

{
I{dn<δ}(Sn − Fn + Ln)2

}
= E

⎧
⎨

⎩I{dn<δ}

(
n∑

i=1

(Tni − E(Tni))

)2
⎫
⎬

⎭, (6.6)
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here Ln =
∑n

i=1 Lni. Combining (6.2) and (6.4), we have

lim
n→∞

E
(
I{dn<δ}R

2
n

)
= lim

n→∞
E

⎧
⎨

⎩I{dn<δ}

[
n∑

i=1

E
(
(Tni − E(Tni))2 | X,U,Z

)

+
∑

i /= j

E
(
(Tni − E(Tni))

(
Tnj − E

(
Tnj
)) | X,U,Z

)
⎤

⎦

⎫
⎬

⎭

≤ 8 lim
n→∞

E

⎧
⎪⎨

⎪⎩

[(
α0 + β0

(
Xi − x0

h

))2

+
(
α′Zi + β′

(
Ui − u0

h

)
Zi

)2
]

× 1
h2

K2
1,h(Xi − x0)K2

2,h(Ui − u0)P{|εi| ≤ δ | X,U}

⎫
⎪⎬

⎪⎭

≤ 16δg(0 | x0, u0) f(x0, u0)
[
γ0(2)

(
α2
0γ0(1) + 2α0β0γ1(1) + β20γ2(1)

)

+ γ0(1)
(
γ0(2)α′Ωα

+2γ2(1)α′Ωβ + γ2(2)β′Ωβ
)
+ o(1)

]

−→ 0,
(6.7)

when δ → 0. Combining (6.2), (6.5), and the argument E(I{dn<δ}R
2
n) → 0 as δ → 0 and

n → ∞, the desired conclusion follows by using the Chebyshev’s inequality. This completes
the proof of Lemma 6.1.

Proof of Theorem 3.1. Set

A(Xi,Ui,Zi) =
(
α0 + β0

(
Xi − x0

h

))
1√
nh2

+
(
α′Zi + β′

(
Ui − u0

h

)
Zi

)
1√
nh2

,

B(Xi,Ui,Zi) =
1
2

⎛

⎝a′′
0(ξi) (Xi − x0)2 +

p∑

j=1

a′′
j

(
ηij
)
(Ui − u0)2Zij

⎞

⎠.

(6.8)

By Lemma 6.1, under Assumptions (1) − (7), A(Xi,Ui,Zi) and B(Xi,Ui,Zi) converge to zero
as n → ∞.

Start from the equality,

Fn = I{dn<δ}Fn + I{dn≥δ}Fn. (6.9)
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We first give the limit form of Fn, for fixed α0, β0, α, β, we have

I{dn<δ}Fn

= I{dn<δ}E

{
n∑

i=1

|A(Xi,Ui,Zi) − B(Xi,Ui,Zi) − εi| − |B(Xi,Ui,Zi) + εi|
}

×K1,h(Xi − x0)K2,h(Ui − u0)

= I{dn<δ}nE{|A(X1, U1,Z1) − B(X1, U1,Z1) − ε1| − |B(X1, U1,Z1) + ε1|}
×K1,h(X1 − x0)K2,h(U1 − u0)

= I{dn<δ}nE{E{[|A(X1, U1,Z1) − B(X1, U1,Z1) − ε1| − |B(X1, U1,Z1) + ε1|]
×K1,h(X1 − x0)K2,h(U1 − u0) | X,U,Z}}

= I{dn<δ}nE

{∫

δ>w>A(X1,U1,Z1)−B(X1,U1,Z1)
[w+B(X1, U1,Z1)−A(X1, U1,Z1)]g(w | X1, U1)dw

+
∫

−δ<w<A(X1,U1,Z1)−B(X1,U1,Z1)
[A(X1, U1,Z1)−B(X1, U1,Z1)−w]g(w | X1, U1)dw

−
∫

δ>w>−B(X1,U1,Z1)
[w + B(X1, U1,Z1)]g(w | X1, U1)dw

+
∫

−δ<w<−B(X1,U1,Z1)
[B(X1, U1,Z1) +w]g(w | X1, U1) dw

+
∫

w>δ

−g(w | X1, U1)A(X1, U1,Z1)dw

+
∫

w<−δ
g(w | X1, U1)A(X1, U1,Z1)dw

}
K1,h(X1 − x0)K2,h(U1 − u0).

