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In transplantation studies, often longitudinal measurements are collected for important markers
prior to the actual transplantation. Using only the last available measurement as a baseline
covariate in a survival model for the time to graft failure discards the whole longitudinal evolution.
We propose a two-stage approach to handle this type of data sets using all available information.
At the first stage, we summarize the longitudinal information with nonlinear mixed-effects model,
and at the second stage, we include the Empirical Bayes estimates of the subject-specific parameters
as predictors in the Cox model for the time to allograft failure. To take into account that the
estimated subject-specific parameters are included in the model, we use a Monte Carlo approach
and sample from the posterior distribution of the random effects given the observed data. Our
proposal is exemplified on a study of the impact of renal resistance evolution on the graft survival.

1. Introduction

Many medical studies involve analyzing responses together with event history data collected
for each patient. A well-known and broadly studied example can be found in AIDS research,
where CD4 cell counts taken at different time points are related to the time to death. These
data need to be analyzed using a joint modeling approach in order to properly take into
account the association between the longitudinal data and the event times. The requirement
for a joint modeling approach is twofold. Namely, when focus is on the longitudinal outcome,
events cause nonrandom dropout that needs to be accounted for in order to obtain valid
inferences. When focus is on the event times, the longitudinal responses cannot be simply
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included in a relative risk model because they represent the output of an internal time-
dependent covariate [1].

In this paper, we focus on a setting that shares some similarities with the standard
joint modeling framework described above, but also has important differences. In particular,
we are interested in the association between longitudinal responses taken before the actual
followup for the time-to-event has been initiated. This setting is frequently encountered in
transplantation studies, where patients in the waiting list provide a series of longitudinal
outcomes that may be related to events occurring after transplantation. A standard analysis
in transplantation studies is to ignore the longitudinal information and use only the last
available measurement as a baseline covariate in a model for the allograft survival. It
is, however, evident that such an approach discards valuable information. An alternative
straightforward approach is to put all longitudinal measurements as covariates in the
survival model. Nevertheless, there are several disadvantages with this approach. First, it
would require spending many additional degrees of freedom, one for each of the longitudinal
measurements. Second, patients with at least one missing longitudinal response need to be
discarded, resulting in a great loss of efficiency. Finally, we may encounter multicollinearity
problems due to the possibly high correlation between the longitudinal measurements at
different time points.

Nowadays, when it comes to measuring the association between a longitudinal marker
and an event-time outcome, a standard approach is to use the joint model postulated by
Faucett and Thomas [2] and Wulfsohn and Tsiatis [3]. In this setting, the longitudinal
responses are considered realizations of an endogenous time-dependent covariate (Kabfleish
and Prentice [1]), which is measured with error and for which we do not have the complete
history of past values available. To account for these features we estimate in the joint
modeling framework the joint distribution of the survival and longitudinal processes. Unlike
in the multivariate approach, where we have to interpret the estimates for each longitudinal
measurement separately, the joint modeling approach allows to get more insight in the nature
of the relation between the two analyzed processes since it assumes some underlying process
for the longitudinal measures.

However, in contrast with the standard joint modeling setting, in our case (i.e.,
transplantation studies) the longitudinal responses do not constitute an endogenous time-
dependent variable measured at the same period as the time to event. In particular, since the
longitudinal measurements are collected prior to transplantation, occurrence of an event (i.e.,
graft failure after transplantation) does not cause nonrandom dropout in the longitudinal
outcome. Nevertheless, the problem of measurement error still remains. Ignoring the
measurement error affects not only the standard errors of the estimates of interest, but also
it can cause attenuation of the coefficients towards zero [4]. To overcome this, we propose
a two-stage modeling approach that appropriately summarizes the longitudinal information
before the start of followup by means of a mixed effects model and then uses this information
to model the time to event by including the Empirical Bayes estimates of the subject-specific
parameters as predictors in the Cox model. To account for the fact that we include the
estimates and not the true values of the parameters, we use a Monte Carlo approach and
sample from the posterior distribution of the random effects. The proposed method does not
require joint maximization neither fitting the random effects model for each event time as
in the two-stage approach of Tsiatis et al. [5]. We compare this approach with the “naive”
one when the uncertainty about the estimates from the first step is not taken into account,
as well as with the full Bayesian approach. Our approach shares similarities with the two-
stage approach of Albert and Shih [6]. They considered a model, in which a discrete event
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time distribution is modeled as a linear function of the random slope of the longitudinal
process estimated from the linear-mixed model. The bias from informative dropout was
reduced by using the conditional distribution of the longitudinal process given the dropout
time to construct the complete data set. To account for the measurement error in the mean of
the posterior distribution of the random effects, the variance, that incorporates the error in
estimating the fixed effects in the longitudinal model, was used. However, we use sampling
not to impute missing values and correct for nonrandom dropout but in order to account for
the variability in the predicted longitudinal covariates that are then used in survival model.
A method of adjusting for measurement error in covariates, which was used by Albert and
Shih, does not apply in our case since it requires the discrete time-to-event and linear model
for longitudinal data. The time-to-event could be discretized but still we have a nonlinear
model for longitudinal data.

Our research is motivated by data from an international prospective trial on kidney-
transplant patients. The study has two arms, where in the first arm donors’ kidneys were
administered to cold storage and in the second arm they were administered to machine
perfusion (MP). The advantage of machine perfusion is the possibility of measuring different
kidney’s parameters reflecting the state of the organ. One of the parameters of interest is renal
resistance level (RR), which has been measured at 10 minutes, 30 minutes, 1 hour, 2 hours, 4
hours, and just before transplantation. Our aim here is to study the association of the renal
resistance evolution profile with the risk of graft failure. The time of last measurement was
different for different patients and often unknown exactly. However, based on the medical
consult and visual inspection of the individual profiles, the last measurement was chosen to
be taken at 6 hours for each patient.

