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The moments of order statistics (o.s.) arising from independent nonidentically distributed (inid)
three parameter Exponentiated Frechet (EF) random variables (r.v.’s.) were computed using
a theorem of Barakat and Abdelkader (2003). Two methods of integration were used to find
the moments. Graphical representation of the probability density function (p.d.f.) and the
cumulative distribution function (c.d.f.) of the rth o.s. arising from inid r.v.’s. from this distribution.
Calculations of the mean of the largest o.s. from a sample of size 2 were given for both inid and
independent identically distributed (iid) r.v.’s.

1. Introduction

Nadarajah and Kotz [1] introduced a new lifetime model named the Exponentiated Frechet
distribution EF. It is a generalization of the standard Frechet distribution (known as the
extreme value distribution of type II). The EF distribution is referred to in the literature as
the inverse of exponentiated Weibull distribution. The cumulative distribution function c.d.f.
of the EF can be written as

F(x) = 1 −
[
1 − e−(

σ
x )

λ
]α
, x > 0, σ > 0, λ > 0, α > 0, (1.1)

where α and λ are the shape parameters and σ is the scale parameter, respectively.
They provided a comprehensive treatment of the mathematical properties of this new

distribution such as the derivation of the analytical shapes of the corresponding probability
density function, the hazard rate function and provided graphical illustrations. They also
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calculated expressions for the nth moment, the asymptotic distribution of the extreme order
statistics, investigated the variation of the skewness and kurtosis, and discussed estimation
by the method of maximum likelihood.

This distribution was extensively studied by Badr [2] in a P.H.d. dessertation from
several statistical points of view such as statistical properties, relation between the EF and
several other distributions, statistical inferences, order statistics, record values, and associated
inference.

The subject of nonidentical order statistics o.s. for EF is not discussed in the literature
yet for EF distribution, which was the motivation behind this paper.

Mathematical and graphical representation of the probability density function p.d.f.
and the c.d.f. of the rth o.s. arising from inid EF distribution are given in Section 2.

Computation ofmoments of the rth o.s. of inid r.v.’s. arising from inid EF using Barakat
and Abdelkader [3] technique is presented in Section 3.

This technique requires that the c.d.f. of the distribution can be written in the form
F(x) = 1 − λ(x), which is satisfied in this distribution. This technique is referred to as Barakat
Abdelkader technique (BAT).

2. Nonidentical Order Statistics from Exponentiated Frechet
Distribution

The subject on nonidentical order statistics is discussed widely in the literature in David and
Nagaraja [4]. Vaughan and Venables [5] denoted the joint p.d.f. and marginal p.d.f. of order
statistics of inid random variables by means of the permanent.

Let X1, X2, . . . , Xn be independent random variables having cumulative distribution
functions F1(x), F2(x), . . . , Fn(x) and probability density functions f1(x), f2(x), . . . , fn(x),
respectively. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics obtained by arranging
the n X,

i s in increasing order of magnitude. Then the p.d.f. and the c.d.f. of the rth order
statistic Xr:n(1 ≤ r ≤ n) can be written as

fr:n(x) =
1

(r − 1)!(n − r)!

∑
p

r−1∏
a=1

Fia(x)fir(x)
n∏

c=r+1

{1 − Fic(x)}, (2.1)

where
∑

p denotes the summation over all n! permutations (i1, i2, . . . , in) of (1, 2, . . . n). Bapat
and Beg [6] put it in the form of the permanent as

fr:n(x) =
1

(r − 1)!(n − r)!
per

⎡
⎢⎣ F(x)︸︷︷︸

r−1

f(x)︸︷︷︸
1

{1 − F(x)}︸ ︷︷ ︸
n−r

⎤
⎥⎦,

F(r)(x) =
n∑
j=r

∑
pj

j∏
a=1

Fia(x)
n∏

a=j+1

[1 − Fia(x)].

(2.2)

The p.d.f. and the c.d.f. of the rth inid o.s. of EF distribution are displayed in Figures 1 and 2
for some selected values of the shape parameters λ and αi, i = 1, 2, 3 and for the scale
parameter σ = 1, when the sample size n = 3, r = 1, 2, 3.
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Figure 1: Graph of p.d.f. of (inid) o.s. from Ef distribution for selected values of α1 = 0.03; α2 = 0.05;
α3 = 0.07; σ = 1, n = 3, r = 1, 2, 3, respectively.