(6.10)

By the Integral Mean Value Theorem (refer to the Appendix), we have

I{dn<δ}Fn

= nI{dn<δ}E

{
g(τ1 | X1, U1)

×
[
δ2

2
+(B(X1, U1,Z1)−A(X1, U1,Z1))δ+

(B(X1, U1,Z1) −A(X1, U1,Z1))2

2

]

+ g(τ2 | X1, U1)
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×
[
δ2

2
+(A(X1, U1,Z1)−B(X1, U1,Z1))δ+

(B(X1, U1,Z1) −A(X1, U1,Z1))2

2

]

+A(X1, U1,Z1)[G(δ | X1, U1) +G(−δ | X1, U1) − 1]

− g(τ3 | X1, U1)

[
δ2

2
+ B(X1, U1,Z1)δ +

B2(X1, U1,Z1)
2

]

− g(τ4 | X1, U1)

[
δ2

2
− B(X1, U1,Z1)δ +

B2(X1, U1,Z1)
2

]}

×K1,h(X1 − x0)K2,h(U1 − u0),

(6.11)

where G(·|·) is the conditional probability distribution function of ε, and τ1, τ2, τ3, τ4 converge
to zero as δ → 0 and n → ∞. Then by Assumptions (1)–(5), for any small enough δ > 0, we
have

I{dn<δ}Fn = I{dn<δ}nE
{(

g(0 | X1, U1) + o(1)
)(

A2(X1, U1,Z1) − 2A(X1, U1,Z1)B(X1, U1,Z1)
)}

×K1,h(X1 − x0)K2,h(U1 − u0)

= I{dn<δ}
(
g(0 | x0, u0)f(x0, u0)

×
{(

α2
0 + 2α0β0μ1(1) + β20μ2(1)

)

+
(
α′Ωα + 2μ1(2)α′Ωβ + μ2(2)β′Ωβ

)

+ 2α0
(
α′ω + μ1(2)β′ω

)
+ 2β0μ1(1)

(
α′ω + μ1(2)β′ω

)

− a′′(x0)
(
α0μ2(1) + β0μ3(1) + μ2(1)α′ω + μ2(1)μ1(2)β′ω

)

− c(u0)′
(
α0μ2(2)ω + β0μ1(1)μ2(2)ω

+ μ2(2)Ωα + μ3(2)Ωβ
)}

+ o(1)
)

= I{dn<δ}
(
F
(
α0, β0, α, β

)
+ o(1)

)
,

Fn = F
(
α0, β0, α, β

)
+ o(1) − [F(α0, β0, α, β

)
+ o(1) − Fn

]
I{dn≥δ}.

(6.12)

Note that, for any fixed α0, β0, α, β,dn → 0 as n → ∞, we draw the desired conclusion. This
completes the proof of Theorem 3.1.

Proof of Theorem 3.3. Since the proofs of (3.7) and (3.8) are quite similar, we only give the
proof of (3.8).
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Start from the equality

Ln =
n∑

i=1

{[
α0 + β0

(
Xi − x0

h

)]
+
[
α′Zi + β′

(
Ui − u0

h

)
Zi

]}
1√
nh2

×K1,h(Xi − x0)K2,h(Ui − u0) sgn(εi).

(6.13)

By Lemma 6.1 and Theorem 3.1, for fixed α0, β0, α, β, we have

Sn = F
(
α0, β0, α, β

) − Ln + Rn + o(1) � F
(
α0, β0, α, β

) − Ln + Rn, (6.14)

hence

Sn + Ln = F
(
α0, β0, α, β

)
+ Rn. (6.15)

Note that

EL2
n =

n∑

i=1

EL2
ni

≤ 2nE

{(
α0 + β0

(
Xi − x0

h

))2 1
nh2

K2
1,h(Xi − x0)K2

2,h(Ui − u0)

+
(
α′Zi + β′

(
Ui − u0

h

)
Zi

)2 1
nh2

K2
1,h(Xi − x0) K2

2,h(Ui − u0)

}

= 2
[
γ0(2)

(
α2
0γ0(1) + 2α0β0γ1(1) + 2β20γ2(1)

)
+ γ0(1)

(
α′Ωα + 2γ1(1)α′Ωβ + γ2(2)β′Ωβ

)]
.

(6.16)

We obtain that Ln is bounded in probability for any fixed α0, β0, α, β. Thus, for any fixed
α0, β0, α, β, the random convex function Sn + Ln converges to F(α0, β0, α, β). According to the
convexity lemma [17], we can deduce that, for any compact set K,

sup
(α0,β0,α′,β′)′∈K

∣∣∣Rn

∣∣∣ = op(1), (6.17)

when δ → 0. By the proof of Theorem 2 in Wang [18], we obtain that the “limit” here is not
only in the sense of the limit of a sequence of random variables, but also in the sense of the
limit of a sequence of stochastic process, and the minimizer of Sn converges to the minimizers
of F(α0, β0, α, β) − Ln.
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By the convexity of the function F(α0, β0, α, β), we have

β̂0 =

∑n
i=1
[
μ1(1) − ((Xi − x0)/h)

](
1/

√
nh2

)
K1,h(Xi − x0)K2,h(Ui − u0) sgn(εi)

2g(0 | x0, u0)f(x0, u0)
[
μ2
1(1) − μ2(1)

]

+

[
μ2(1)μ1(1) − μ3(1)

]
a′′(x0)

2
[
μ2
1(1) − μ2(1)