The rest of the paper is organized as follows. Section 2 provides the general modeling
framework with the definition of the two submodels for the longitudinal and survival
data, respectively. Section 3 describes the estimation methods for the full likelihood and the
proposed two-stage approach. In Section 4, we apply the two-stage approach to the renal
data. Section 5 contains the setup and the results for the simulation study. Finally, in Section 6
we discuss the proposed methodology.

2. Joint Modeling Framework

Let Yi(u) denote the longitudinal profiles for individual i, i = 1, 2, . . . ,N. We assume that
Yi(u) are collected for the ith individual prior to the specified time ti, u ∈ (0, ti). Let t = 0
denote the time of the first longitudinal measurement and ti the time of the last collected
measurement. ti can be different for different individuals, and we denote by mi the number
of longitudinal measurements for subject i collected until time ti and by uij the time of jth
measurement. Denote by T ∗

i ≥ ti the true survival time for individual i. Since the survival
time is right censored, we observe only Ti = min(T ∗

i , Ci), where Ci ≥ ti is the censoring time
with the failure indicator Δi, which equals to 1 if the failure is observed and 0 otherwise, that
is, Δi = I(Ti ≤ Ci) with I(·) denoting the indicator function. We will assume that censoring
is independent of all other survival and covariate information. In addition, we assume that
the observed longitudinal responses Yi(u) are measured with error (i.e., biological variation)
around the true longitudinal profile Wi(u), that is,

Yi(u) = Wi(u) + εi(u), with εi(u) ∼ N
(

0, σ2
)
,

cov
(
εi(u), εi

(
u′)) = 0, u′

/=u.
(2.1)
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We will consider the longitudinal response that exhibits nonlinear profiles in time. Therefore,
we approximate Wi(u) by means of a nonlinear mixed effects model:

Wi(u) = f
(
u;φi

)
, with φi = Xiβ + Ziαi, (2.2)

where f(·) is a nonlinear function, parameterized by the vector φi. The parameters φi control
the shape of the nonlinear function, and subscript i denotes that each subject may have
its own nonlinear evolution in time in the family f(·;φ). For the subject-specific parameter
φi, we assume a standard mixed model structure with Xi denoting the fixed effects design
matrix with corresponding regression coefficients β, Zi the random effects design matrix, and
αi the random effects. The random effects αi are assumed to be independent and normally
distributed with mean zero and variance-covariance matrix D.

For the event process, we postulate the standard relative risk model of the form:

λi(t) = λ0(t) exp
(
γTφi

)
, (2.3)

where λi(t) is the hazard function and λ0(t) is the baseline hazard, which can be modeled
parametrically or left completely unspecified. The subject-specific parameters φi summarize
the longitudinal evolutions of the response for each subject, and therefore coefficients γ
measure the strength of the association between the different characteristics of the underlying
subject-specific nonlinear evolution of the longitudinal profiles and the risk for an event.
Within the formulation of the two submodels (2.2) and (2.3), the same random effects now
account for both the association between the longitudinal and event outcomes, and the
correlation between the repeated measurements in the longitudinal process.

In the particular transplantation setting that will be analyzed in the following study,
Yi(u) are the renal resistance level measurements collected for the ith donor prior to the
transplantation time ti and the same index i is used to denote the allograft transplanted to
the ith patient. Time t = 0 represents the time that the kidney is removed from the donor and
put in cold storage or in a perfusion machine.

3. Estimation

3.1. Full Likelihood Framework: Bayesian Approach

In the standard joint modeling framework, the estimation is typically based on maximum
likelihood or Bayesian methods (MCMC). This proceeds under the following set of
conditional independence assumptions:

p(Ti,Δi,Yi | αi;θ) = p(Ti,Δi | αi;θt)p
(
Yi | αi;θy

)
,

p
(
Yi | αi;θy

)
=

mi∏
j=1

p
(
Yi

(
uij

) | α
i
;θy

)
.

(3.1)

In particular, we assume that given the random effects the longitudinal process is independ-
ent from the event times, and moreover, the longitudinal measurements are independent
from each other.
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Maximum likelihood methods use the joint likelihood and maximize the log-
likelihood function li(θ) =

∑
i log p(Ti,Δi,Yi;θ). This requires numerical integration and

optimization, which makes the fit difficult, especially in high-dimensional random effects
settings. Standard options for numerical integration are Gaussian quadrature, Laplace
approximation, or Monte Carlo sampling [7, 8]. Maximization of the approximated log-
likelihood is based on an EM algorithm [3, 5, 9–11]. Several authors proposed a Bayesian
approach (MCMC) [2, 12, 13]. Bayesian estimation, that generalizes a joint model for the
case with multivariate longitudinal data, has been discussed by Ibrahim et al. [14]. Brown
and Ibrahim [15] considered semiparametric model relaxing the distributional assumption
for the random effects. In most papers, the longitudinal submodel is a linear mixed-
effects model. Joint models with nonlinear mixed-effects submodels have been less studied
in the literature [16]. Nonlinear mixed models are more common in pharmacokinetics
and pharmacodynamics, where they are jointly modeled with nonrandom dropout using
NONMEM software. Several authors considered a Bayesian approach with a nonlinear mixed
model and informative missingness [17, 18].