Where
∑

pj
is all permutations of (i1, i2, . . . , in) for (1, . . . , n) which satisfy i1 < i2 <

· · · < ij and ij+1 < ij+2 < · · · < in. And using the permanent, we have

F(r)(x) =
n∑
i=r

1
i!(n − i)!

per

⎡
⎢⎢⎢⎢⎣

F1(x) 1 − F1(x)
...

Fn(x)︸︷︷︸
i

1 − Fn(x)︸ ︷︷ ︸
n−i

⎤
⎥⎥⎥⎥⎦, −∞ < x < ∞. (2.3)

For EF distribution, we have

Fi(x) = 1 −
[
1 − e−(σ/x)

λ
]αi

, x > 0, σ > 0, λ > 0, αi > 0,

fi(x) = αi λσ
λ+1x−(λ+1)

[
1 − e−(σ/x)

λ
]αi−1

e−(σ/x)
λ

, x > 0, σ > 0, λ > 0, αi > 0.
(2.4)

3. The Moments of the rth o.s. Arising from
Independent Nonidentically Distributed Exponentiated
Frechet Random Variables

Three techniques have been established in the literature to compute moments of o.s. of
inid r.v.’s. see Balakrishnan [7], Barakat and Abdelkader [3], and Jamjoom and Al-Saiary
[8]. Applications of the previous two methods are also found in the literature for several
continuous distributions. The paper [7] established the first technique which was later
referred to as differential equation technique (DET) and used it to derive recurrence relations
for single and product moments of inid order statistics from the Exponential and right
truncated distributions. Childs and Balakrishnan [9] applied (DET) to derive the moments of
inid order statistics for logistic random variables. Mohie Elidin et al. [10] applied this method
to derive the moments of inid order statistics for several distributions.
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Figure 2:Graph of c.d.f. of inid o.s. from Ef distribution for selected values of α1 = 0.03; α2 = 0.05; α3 = 0.07;
σ = 1, n = 3, r = 1, 2, 3, respectively.

Barakat and Abdelkader [11] established the second technique and applied it to
Weibull distribution. They generalized it in Barakat and Abdelkader [3] and applied it to
several continuous distributions such as Erlang, Positive Exponential, Pareto, and Laplace
distribution. This method was also used to compute the moments of inid o.s. of Gamma
distribution in Abdelkader [12], Burr type XII distribution in Jamjoom [13], Beta distribution
in Abdelkader [14]. Later, in Jamjoom and Al-Saiary, [15] was referred to as (BAT) and had
been used to compute the moments of inid o.s. of Beta three-parameter type I distribution.

The third technique, established by Jamjoom and Al-Saiary [8], is the moment
generating function technique. It depends mainly on BAT. It is referred to as (M.G.F BAT)
and it was used by the same authors to compute the moments of inid o.s. for Burr type II
distribution, Exponential distribution and Erlang truncated Exponential distribution.

In this section, the theorem which was established by Barakat and Abdelkader [3]will
be stated without proof. Then the theorem is used to get recurrence relation for the single
moments of inid o.s. arising from EF distribution.

Theorem 3.1. Let X1, X2, . . . , Xn be independent nonidentically distributed r.v.’s. The kth moment
of the rth o.s. μ(k)

r:n , for 1 ≤ r ≤ n and k = 1, 2, . . . is given by

μ
(k)
r:n =

n∑
j=n−r+1

(−1)j−(n−r+1)
(
j − 1
n − r

)
Ij(k), (3.1)

where

Ij(k) =
∑

1≤i1<i2<···<ij≤ n

. . .
∑

k

∫∞
0
xk−1

j∏
t=1

Git(x)dx, j = 1, 2, . . . , n, (3.2)

Git(x) = 1 − Fit(x), with (i1, i2, . . . , in) are permutations of (1, 2, . . . , n) for which i1 ≤ i2 < · · · < in.
The following theorem gives an explicit expression for Ij(k) when X1, X2, . . . , Xn are inid EF

r.v.’s. Two cases were considered.
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3.1. Case 1 (When The Shape Parameter α of EF Distribution Is an Integer)

Theorem 3.2. For 1 ≤ r ≤ n, k = 1, 2, . . .,

Ij(k) =
kσkΓ(−k/λ)

λ

∑
1≤i1<i2<···

∑
<ij≤n

αi1∑
m1=0

· · ·
αij∑

mj=0

ξij

(
j∑

t=1

mt

)k/λ

, (3.3)

where

ξij =
j∏

t = 1

(−1)mtΓ(αit + 1)
mt!Γ(αit −mt + 1)

