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The primary purpose of this paper is to prove a tightness of α-skew random walks. The tightness
result implies, in particular, that the α-skew Brownian motion can be constructed as the scaling
limit of such random walks. Our proof of tightness is based on a fourth-order moment method.

1. Introduction and Statement of the Main Result

Skew Brownian motion was introduced by Itô and Mckean [1] to furnish a construction
of certain stochastic processes related to Feller’s classification of second-order differential
operators associated with diffusion processes (see also Section 4.2 in [2]). For α ∈ (0, 1), the
α-skew Brownian motion is defined as a one-dimensional Markov process with the same
transition mechanism as of the usual Brownian motion, with the only exception that the
excursions away from zero are assigned a positive sign with probability α and a negative
sign with probability 1 − α. The signs form an i.i.d. sequence and are chosen independently
of the past history of the process. If α = 1/2, the process is the usual Brownian motion.

Formally, the α-skew random walk on Z starting at 0 is defined as the birth-death
Markov chain S(α) = {S(α)

k ; k ≥ 0}with Sα
0 = 0 and one-step transition probabilities given by

P
(
S
(α)
k+1 = m + 1 | S(α)

k = m
)
=

⎧
⎪⎨
⎪⎩
α if m = 0,

1
2
, otherwise,

P
(
S
(α)
k+1 = m − 1 | S(α)

k
= m
)
=

⎧
⎪⎨
⎪⎩
1 − α if m = 0,

1
2
, otherwise.

(1.1)
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In the special case α = 1/2, S(1/2) is a simple symmetric random walk on Z. Notice that when
α/= 1/2, the jumps (in general, increments) of the random walk are not independent.

Harrison and Shepp [3] asserted (without proof) that the functional central limit
theorem (FCLT, for short) for reflecting Brownian motion can be used to construct skew
Brownian motion as the limiting process of a suitably modified symmetric random walk on
the integer lattice. This result has served as a foundation for numerical algorithms tracking
moving particle in a highly heterogeneous porous media; see, for instance, [4–7]. In [5] it
was suggested that tightness could be obtained based on second moments; however this
is not possible even in the case of simple symmetric random walk. The lack of statistical
independence of the increments makes a fourth moment proof all the more challenging.
Although proofs of FCLTs in more general frameworks have subsequently been obtained by
other methods, for example, by Skorokhod embedding in [8], a self-contained simple proof
of tightness for simple skew random walk has not been available in the literature.

The main goal of this paper is to prove the following result. Let C(R+,R) be the space
of continuous functions from R+ = [0,∞) into R, equipped with the topology of uniform
convergence on compact sets. For n ∈ N, let X(α)

n ∈ C(R+,R) denote the following linear
interpolation of S(α)

[nt]:

X
(α)
n (t) =

1√
n

(
S
(α)
[nt] + (nt − [nt]) · S(α)

[nt]+1

)
. (1.2)

Here and henceforth [x] denotes the integer part of a real number x.

Theorem 1.1. For any α ∈ (0, 1), there exists a constant C > 0, such that the inequality

E
∣∣∣X(α)

n (t) −X
(α)
n (s)

∣∣∣
4 ≤ C|s − t|2, (1.3)

holds uniformly for all s, t > 0, and n ∈ N.

The results stated above implies the following (see, for instance, [9, page 98]).

Corollary 1.2. The family of processes X(α)
n , n ∈ N, is tight in C(R+,R).

2. Proof of Theorem 1.1

In this section we complete the proof of our main result, Theorem 1.1. In what follows we will
use S to denote the simple symmetric random walk S(1/2). The following observations can be
found in [3].

Proposition 2.1. (a) |S(α)| has the same distribution as |S| on Z+ = {0, 1, 2, . . .}. That is, |S(α)| is a
simple symmetric random walk on Z+, reflected at 0.

(b) The processes −S(α) and S(1−α) have the same distribution.