Here we will proceed under the Bayesian paradigm to estimate the model parameter.
Under the conditional independence assumption (3.1), the posterior distribution of the
parameters and the latent terms, conditional on the observed data, are derived as

p(θ,αi | Ti;Δi;Yi) ∝
N∏
i=1

mi∏
j=1

{
p
(
Yi

(
uij

) | αi;θy

)}
p(Ti,Δi | αi;θt)p(αi;θα)p

(
θy,θt,θα

)
, (3.2)

where θT = (θT
y,θ

T
t ,θ

T
α) is a vector of parameters from the longitudinal and survival

models and the vector of the random effects, respectively, and p(·) denotes the appropriate
probability density function. The likelihood contribution for the ith subject conditionally on
the random terms is given by

p(Yi, Ti,Δi | αi;θ) = p
(
Yi | αi;θy

)
p(Ti,Δi | αi;θt)

=
[
λ0(Ti) exp{γTφi(αi)}

]Δi

exp

[
−
∫Ti

0
λ0(t) exp

{
γTφi(αi)

}
dt

]

× 1

(2πσ2)mi/2
exp

⎡
⎣−

mi∑
j=1

{
Wi

(
uij ,αi

) − Yi

(
uij

)}2

2σ2

⎤
⎦.

(3.3)

The baseline hazard can be assumed of a specific parametric form, for example, the Weibull
hazard. For the priors of the model parameters, we make standard assumptions following
Ibrahim et al. [14]. In particular, for the regression coefficients β of the longitudinal submodel
and for the coefficients γ of survival submodel, we used multivariate normal priors. For
variance-covariance matrices, we assumed an inverse Wishart distribution and for the
variance-covariance parameters we took as a prior an inverse gamma. For all parameters,
the vague priors have been chosen.

The implementation of the Cox and piecewise constant hazard models is typically
based on the counting process notation introduced by Andersen and Gill [19] and formulated
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by Clayton [20]. In particular, we treat the counting process increments dNi(t) in the time
interval [t, t + Δt] as independent Poisson random variables with means Λi(t)dt:

Λi(t)dt = ωi(t) exp
(
γTφi

)
dΛ0(t), (3.4)

where ωi(t) is an observed process taking the value 1 if subject i is observed at time t and 0
otherwise and dΛ0(t) is the increment in the integrated baseline hazard function occurring
during the time interval [t, t + Δt]. Since the conjugate prior for the Poisson mean is the
gamma distribution, we assume the conjugate-independent increments prior suggested by
Kalbfleisch [21], namely,

dΛ0(t) ∼ Gamma
(
c ∗ dΛ∗

0(t), c
)
, (3.5)

where dΛ∗
0(t) is a prior mean hazard with c being a scaling parameter representing

the “strength” of our prior beliefs. The gamma prior was also chosen for the baseline
risk parameter of the Weibull distribution in parametric survival model. Alternatively to
implement the Cox model in a fully Bayesian approach, one may use the “multinomial-
Poisson trick” described in the OpenBUGS manual that is equivalent to assuming
independent increments in the cumulative hazard function. The increments are treated as
failure times, and noninformative priors are given for their logarithms. Analogically to
the Cox model, a piecewise constant hazard model was implemented. We have modeled
baseline hazard using a step function with 3 quantiles t1, t2, and t3 as changing points
assuring the same number of events in between. Let t0 denote the start of the followup, t4
the maximum censoring time, and dΛ0k(t) the increment in the integrated baseline hazard
function occurring during the time interval [tk, tk+1], k = 0, 1, 2, 3. Then for different intervals,
we specify a separate prior hazard mean dΛ∗

0(t) and

dΛ0k(t) ∼ Gamma
(
c ∗ dΛ∗

0k(t), c
)
. (3.6)

Similarly as for the Cox model, the results were not sensitive with respect to the choice of the
hyperparameters as long as the priors were sufficiently diffuse. The above nonparametric
approach can be criticized as having the independent priors for the hazard distribution.
However, as suggested by Kalbfleisch [21] a mixture of gamma priors can be considered as
an alternative. Moreover, in a piecewise constant model one can also include change points
as unknown parameters in the model as proposed in a Bayesian context by Patra and Dey
[22] and applied by Casellas [23].

In order to assess convergence for the full Bayesian model, standard MCMC diagnostic
plots were used. The burn-in size was set to 10000 iterations, which was chosen based on the
visual inspection of the trace plots and confirmed by the the Raftery and Lewis diagnostics.
The same number of iterations were used for constructing the summary statistics. Based on
the autocorrelation plots, we have chosen every 30th iteration. Therefore, in total to obtain
10000 iterations for the final inferenc 300000 iterations were required after the burn-in part.
Additionally, we run a second parallel chain and used Gelman and Rubin diagnostic plots to
assess the convergence.
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3.2. Two-Stage Approach

As mentioned in Section 1, the longitudinal measurements in our setting do not constitute
an internal time-dependent covariate, since the events took place after the last longitudinal
measurement was collected. In particular, since events do not cause nonrandom dropout, the
event process does not carry any information for the longitudinal outcome. Mathematically,
this means that information for the random effects αi is actually only coming from the
longitudinal responses, that is,

p
(
αi | Yi

(
uij

)
; Ti;Δi;θy

)
= p

(
αi | Yi

(
uij

)
;θy

)
. (3.7)

Thus, we can avoid the computational complexity of the full likelihood framework presented
in Section 3.1 by employing a two-stage approach. More specifically, at Stage I, we obtain θ̂y

by maximizing the log-likelihood:

ly
(
θy

)
=

N∑
i=1

∫
p
(
Yi | αi;θy

)
p
(
αi;θy

)
dαi. (3.8)

This requires numerical integration, and we use a Gaussian quadrature for that purpose. Then
we obtain the corresponding empirical Bayes estimates:

α̂i = arg max
α

[
log p

(
Yi | α; θ̂y

)
+ log p

(
α; θ̂y

)]
(3.9)

and compute the predictions:

φ̂i = Xβ̂ + Ziα̂i. (3.10)

At Stage II, we fit the relative risk model:

λi(t) = λ0(t) exp
(
γT φ̂i

)
. (3.11)

However, a potential problem in the above is that φ̂i is not the true subject-specific parameters
but rather an estimate with a standard error. If we ignore this measurement error, the
regression coefficients γ i will be possibly attenuated. To overcome this problem, we propose
here a sampling approach to account for the variability in φ̂i, very close in spirit to the
Bayesian approach of Section 3.1. In particular, we use the following sampling scheme.