, (3.4)

or

Ij(k) =
kσkΓ(−k/λ)

λ

∑
1≤i1<i2<···

∑
<ij≤n

Sij∑
m=0

(
Sij

m

)
(−1)Sij

−m (
Sij −m

)k/λ
, (3.5)

where

Sij =
j∑

t=1

αit . (3.6)

Proof. On applying Theorem 3.1 and using (2.4), we get

Ij(k) =
∑

1≤i1<i2<···

∑
<ij≤n

k

∫∞
0
xk−1

j∏
t=1

[
1 − e−(σ/x)

λ
] αit

dx. (3.7)

This integral converges if
∑j

t=1 αit > k/λ, and we used two methods of integration.

The First Method

The first method is to find this integral by expanding the expression (1 + z )a. When the
exponent (a) is an integer, we will use the series

(b + z)a =
a∑

m=0

(
a
m

)
ba−mzm, (3.8)

see Abramowitz and Stegun [16] page 10.
Using the Gamma notation and considering b = 1, this series can be written as

(1 + z )a =
a∑

m=0

Γ(a + 1)
Γ(a −m + 1)

zm

m!
. (3.9)
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Then the bracket in (3.7) can be written as

[
1 − e−(σ/x)

λ
]αit =

αit∑
m=0

Γ(αit + 1)
Γ(αit −m + 1)

(−1)me−m(σ/x)λ

m!

∴ Ij(k) =
∑

1≤i1<i2<···

∑
<ij≤n

k

∫∞
0
xk−1

j∏
t=1

αit∑
m=0

Γ(αit + 1)
Γ(αit −m + 1)

(−1)me− m(σ/x)λ

m!
dx

=
∑

1≤i1<i2<···

∑
<ij≤n

k

∫∞
0
xk−1

⎛
⎜⎜⎜⎝

αi1∑
m1=0

Γ(αi1 + 1)
Γ(αi1 −m1 + 1)

(−1)m1e− m1(σ/x)
λ

m1!

· · ·
αij∑

mj = 0

Γ(αit+1)

Γ
(
αij −mj+1

)× (−1)mj e− mj (σ/x)
λ

mj !

⎞
⎟⎟⎟⎠dx

∴ Ij (k) =
∑

1≤i1<i2<···

∑
<ij≤n

k

∫∞
0
xk−1

⎛
⎜⎜⎜⎝

αi1∑
m1=0

· · ·
αij∑

mj=0

Γ(αi1 + 1)
Γ(αi1 −m1 + 1)

· · ·
Γ
(
αij + 1

)

Γ
(
αij −mj + 1

)

× (− 1)
∑j

t=1 mte−
∑j

t = 1 mt(σ/x)
λ

j∏
t=1

mt!

⎞
⎟⎟⎟⎠dx

=
∑

1≤i1<i2<···

∑
<ij≤n

k

αi1∑
m1=0

· · ·
αij∑

mj = 0

(
j∏

t=1

Γ(αit + 1)
Γ(αit −mt + 1)

(−1)mt

mt!

×
∫∞
0
xk−1e−

∑j

t=1 mt(σ/x)
λ

dx

)

=
∑

1≤i1<i2<···

∑
<ij≤n

k

αi1∑
m1=0

· · ·
αij∑

mj=0

(
j∏

t=1

(−1)mt

mt!
Γ(αit + 1)

Γ(αit −mt + 1)

×
∫∞
0
xk−1e−

∑j

t=1 mt (σ/x)
λ

dx

)
.

(3.10)

Substituting

y =
j∑

t=1

mt

(σ
x

)λ

∴ x = σ

(
j∑

t=1

mt

)1/λ

y−1/λ
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dx =
σ

λ

(
j∑

t=1

mt

)1/λ

y−(1/λ)−1dy

∴
∫∞
0
xk−1e−

∑j

t =1 mt(σ/x)
λ

dx = σk

(
j∑

t=1

mt

)k/λ ∫∞
0
y−(k/λ)− 1e− ydy

=
σk

λ

(
j∑

t=1

mt

)k/λ

Γ
(
−k
λ

)
; λ >0, k =1, 2, . . . ,

k

λ
/= 0, 1, 2, . . . .

(3.11)

Making some arrangements, we get (3.3).