The next statement describes n-step transition probabilities of the skew random walks
by relating them to those of S (see, for instance, [5, page 436]).
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Proposition 2.2. For m ∈ Z, k > 0

P
(
S
(α)
k

= m
)
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α · P(|Sk| = m) if m > 0

(1 − α) · P(|Sk| = −m) if m < 0

P
(∣∣∣S(α)

k

∣∣∣ = 0
)
= P(|Sk| = 0) if m = 0.

(2.1)

The following observation is evident from the explicit form of the distribution function
of S(α)

k , given in Proposition 2.2.

Proposition 2.3. With probability one,

E
(
S
(α)
j+1 − S

(α)
j | S(α)

j

)
= (2α − 1)1{S(α)

j =0},

E

[(
S
(α)
i+1 − S

(α)
i

)2 | S(α)
i

]
= 1.

(2.2)

To show the result of Theorem 1.1, we will need a corollary to Karamata’s Tauberian
theorem, which we are going now to state. For a measure μ on [0,∞), denote by μ̂(λ) :=∫∞
0 e−λx μ(dx) the Laplace transform of μ. The transform is well defined for λ ∈ (c,∞), where
c > 0 is a nonnegative constant, possibly +∞. If μ and ν are measures on [0,∞) such that μ̂(λ)
and ν̂(λ) both exist for all λ > 0, then the convolution γ = μ ∗ ν has the Laplace transform
γ̂(λ) = μ̂(λ)ν̂(λ) for λ > 0. If μ is a discrete measure concentrated on Z+, one can identify μ
with a sequence μn of its values on n ∈ Z+. For such discrete measures, we have the following.
(see, e.g., Corollary 8.10 in [10, page 118]).

Proposition 2.4. Let μ̃(t) =
∑∞

n=0 μnt
n, 0 ≤ t < 1, where {μn}∞n=0 is a sequence of nonnegative

numbers. For L slowly varying at infinity and 0 ≤ θ < ∞ one has

μ̃(t) ∼ (1 − t)−θL
(

1
1 − t

)
as t ↑ 1 (2.3)

if and only if

n∑
j=0

μj ∼ 1
Γ(θ)

nθL(n) as n −→ ∞. (2.4)

Here and henceforth, an ∼ bn for two sequence of real numbers {an}n∈N
and {bn}n∈N

means limn→∞an/bn = 1.



4 Journal of Probability and Statistics

We are now in a position to prove the following key proposition. Define a sequence
{q(k)}k∈Z+

as follows

g(k) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if k ∈ N is odd
(
2i
i

)
2−2i if k = 2i ∈ N is even.

(2.5)

Note that in view of Proposition 2.2,

g(k) = P(Sk = 0) = P(|Sk| = 0) = P
(∣∣∣S(α)

k

∣∣∣ = 0
)
= P
(
S
(α)
k = 0

)
. (2.6)

Proposition 2.5.
(a) If μ(j) = g ∗ g(j) then∑m

j=0 μ(j) ∼ m.
(b) If ν(j) = g ∗ g ∗ g ∗ g(j) then∑m

j=0 ν(j) ∼ m2.

Proof. For t ∈ (0, 1), let g̃(t) =
∑∞

k=0 g(k)t
k. Notice that g̃(t) is well defined since g(k) = P(Sk =

0) < 1 for k ≥ 0. Since g(2j) =
(

2j
j

)
2−2j = (−1)j

(
−1/2
j

)
, we have

g̃(t) =
∞∑
k=0

g(k)tk =
∞∑
j=0

(
2j
j

)
2−2j t2j =

∞∑
j=0

(−1)j
⎛
⎜⎝

−1
2

j

⎞
⎟⎠t2j

=
∞∑
j=0

⎛
⎜⎝

−1
2

j

⎞
⎟⎠
(
−t2
)j

=
(
1 − t2

)−1/2
.

(2.7)

Notice that, using the notation of Proposition 2.4, g̃(t) = ĝ(λ) if t = e−λ. Therefore, μ̃(t) =
g̃2(t) = (1 − t2)−1 while ν̃(t) = g̃4(t) = (1 − t2)−2. Thus claims (a) and (b) of the proposition
follow from Proposition 2.4 applied, respectively, with θ = 1, L = 1 for μ and with θ = 2, L = 1
for ν.