Step 1. simulate θ(m)
y ∼ N(θ̂y, v̂ar(θ̂y)).

Step 2. simulate α(m)
i ∼ [αi | Yi,θ

(m)
y ].

Step 3. calculate φ
(m)
i = Xβ(m) +Ziα

(m)
i and fit the relative risk model λi(t) = λ0(t) exp{γTφ

(m)
i }

from which θ̂
(m)
t = γ̂ (m) and v̂ar(θ̂

(m)
t ) are kept.

Steps 1–3 are repeated m = 1, . . . ,M times.

Step 1 takes into account the variability of the MLEs, and Step 2 the variability
of αi. Moreover, because the distribution in Step 2 is not of a standard form, we use
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a independent Metropolis-Hastings algorithm to sample from it with multivariate t-proposal
density centered at an Empirical Bayes estimates α̂i, covariance matrix v̂ar(α̂i), and df = 4.
The low number of degrees of freedom was chosen to ensure that the proposal density has
heavy tails to provide sufficient coverage of the target density [αi | Yi,θy]. The variance-
covariance matrix estimated from the nonlinear mixed model was additionally scaled by
some parameter Scale. The tuning parameter allows to control the acceptance rate through
the range of the proposed distribution. If the range is too narrow, the proposed values will
be close to the current ones leading to low rejection rate. On the contrary, if the range is
too large, the proposed values are far away from the current ones leading to high rejection
rate. We chose the acceptance rate to be 0.5 following Carlin and Louis [24] that suggests
a desirable acceptance rates of Metropolis-Hastings algorithms to be around 1/4 for the
dependence (random walk) M-H version and 1/2 for the independent M-H. Roberts et al.
[25] recommended to use the acceptance rate close to 1/4 for high dimensions and 1/2 for the
models with dimensions 1 or 2. They discussed this issue in the context of the random walk
proposal density. The authors showed that if the target and proposal densities are normal,
then the scale of the latter should be tuned so that the acceptance rate is approximately
0.45 in one-dimensional problems and approximately 0.23 as the number of dimensions
approaches infinity, with the optimal acceptance rate being around 0.25 in as low as six
dimensions. In our case, an independent version of Metropolis-Hastings algorithm is applied.
The proposal density in the algorithm does not depend on the current point as in the random-
walk Metropolis algorithm. Therefore, for this sampler to work well, we want to have a
proposal density that mimics the target distribution and have the acceptance rate be as high as
possible. In order to obtain a desirable acceptance rate one needs to run a sampling algorithm
for a number of iterations for a given data set and compute an acceptance rate and then repeat
the procedure changing the tuning parameter until the chosen acceptance rate, is obtained.
Usually a small number of iterations (100–500) is sufficient for the purpose of calibration.
More details about the Metropolis-Hastings acceptance-rejection procedure can be found in
the supplementary material (available online at doi:10.1155/2012/194194). A final estimate
of θt is obtained using the mean of the estimates from all M iterations:

θ̂t =
∑M

m=1 θ̂
m

t

M
. (3.12)

To obtain the SE of θ̂t, we use the variance-covariance matrix V:

V̂ = Ŵ +
(M + 1)B̂

M
, (3.13)

where Ŵ is the average within-iteration variance and B̂ is the between-iteration variance, that
is,

Ŵ =
∑M

m=1 Û
m

M
,

B̂ =
1

M − 1

M∑
m=1

(
θ̂
m

t − θ̂t

)(
θ̂
m

t − θ̂t

)T

.

(3.14)

Ûm represents a variance-covariance matrix estimated in iteration m for γ̂m.
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Figure 1: Individual profiles of renal resistance level for 50 sampled donors.

4. Analysis of the RR Data

4.1. Models’ Specification

We apply the proposed two-stage procedure and a fully Bayesian approach to the
transplantation study introduced in Section 1. The data was taken from an international
prospective trial on 337 kidney pairs, which aimed to compare two different types of storage,
namely, cold storage and machine perfusion (MP). Here we focus on the second arm. Our
main outcome of interest is graft survival time censored after 1 year. At the end of the study,
only 26 graft failures were observed. The renal resistance level (RR) was expected to be an
important risk factor for graft failure. It was measured using the perfusion machine at the
moment of taking the organ out from a donor (t = 0), and thereafter at 10 minutes, 30 minutes,
1 hour, 2 hours, 4 hours, and just before transplantation. As mentioned in the Section 1,
the time of last measurement was different for different patients and sometimes unknown.
However, there was a clear asymptote visible from the individual profiles that was reached
after about 5 hours by each patient. Based on that behavior and after the medical consult, we
chose the last measurement to be taken at 6 hours for each patient. Other variables of interest
include the age of the donor, donor’s region (3 countries considered), and donor’s type (heart
beating or non-heart-beating).