The Second Method of Integration is Given by Using the Transformation

y = e−(σ/x)
λ

, (3.12)

in (3.7)

∴ x = σ

(
ln

1
y

)−1/λ
, (3.13)

Then

dx = −σ
λ

(
ln

1
y

)−(1/λ)−1
y−1dy

∴
∫∞
0
xk−1

j∏
t=1

[
1 − e−(σ/x)

λ
] αit

dx =
∫∞
0
xk−1
[
1 − e−(σ/x)

λ
]Sij

dx,

(3.14)

where

Sij =
j∑

t=1

αit

=
σk

λ

∫1
0

(
ln

1
y

)−(k/λ)−1[
1 − y

]Sij y−1dy

=
σk

λ

Sij∑
m=0

(
Sij

m

)
(−1)Sij

−m
∫1
0

(
ln

1
y

)−(k/λ)−1
y
Sij

−m−1
dy.

(3.15)

Using

∫1
0

(
ln

1
y

)θ−1
y ν−1dy =

1
νθ

Γ(θ), (3.16)
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Table 1: Ij(k) using (3.3) when n = 3.

j Ij(k)

1
I1(k) =

kσk Γ(−k/λ)
λ

(
α1∑

m1=0

(−1)m1 Γ(α1 + 1)
m1! Γ(α1 − m1 + 1)

(m1)
k/λ +

α2∑
m1=0

(−1)m1 Γ(α2 + 1)
m1! Γ(α2 −m1 + 1)

(m1)
k/λ

+
α3∑

m1=0

(−1)m1 Γ(α3 + 1)
m1! Γ(α3 −m1 + 1)

(m1)
k/λ

)

2

I2(k) =
kσk Γ(−k/λ)

λ

(
α1∑

m1=0

α2∑
m2=0

(−1)m1+m2 Γ(α1 + 1)Γ(α2 + 1)
m1!m2 ! Γ(α1 −m1 + 1) Γ(α2 −m2 + 1)

(m1 +m2)
k/λ

+
α1∑

m1=0

α3∑
m2=0

(−1)m1+ m2 Γ(α1 + 1)Γ(α3 + 1)
m1!m2! Γ(α1 −m1 + 1)Γ(α3 −m2 + 1)

(m1 +m2)
k/λ

+
α2∑

m1 = 0

α3∑
m2 = 0

(−1)m1+m2 Γ(α2 + 1)Γ(α3 + 1)
m1!m2! Γ(α2 −m1 + 1)Γ(α3 −m2 + 1)

× (m1 +m2)
k/λ

)

3
I3(k) =

kσk Γ(−k/λ)
λ

(
α1∑

m1=0

α2∑
m2=0

α3∑
m3=0

(−1)m1+ m2+m3 Γ(α1 + 1)Γ(α2 + 1) Γ(α3 + 1)
m1!m2! m3!Γ(α1 −m1 + 1)Γ(α2 − m2 + 1)Γ(α2 − m2 + 1)

×(m1 +m2 +m3)
k/λ

)

Table 2: Ij(k) using (3.5) when n = 3.

j Ij(k)

1 I1(k) =
kσk Γ(−(k/λ))

λ

n∑
i=1

αi∑
m=0

( αi
m )(−1)αi−m (αi −m)k/λ

2
I2(k) =

kσk Γ(−k/λ)
λ

(
α1+α2∑
m=0

( α1+α2
m )(−1)α1+α2−m (α1 + α2 −m)k/λ

+
α1+α3∑
m=0

( α1+α3
m )(−1)α1+α3−m (α1 + α3 −m)k/λ

+
α2+α3∑
m=0

( α2+α3
m )(−1)α2+α3−m (α2 + α3 −m)k/λ

)

3
kσk Γ(−k/λ)

λ

(
α1+α2+α3∑

m=0
( α1+α2+α3

m )(−1)α1+α2+α3−m(α1 + α2 + α3 −m)k/λ
)

see (4.272.6) in Gradshteyn and Ryzhik [17]

∴
∫1
0

(
ln

1
y

)−(k/λ)−1
y
Sij

−m−1
dy =

1(
Sij −m

)−k/λ Γ
(
−k
λ

)
; k /= 0, λ, 2λ, 3λ, . . . . (3.17)

Substituting (3.17) in (3.15) and making some arrangements, we get (3.5).