] ,

β̂ =
Ω−1∑n

i=1
[
μ1(2) − ((Ui − u0)/h)

](
Zi/

√
nh2

)
K1,h(Xi − x0)K2,h(Ui − u0) sgn(εi)

2g(0 | x0, u0)f(x0, u0)
[
μ2
1(2) − μ2(2)

]

+

[
μ2(2)μ1(2) − μ3(2)

]
c(u0)

2
[
μ2
1(2) − μ2(2)

] ,

α̂ =

[
μ2
2(2) − μ1(2)μ3(2)

]
c(u0)

2
[
μ2(2) − μ2

1(2)
]

+
1

2
√
nh2

n∑

i=1

(
Ω −ωω′)−1(Zi −ω)K1,h(Xi − x0)K2,h(Ui − u0) sgn(εi)

−
μ1(2)Ω−1∑n

i=1
[
μ1(2) − ((Ui − u0)/h)

]
Zi

(
1/

√
nh2

)
K1,h(Xi − x0)K2,h(Ui − u0) sgn(εi)

2g(0 | x0, u0)f(x0, u0)
[
μ2
1(2) − μ2(2)

]

α̂0 =

[
μ2
2(1) − μ3(1)μ1(1)

]
a′′(x0)

2
[
μ2(1) − μ2

1(1)
] +

1

2
√
nh2

n∑

i=1

(
1 −ω′Ω−1Zi

)
K1,h(Xi − x0)K2,h(Ui − u0) sgn(εi)

−
μ1(1)

∑n
i=1
[
μ1(1) − ((Xi − x0)/h)

](
1/

√
nh2

)
K1,h(Xi − x0)K2,h(Ui − u0) sgn(εi)

2g(0 | x0, u0)f(x0, u0)
[
μ2
1(1) − μ2(1)

] .

(6.18)

Thus we obtain
α̃(u0)√

h
=

1

n
√
h

n∑

k=1

α̂(Xk, u0)

=
1

2nh
√
nh

n∑

k=1

n∑

i=1

(
Ω −ωω′)−1(Zi −ω)K1,h(Xi −Xk)K2,h(Ui − u0) sgn(εi)

− μ1(2)Ω−1∑n
k=1
∑n

i=1
[
μ1(2) − ((Ui − u0)/h)

]
ZiK1,h(Xi −Xk)K2,h(Ui − u0) sgn(εi)

2nh
√
nhg(0 | x0, u0)f(x0, u0)

[
μ2
1(2) − μ2(2)

]

+

[
μ2
2(2) − μ1(2)μ3(2)

]
c(u0)

2
√
h
[
μ2(2) − μ2

1(2)
]

:= A1 +

[
μ2
2(2) − μ1(2)μ3(2)

]
c(u0)

2
√
h
[
μ2(2) − μ2

1(2)
] .

(6.19)
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By interchanging summation signs and noting that

1
n

n∑

k=1

K1,h(Xi −Xk) = hf1(Xi)
{
1 + op(1)

}
(6.20)

A1 can be rewritten as

A1 =
1

2
√
nh

n∑

i=1

(
Ω −ωω′)−1(Zi −ω)K2,h(Ui − u0)f1(Xi) sgn(εi)

{
1 + op(1)

}

− μ1(2)Ω−1∑n
i=1
[
μ1(2) − ((Ui − u0)/h)

]
ZiK2,h(Ui − u0)f1(Xi) sgn(εi)

{
1 + op(1)

}

2
√
nhg(0 | x0, u0)f(x0, u0)

[
μ2
1(2) − μ2(2)

] .

(6.21)

For all t ∈ Rp, by some straightforward computations, we get that the mean and variance of
t′A1 are

E
(
t′A1

)
= 0

E
(
(t′A1)2

)
= t′

{
(Ω −ωω′)−1γ0(2)r22(u0)

4

+
μ2
1(2)

[
μ2
1(2)γ0(2) − 2μ1(2)γ1(2) + γ2(2)

]
r21(u0)Ω−1

4g2(0 | x0, u0)f2(x0, u0)
[
μ2
1(2) − μ2(2)

]2

− μ1(2)
[
μ1(2)γ1(2) − γ1(2)

]
r21(u0)

2g(0 | x0, u0)f(x0, u0)
[
μ2
1(2) − μ2(2)

]
}
t
{
1 + op(1)

}
.

(6.22)

By Assumptions (1)–(7), and using the methods used in the proof of Theorem 1 in Tang
and Wang [19], we can easily check that the Lindeberg-Feller’s condition for t′A1 is held. So
Cramer-Wold theorem tells us (3.8) follows. This completes the proof of Theorem 3.3.

Appendix

Integral Mean Value Theorem

If f and g are continuous functions defined on [a, b], and g(x) ≥ 0 (or g(x) ≤ 0), then there
exists a number ξ ∈ [a, b] such that

∫b

a

f(x)g(x)dx = f(ξ)
∫b

a

g(x)dx. (A.1)
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