The individual profiles of 50 randomly selected kidney donors are presented in
Figure 1. This plot confirms the biological expectation that allografts exhibit their highest
renal resistance levels just after being extracted from the donor. Thereafter, they show a
smooth decrease in RR until they reach an asymptote above zero indication that there is no
“perfect flow” through the kidney. Furthermore, we observe that the initial RR level, the rate
of decrease, and the final RR level differ from donor to donor. Additional descriptive plots
for our data are presented in the supplementary material.
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In the first step of our analysis, we aim to describe the evolution of the renal resistance
level in time. Motivated by both biological expectation and Figure 1, we postulate the
following nonlinear function:

f(t) = φ1 + φ2e
−φ3t, (4.1)

where φ1 is a lower asymptote, φ1 + φ2 is an initial value for t = 0, and φ3 is the rate of
decrease from φ2 to φ1 (see also Figure 2 in supplementary material).

To accommodate for the shapes of RR evolutions observed in Figure 1, we need to
constraint φ1, φ2, and φ3 to be positive. Moreover, in order to allow for individual donor
effects, we use the following formulation:

Yi(t) = Wi(t) + ε(t), with Wi(t) = fi(t) = exp
(
φ1i

)
+ exp

(
φ2i

)
e− exp(φ3i)t, (4.2)

where

φ1 = β10 + β11 Donor Age + β12 Donor Type + β13 Donor Reg1 + β14 Donor Reg2 + α1,

φ2 = β20 + β21 Donor Age + β22 Donor Type + β23 Donor Reg1 + β24 Donor Reg2 + α2,

φ3 = β30 + β31 Donor Age + β32 Donor Type + β33 Donor Reg1 + β34 Donor Reg2 + α3,

(4.3)

and αi ∼ N(0, D), ε(t) ∼ N(0, σ2) with α = (α1, α2, α3) and cov(αi, ε(t)) = 0. In the second
step, the predicted parameters (φ1, φ2, φ3) summarizing the RR evolution of the nonlinear
mixed model are included in the graft survival model. The final model for graft survival was
of the form:

λi(u) = λ0(u) exp
(
γ1φ̂1i + γ2φ̂2i + γ3φ̂3i

)
. (4.4)

To investigate the impact of ignoring that the covariate φ̂i is measured with error, we
compared the naive approach in which we ignored this measurement error and our proposal
that accounts for the uncertainty in φ̂i via Monte Carlo sampling. We used Metropolis-
Hastings algorithm with independent t-proposal and acceptance rate around 50% for the
reason given in Section 3.2. We simulated M = 10000 samples with additional initial step of
the scaling parameter calibration in order to achieve the desirable acceptance rate. The final
estimates (and SE) of the parameters associated with RR covariates were calculated using
the formulas described in Section 3.2. We compared the results from the two-stage procedure
with the estimates obtained from the fully Bayesian joint model fitted for the data using the
priors specified in Section 3.1.

The analysis was performed using R Statistical Software. Packages survival and nlme
were used for the two submodels fit, and a separate code was written by the first author
for the sampling part. The fully Bayesian model was fitted using OpenBUGS software with
the priors specified in Section 3.1. In particular, for the p × p variance-covariance matrices of
multivariate normal priors, we used inverse Wishart distribution with p degrees of freedom.
For the variance-covariance parameter of the normal longitudinal response, we took as a prior
an inverse-Gamma (10−3, 10−3). For the baseline risk parameter of the Weibull distribution in
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survival submodel, a Gamma(10−3, 10−3) prior was used. To analyze the data using the fully
Bayesian Cox model described in Section 3.1, we chose the scaling parameter c in a gamma
prior for the independent increments to be equal 0.001 and a prior mean dΛ∗

0(t) = 0.1. We did
not observe any substantial difference for the different values of parameter c as long as c was
small enough to keep the prior noninformative. We do not recommend too small values of
the scaling parameter c as they can lead to the computation problems. Analogically we have
chosen gamma priors for the piecewise constant hazard model. The code for the Bayesian full
joint model, as well the R codes for the sampling two-stage procedure, is available from the
authors on request.

4.2. Results

The results for the nonlinear-mixed model are presented in Table 1, for the two-stage
approach and in supplementary material, for the full Bayesian approach with Weibull
survival model. The results for the longitudinal part for the full Bayesian approach with
Cox and piecewise constant hazard models were similar (not presented). It can be observed,
based on two-stage model results, that only Donor Age had a significant impact on the RR
asymptote. Donor Type and Region had a significant impact on the steepness parameter.
However, we keep all the covariates in the model for the purpose of prediction for the second
stage. The mean RR profiles for Heart-Beating and Non-Heart-Beating donors from different
regions together with fitted values based on the obtained nonlinear mixed model are given
in the supplementary material.

In the second step of the analysis, we applied at first the naive approach and used the
estimates φ̂1, φ̂2, and φ̂3 from the nonlinear mixed model as fixed covariates in the final Cox
models for graft survival. Table 2 presents the results for the survival submodel for the all
approaches, namely, the plug-in method, two-stage approach, and the fully Bayesian model.
For the fully Bayesian approach, the results for the parametric Weibull model together with
Cox and piecewise constant hazard models are listed. The results from Table 2 indicate that
only the RR asymptote could have a significant impact on graft survival.

We observe that the estimates are close or almost identical as in plug-in model. SE of
the Cox regression coefficients for the model with sampling are greater than SE from the plug-
in model in Table 2(a), especially for the parameter φ3. The increase in SE is somewhat the
expected and is caused by the additional variability in covariates captured by the sampling
approach. The fully Bayesian model produces similar results to our semi-Bayesian sampling
model with somewhat lower SE. We do not observe substantial difference between fully
parametric and nonparametric models in a fully Bayesian approach. Since in the analyzed
real data the number of events is small, the fully Bayesian Cox and piecewise constant hazard
Bayesian models were expected to produce similar results. We did not observe any substantial
difference for the different values of hyperparameters.