Tables 1 and 2 give the values of Ij in (3.3) and (3.5), for j = 1, 2, 3 and sample size
n = 3.
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Corollary 3.3. For inid EF r.v.’s, when j = 1, (3.3) becomes

I1(k) =
kσk Γ(−k/λ)

λ

n∑
i=1

αi∑
r=1

(−1)rαi(αi − 1) · · · (αi − (r − 1))
rk/λ

r!
. (3.18)

Proof. One has

I1(k) =
kσk Γ(−k/λ)

λ

n∑
i=1

(
αi∑

m1=0

ξi mt
k/λ

)

=
kσk Γ(−k/λ)

λ

n∑
i=1

(
αi∑

m1=0

(−1)m1Γ(αi + 1)
m1!Γ(αi −m1 + 1)

mt
k/λ

)

=
kσk Γ(− k/λ)

λ

×
n∑
i=1

(
0 − Γ(αi + 1)

Γ(αi)
+

Γ(αi + 1)
2Γ(αi − 1)

2k/λ − Γ(αi + 1)
3!Γ(αis − 2)

3k/λ +
Γ(αi + 1)
4!Γ(αi − 2)

4k/λ

+ · · · + (−1)αi Γ(αi + 1)
αi!Γ (1)

αi
k/λ

)

=
kσk Γ(−k/λ)

λ

×
n∑
i=1

(
−αi +

αi(αi − 1)
2

2k/λ − αi(αi − 1)(αi − 2)
3!

3k/λ +
αi(αi−1)(αi−2)(αi−3)

4!
4k/λ

+ · · · + (−1)αiαi
k/λ

)

=
kσk Γ(− k/λ)

λ

n∑
i=1

(
α∑
r=1

(−1)r + αi(αi − 1) + · · · +
(
αi − (r − 1)

rk/λ

r !

))
.

(3.19)

The iid case can be deduced from Theorem 3.2. The result will be stated in the next corollary.

Corollary 3.4. For the case of a sample of n iid r.v.’s having EF distribution, the Ij(k) in Theorem 3.2
simply reduces to

Ij(k) =
k σk Γ(− k/λ)

λ

(
n
j

) α∑
m1=0

· · ·
α∑

mj=0

ξij

(
j∑

t=1

mt

)k/λ

, (3.20)

where

ξj =
j∏

t=1

(−1)mt Γ(α + 1)
mt!Γ(α −mt + 1)

, (3.21)
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Table 3: The moments μ2:2 arising from iid Exponentiated Frechet r.v.’s. using (3.3) or (3.5).

α 2 3 4 5
μ2:2 1.2915 1.03527 0.916892 0.84626

or

Ij(k) =
kσk Γ(− k/λ)

λ

(
n
j

) Sj∑
m=0

(
Sj

m

)
(−1)Sj−m(Sj −m

)k/λ
, (3.22)

where

Sj = jα. (3.23)

Corollary 3.5. For iid EF r.v.’s, when j = 1, (3.18) becomes

I1(k) =
knσk Γ(− k/λ)

λ

α∑
r=1

(−1)rα(α − 1) · · · (α − (r − 1))
rk/λ

r!
. (3.24)

Numerical Applications

The following examples are computed when k = 1.

Example 3.6. Let n = 2 and α = 2, 3, 4, and 5. Table 3 shows the results of the calculations.
For example, when α = 3, σ = 1, λ = 2,

μ2:2 = I1 − I2,

I1 =
2Γ(−1/2)

2

3∑
r=1

(−1)rα(α − 1) · · · (α − (r − 1))
rk/λ

r !

=
√
π

(
−α +

√
2α(α − 1)

2
−
√
2α(α − 1)(α − 2)

6

)

= 1.73491

I2 =
Γ(−1/2)

2

(
2
2

) 3∑
m1=0

3∑
m2=0

2∏
t=1

(−1)tΓ(α + 1)
mj !Γ
(
α −mj + 1

)
(

2∑
t=1

mt

)1/2

= 0.699642

μ2:2 = 1.73491 − 0.699642

= 1.03527.

(3.25)

Example 3.7. Setting n = 2, σ = 1, λ = 2, and α1 = 1(1)5, α2 = 1(1)5 in Theorems 3.1 and 3.2,
we get the results of the calculations in Table 4.



Journal of Probability and Statistics 11

Table 4: The moments μ2:2 arising from inid Exponentiated Frechet r.v.’s. using (3.3) or (3.5).

α2
α1

1 2 3 4 5
1 2.50663 1.94328 1.85485 1.82294 1.80739
2 1.94328 1.2915 1.17116 1.1237 1.09925
3 1.85485 1.17116 1.03527 0.978905 0.948808
4 1.82294 1.1237 0.978905 0.916892 0.882953
5 1.80739 1.09925 0.948808 0.882953 0.84626

For example, when α1 = 2, α2 = 3

μ2:2 = I1 − I2,

I1 =
Γ(−1/2)

λ

2∑
i=1

∞∑
r=1

(−1)rαi(αi − 1) · · · (αi − (r − 1))
rk/λ

r!

=
Γ(−1/2)

λ

(
α1∑
r=1

(−1)rα1(α1 − 1) · · · (α1 − (r − 1))
rk/λ

r!
+

α2∑
r=1

(−1)rα2(α2 − 1)

· · · (α2 − (r − 1))
rk/λ

r!

)

= 1.90574

I2 =
Γ(−1/2)

2

2∑
m1=0

3∑
m2=0

(−1)m1+ m2 Γ(α1 + 1)Γ(α2 + 1)
mt!m!Γ(α1 −m1 + 1)Γ(α2 −m2 + 1)

(m1 +m2)1/2

= 0.734577

μ2:2 = 1.90574 − 0.734577

= s1.17117.

(3.26)

3.2. Case 2 (When the Shape Parameter α of EF Is Noninteger)

When α is noninteger, the expansion of (1 + z)a is then written as

(1 + z)a =
∞∑

m=0

(
a
m

)
zm, −1 < z < 1, (3.27)

see Abramowitz and Stegun [16] page 14. Using gamma notation, (3.27) can bewritten
as

(1 + z)a =
∞∑

m=0

Γ(a + 1)
Γ(a −m + 1)

zm

m!
, −1 < z < 1. (3.28)
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Equations (3.3) and (3.5) become

Ij(k) =
kσk Γ(−k/λ)

λ

∑
1≤i1<i2<···

∑
<ij≤n

∞∑
m1=0

· · ·
∞∑

mj=0

ξij

(
j∑

t=1

mt

)k/λ

, (3.29)

where

ξij =
j∏

t=1

(−1)mt Γ(αit + 1)
mt!Γ(αit −mt + 1)

, (3.30)

or

Ij(k) =
kσk Γ(−k/λ)

λ

∑
1≤i1<i2<···

∑
<ij≤n

∞∑
m=0

(
Sij

m

)
(− 1)Sij

−m(
Sij −m

)k/λ
, (3.31)

where

Sij =
j∑

t=1

αit . (3.32)

Corollary 3.8. For inid EF r.v.’s, when j = 1, (3.29) becomes

I1(k) =
kσk Γ(−k/λ)

λ

n∑
i=1

∞∑
r=1

(−1)rαi(αi − 1) · · · (αi − (r − 1))
rk/λ

r!
. (3.33)

The iid case can be deduced from (3.29). The result will be stated in the next corollary.

Corollary 3.9. For a sample of iid r.v.,s having EF distribution, the Ij(k) in (3.29) simply reduces to

Ij(k) =
kσk Γ(−k/λ)

λ

(
n
j

) ∞∑
m1=0

· · ·
∞∑

mj=0

ξij

(
j∑

t=1

mt

)k/λ

, (3.34)

where

ξj =
j∏

t=1

(−1)mt Γ (α + 1)
mt!Γ (α −mt + 1)

, (3.35)

or

Ij(k) =
kσk Γ(−k/λ)

λ

(
n
j

) ∞∑
m=0

(
Sj

m

)
(−1)Sj−m(Sj −m

)k/λ
, (3.36)
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Table 5: The moments μ2:2 arising from IID Exponentiated Frechet r.v.’s. using (3.29) or (3.31).

α 1.5 2.5 3.5 4.5
μ2:2 2.68469 0.666308 1.30236 0.637316

where

Sj = jα. (3.37)

Corollary 3.10. For iid EF r.v.’s, when j = 1, (3.33) becomes

I1(k)
knσk Γ(−k/λ)

λ

∞∑
r=1

(−1)rα(α − 1) · · · (α − (r − 1))
rk/λ

r !
. (3.38)

Example 3.11. Let n = 2 and α = 1.5, 2.5, 3.5, 4.5. Table 5 shows the results of calculations.

Remark 3.12. Calculations in Example 3.11 were done following the method of Abdelkader
[12]. The upper limit of the sum (∞) is taken up to [α], where [.] is the usual greatest integer
function.

Remark 3.13. All figures and tables in this paper had been accomplished by Mathematica 7.0.
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