Even though it is hard to compare exactly the computational time for the two
approaches, the rough estimation of the total computational time needed to estimate and
assess the convergence (2 chains) of the full Bayesian model was about 21.6 hours and
depended on the implemented survival model. A similar computational time was needed
for the full Bayesian model with the Cox survival model and piecewise constant hazard
model with a slightly more time needed for the parametric Weibull model. For the two-stage
approach, the total computational time was about 10 hours using the Intel(R) Core(TM)2
Duo T9300 2.5 GHz and 3.5 GB RAM.
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Table 1: Parameter estimates, standard errors, and 95% confidence intervals from the nonlinear mixed
model for RR.

Effect Parameter Estimate SE (95% CI)

Fixed effects
φ1

Constant β10 2.838 0.094 (2.654; 3.022)
Donor Age β11 0.005 0.002 (0.001; 0.009)
Donor Type (HB versus NHB) β12 −0.102 0.068 (−0.235; 0.031)
Donor Region 1 versus 3 β13 −0.078 0.065 (−0.205; 0.049)
Donor Region 2 versus 3 β14 −0.072 0.072 (−0.213; 0.069)

φ2

Constant β20 3.510 0.211 (3.096; 3.924)
Donor Age β21 0.004 0.004 (−0.004; 0.012)
Donor Type (HB versus NHB) β22 −0.064 0.154 (−0.365; 0.238)
Donor Region 1 versus 3 β23 −0.107 0.147 (−0.395; 0.181)
Donor Region 2 versus 3 β24 0.033 0.163 (−0.286; 0.352)

φ3

Constant β30 1.010 0.186 (0.645; 1.375)
Donor Age β31 0.003 0.003 (−0.003; 0.009)
Donor Type (HB versus NHB) β32 0.402 0.130 (0.147; 0.657)
Donor Region 1 versus 3 β33 −0.284 0.125 (−0.529; −0.039)
Donor Region 2 versus 3 β34 −0.032 0.138 (−0.302; 0.238)

Random effects
se(α1) d11 0.396
se(α2) d22 0.955
se(α3) d33 0.572
cov(α1, α2) d12 0.257
cov(α1, α3) d13 −0.053
cov(α2, α3) d23 0.023
se(εij) σ 7.507

5. Simulations

5.1. Design

We have conducted a number of simulations to investigate the performance of our proposed
two-stage method. In particular, we compared the plug-in method that uses the Empirical
Bayes estimates φ̂i from the nonlinear mixed model and ignores the measurement error, the
two-stage Monte Carlo sampling approach that accounts for the variability in φ̂i, and the fully
Bayesian approach. In the fully Bayesian approach, only the parametric Weibull model was
considered.

For the longitudinal part, the data were simulated for 500 patients from model
(5.1) with φ1i = β10 + α1i, φ2i = β20 + α2i and φ3i = β30 + α3i, αi ∼ N(0,D), Y ∼
N(f(t), σ2). The variance-covariance matrix D of the random effects was chosen to be
D = vech(0.6, 0.01,−0.01, 0.6, 0.01, 0.3). We kept 7 measurement points as in the original
analyzed data set as well as the nonequal distances between them. The variance of the
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Table 2: Parameter estimates, SE, and 95% confidence/credibility intervals from proportional hazards Cox
model for graft survival for plug-in method (a), sampled covariates (b), and fully Bayesian approach (c,
d, e).

(a) Graft survival, plug-in

Effect Parameter log(HR) SE (95% CI)
exp(φ1) γ1 0.052 0.022 (0.009; 0.095)
exp(φ2) γ2 −0.005 0.005 (−0.015; 0.005)
exp(φ3) γ3 0.053 0.158 (−0.257; 0.363)

(b) Graft survival, sampling two-stage

Effect Parameter log(HR) SE (95% CI)
exp(φ1) γ1 0.053 0.024 (0.006; 0.100)
exp(φ2) γ2 −0.006 0.008 (−0.022; 0.010)
exp(φ3) γ3 0.055 0.185 (−0.308; 0.418)

(c) Graft survival, fully Bayesian, Weibull

Effect Parameter log(HR) SE (95% HPD)
exp(φ1) γ1 0.058 0.023 (0.013; 0.103)
exp(φ2) γ2 −0.005 0.008 (−0.020; 0.011)
exp(φ3) γ3 0.056 0.180 (−0.299; 0.411)

(d) Graft survival, fully Bayesian, Cox

Effect Parameter log(HR) SE (95% HPD)
exp(φ1) γ1 0.056 0.023 (0.010; 0.101)
exp(φ2) γ2 −0.006 0.008 (−0.022; 0.010)
exp(φ3) γ3 0.055 0.171 (−0.280; 0.390)

(e) Graft survival, fully Bayesian, piecewise constant hazard

Effect Parameter log(HR) SE (95% HPD)
exp(φ1) γ1 0.054 0.024 (0.007; 0.102)
exp(φ2) γ2 −0.005 0.009 (−0.022; 0.012)
exp(φ3) γ3 0.054 0.179 (−0.297; 0.405)

measurement error σ2 was chosen to be 0.25, 1, and 25. Survival times were simulated for
each patient using the exponential model with the rate parameter equal exp(λ), where

λ = γ1 exp
(
φ1

)
+ γ2 exp

(
φ2

)
+ γ3 exp

(
φ3

)
. (5.1)

We considered scenarios with fixed coefficients γ1 = 0.5, γ2 = 0.5, and γ3 = −0.2.
The censoring mechanism was simulated independently using an exponential distribution
Exp(λC). Parameter λC was changed in order to control proportion of censored observations.
Different scenarios with 40% and 20% of censoring were examined. For each simulated
data set we fitted four survival models, namely, the gold standard model that uses the true
simulated values φi, the plug-in model, the sampling model, and fully Bayesian joint model.
Neither nonparametric Cox nor piecewise constant hazard model were considered in a fully
Bayesian approach since we have simulated the data from the parametric exponential model
and wanted to compare the proposed two-stage approach with the “best” fully Bayesian



14 Journal of Probability and Statistics

model. All the prior settings, size of burn-in, number of iterations, and so forth, for the fully
Bayesian model were the same as for the real data analysis.

5.2. Results

In Table 3, we present the average results for 200 simulations of different scenarios are
presented. The results from our sampling model were very close to the results obtained for the
fully Bayesian model with slightly smaller bias and RMSE for the fully Bayesian approach.
That was due to the better estimation of random effects variability in fully Bayesian approach.
The plug-in method produced the biggest bias that sometimes with combination with the
small variability of the estimates around the biased mean resulted in larger RMSE than in
sampling approach. As the measurement error or the percentage of censored observations
increased, the estimates of survival submodel were more biased with larger RMSE for all
approaches. The increase in bias was more severe when the measurement error variance
was increased rather than when the percentage of to censoring was higher. This bias was,
however, decreased when the number of repeated measures per individual was increased.
This has to do with the amount of information that is available in the data for the estimation
of φ̂i. As it is known from the standard mixed models literature [26], the degree of shrinkage
in the subject-specific predicted values is proportional to σ and inversely proportional to
ni and σα. To compare the relation between variance of the random effects and variance of
the measurement error, one can use intraclass correlation (ICC) defined as the proportion of
the total variability that is explained by the clustering with a given random effect. ICC was
similar for the simulated and the real data for the biggest σ and increased in a simulation
data as σ decreased.

Since the calculations for the simulation study were highly computationally intensive,
we have used the cluster with about 20 nodes with AMD Quad-Core Opteron 835X, 4 ×
2 GHz, and 16 GB RAM per node. The analysis for the the 200 simulated data sets for a single
scenario took about 65.5 hours using the Bayesian approach and 31.2 hours using the two-
stage approach.

6. Discussion

We have proposed a two-stage method that can be used in a joint analysis of longitudinal
and time to event data when the longitudinal data are collected before the start of followup
for survival, and the interest is in estimation of the impact of longitudinal profiles on
survival. The modeling strategy is based on specification of two separate submodels for
the longitudinal and time to event data. First, the longitudinal outcome is modeled using
a random effects model. Then the survival outcome is modeled using the Empirical Bayes
estimates of the subject-specific effects from the first stage. The variability of the estimates
from the first stage is properly taken into account using a Monte Carlo approach by sampling
from the posterior distribution of the random effects given the data.

As it was demonstrated, ignoring the additional variability of the subject-specific
estimates when modeling survival leads to some bias, and in particular, attenuates the
regression coefficients towards zero [4]. That was also confirmed by our simulation study.
In comparison with the fully Bayesian approach, the proposed partially Bayesian method
produced similar results with substantially less number of iterations required. This is due
to the fact that sampling was conducted already around the EB estimates, and there is no
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Table 3: Bias and residual mean squared error (RMSE) for the method with true φi (GS), Empirical Bayes
estimates φ̂i (Plug-in), sampled φi, and fully Bayesian approach.

7 time points
% censoring 20 40

σ 0.5

γ1 γ2 γ3 γ1 γ2 γ3

GS 0.00 (0.04) −0.02 (0.03) 0.01 (0.03) −0.01 (0.04) 0.02 (0.04) −0.02 (0.04)
plug-in −0.05 (0.06) −0.04 (0.05) 0.06 (0.07) −0.08 (0.09) −0.04 (0.05) 0.12 (0.12)
sampling −0.04 (0.05) 0.03 (0.08) 0.02 (0.07) −0.05 (0.11) −0.02 (0.06) 0.03 (0.10)
Bayesian −0.03 (0.04) −0.02 (0.04) 0.01 (0.02) −0.01 (0.04) −0.02 (0.04) 0.02 (0.07)

σ 1

GS 0.04 (0.05) 0.04 (0.07) −0.03 (0.07) −0.05 (0.09) −0.04 (0.06) −0.03 (0.05)
plug-in −0.07 (0.08) −0.08 (0.09) 0.07 (0.09) −0.10 (0.12) −0.08 (0.09) 0.08 (0.11)
sampling −0.07 (0.09) −0.06 (0.10) −0.02 (0.11) −0.05 (0.12) 0.05 (0.11) −0.03 (0.12)
Bayesian 0.01 (0.03) 0.05 (0.06) −0.03 (0.07) 0.05 (0.06) 0.04 (0.06) −0.04 (0.07)

σ 5

GS 0.04 (0.06) 0.05 (0.06) 0.04 (0.08) 0.05 (0.10) 0.01 (0.05) −0.02 (0.06)
plug-in −0.09 (0.10) −0.10 (0.11) 0.08 (0.11) −0.20 (0.22) −0.21 (0.22) 0.14 (0.18)
sampling 0.08 (0.13) 0.06 (0.12) −0.05 (0.12) 0.07 (0.14) −0.05 (0.13) −0.11 (0.18)
Bayesian 0.09 (0.10) 0.05 (0.09) −0.09 (0.10) −0.09 (0.10) 0.08 (0.12) −0.12 (0.18)

14 time points
% censoring 20 40

σ 0.5

γ1 γ2 γ3 γ1 γ2 γ3

GS −0.03 (0.03) 0.00 (0.02) −0.02 (0.03) 0.02 (0.03) −0.03 (0.04) 0.02 (0.04)
plug-in −0.02 (0.03) −0.03 (0.04) 0.05 (0.07) −0.02 (0.04) −0.03 (0.04) 0.05 (0.06)
sampling 0.03 (0.04) 0.02 (0.06) 0.02 (0.07) 0.02 (0.04) 0.04 (0.05) 0.02 (0.08)
Bayesian −0.03 (0.04) −0.02 (0.04) −0.02 (0.04) 0.02 (0.04) 0.03 (0.04) −0.05 (0.06)

σ 1

GS −0.03 (0.04) −0.03 (0.04) −0.01 (0.03) 0.00 (0.03) −0.02 (0.04) 0.05 (0.06)
plug-in −0.09 (0.06) −0.05 (0.06) 0.06 (0.07) −0.02 (0.04) −0.04 (0.05) 0.11 (0.11)
sampling 0.04 (0.08) 0.02 (0.08) −0.02 (0.07) −0.02 (0.04) −0.02 (0.08) 0.04 (0.09)
Bayesian −0.03 (0.04) 0.04 (0.05) −0.03 (0.05) 0.02 (0.04) 0.03 (0.05) 0.06 (0.07)

σ 5

GS −0.03 (0.04) −0.03 (0.04) 0.01 (0.04) −0.01 (0.04) −0.02 (0.04) 0.05 (0.06)
plug-in −0.05 (0.06) −0.10 (0.11) 0.07 (0.09) −0.10 (0.11) −0.09 (0.10) 0.11 (0.12)
sampling 0.04 (0.09) 0.04 (0.11) −0.05 (0.11) 0.07 (0.12) 0.05 (0.11) −0.06 (0.16)
Bayesian 0.03 (0.05) 0.03 (0.08) −0.05 (0.10) 0.02 (0.04) 0.06 (0.10) −0.09 (0.14)

needed for a burn-in part as in a standard fully Bayesian approach. We used 10000 iterations
per subject, which was about the size of burn-in needed in the fully Bayesian models. No
thinning was used in our approach, based on the visual inspection of the trace plots. Though
it is hard to compare the fully Bayesian approach and the two-stage approach with respect
to the computational time precisely, the rough approximation of the total computational time
required for the two-stage approach was about half in comparison with the fully Bayesian
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approach. The fully Bayesian approach provided similar results with the two-stage approach
for the special setting we have considered here. However, fitting a fully Bayesian model was
a bit of “overdone” in the sense that by design the longitudinal data could not be affected
by the survival. Since in many transplantation studies, the longitudinal data are collected
before the start of followup for survival; therefore, using our method in that cases seems
to be more appropriate than using a fully Bayesian approach. We recommend the proposed
approach not only for the particular transplantation studies but in any setting that shares
the similarity of the separated followup periods for the two analyzed endpoints. That is, for
example, when the event process does not carry any information for the longitudinal outcome
and the condition (3.7) from Section 3.2 holds. The simulation results indicate that even if the
data come from the real joint setting in which (3.7) may not hold, the proposed two-stage
procedure can be comparable to the fully Bayesian approach.

Since the sampling in the proposed method relies strongly on the results of the first
part, the accurate estimation of all parameters of nonlinear mixed model is a key feature and
should be performed carefully. This can be problematic when the deviation from normality of
the random effects, is suspected. However, it was shown that even for the nonnormal random
effects one can still use a standard software such as nlmixed in SAS with just a small change
in a standard program code. In such cases, the probability integral transformation (PIT)
proposed by Nelson et al. [27] can be used or the reformulation of the likelihood proposed by
Liu and Yu [28]. An alternative is fitting a Bayesian model only to estimate the longitudinal
submodel in the first stage, instead of the likelihood methods. Fitting nonlinear mixed models
using Bayesian standard software can be, however, problematic due to the high nonlinearity
in random effects that is caused both by the nonlinear function of the longitudinal profiles
and by the possible restrictions on parameters [29].

In comparison with the two-stage approach proposed by Tsiatis et al. [5], our
method is less computationally intensive since it does not require fitting as many mixed
models as there are event times in the data. An alternative, that is somewhat simpler to
implement and does not require any assumption about the distribution on the underlying
random effects, is the conditional score approach proposed by Tsiatis and Davidian [11].
However, this method is less efficient than the methods based on likelihood. The focus
in the discussed approaches is on the association between the longitudinal and event
time processes. However, in transplantation studies when the two followup periods for
longitudinal and survival outcomes are often separated, the interest is rather in making an
inference on the marginal event-time distribution. This is similar to the Bayesian approach
proposed by Xu and Zeger [12], that uses the longitudinal data as auxiliary information or
surrogate for time-to-event data. Our approach is particularly useful in this setting. Since
each of the two submodels is fitted separately, a standard software can be used to implement
our method with just a small part of additional programming for Monte Carlo sampling.

Another advantage of the proposed two-stage method is that it can be easily
generalized from survival to other types of models as it was applied for the binary Delayed
Graft Failure (DGF) indicator (results not shown) in the analysis of the renal data. For that
purpose in the second step of the two-stage procedure, the survival model was replaced by
the logistic regression model for the DGF indicator. The first stage of the proposed approach
could be also modified allowing for other types of longitudinal response and other types of
mixed models. Therefore, instead of using a nonlinear mixed model a linear mixed model or
generalized linear mixed model (GLMMs) can be considered depending on the type and the
shape of the longitudinal response. In the presented real data example, we have chosen the
three parameters that described the evolution of the longitudinal response. However, for the
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particular question of interest, one can easily choose the most convenient parametrization
for the longitudinal model and use the selected parameters to analyze the nonlongitudinal
response in the second stage.
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