The last technical lemma we need is the following claim.

Lemma 2.6. For integers 0 < i1 < i2 < i3 < i4 define

A(i1, i2, i3) := E
(
S
(α)
i3+1

− S
(α)
i3

)2(
S
(α)
i2+1

− S
(α)
i2

)(
S
(α)
i1+1

− S
(α)
i1

)
,

B(i1, i2, i3, i4) := E
(
S
(α)
i4+1

− S
(α)
i4

)(
S
(α)
i3+1

− S
(α)
i3

)(
S
(α)
i2+1

− S
(α)
i2

)(
S
(α)
i1+1

− S
(α)
i1

)
.

(2.8)
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Then there is a constant C > 0 such that

∑
1≤i1<i2<i3≤k−j

A(i1, i2, i3) ≤ C
∣∣k − j

∣∣2,

∑
1≤i1<i2<i3<i4≤k−j

B(i1, i2, i3, i4) ≤ C
∣∣k − j

∣∣2.
(2.9)

Proof. Using Proposition 2.3, the Markov property, and the fact the excursions of S(α) away
from zero are the same as excursions of the simple symmetric random walk S, we obtain

A(i1, i2, i3) = E
(
S
(α)
i3+1

− S
(α)
i3

)2(
S
(α)
i2+1

− S
(α)
i2

)(
S
(α)
i1+1

− S
(α)
i1

)
1{S(α)

i1
=0}1{S(α)

i2
=0}

= P(Si1 = 0) · (2α − 1) · P(Si2 = 0 | Si1 = 0) · (2α − 1)

= (2α − 1)2g(i1)g(i2 − i1).

(2.10)

Therefore,

∑
1≤i1<i2<i3<≤k−j

A(i1, i2, i3) ≤
[k−j]∑
i3=0

i3−1∑
i2=0

i2−1∑
i1=0

g(i2 − i1)g(i1). (2.11)

Using Proposition 2.5, we obtain

[k−j]∑
i3=0

i3−1∑
i2=0

i2−1∑
i1=0

g(i2 − i1)g(i1) =
[k−j]∑
i3=0

i3−1∑
i2=0

g ∗ g(i2) ≤
[k−j]∑
i3=0

[k−j]∑
i2=0

g ∗ g(i2)

≤ C1
∣∣k − j

∣∣2,
(2.12)

for some constant C1 > 0 and any k, j ∈ N.
Similarly,

B(i1, i2, i3, i4) = (2α − 1)4 · P(Si1 = 0) ·
3∏

a=1

P(Sia+1 = 0 | Sia = 0)

= (2α − 1)4g(i1)g(i2 − i1)g(i3 − i2)g(i4 − i3).

(2.13)

Hence, using again Proposition 2.5,

∑
0≤i1<i2<i3<i4

B(i1, i2, i3, i4) ≤
[k−j]∑
i4=0

g ∗ g ∗ g ∗ g(i4) ≤ C2
∣∣k − j

∣∣2, (2.14)

for some constant C2 > 0 and any k, j ∈ N.
To conclude the proof of the lemma, set C := max{C1, C2}.
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We are now in a position to complete the proof of our main result.

Completion of the Proof of Theorem 1.1

First consider the case where s = j/n < k/n = t are grid points. Then

E

∣∣∣∣∣∣
S
(α)
[nt]√
n

−
S
(α)
[ns]√
n

∣∣∣∣∣∣

4

=
1
n2

E
∣∣∣S(α)

k
− S

(α)
j

∣∣∣
4
=

1
n2

E

∣∣∣∣∣∣
k−1∑
i=j

(
S
(α)
i+1 − S

(α)
i

)
∣∣∣∣∣∣

4

=
1
n2

k−1∑
i=j

E
(
S
(α)
i+1 − S

(α)
i

)4
+

1
n2

∑
i1<i2≤k−j

E
(
S
(α)
i1+1

− S
(α)
i1

)2(
S
(α)
i2+1

− S
(α)
i2

)2

+
1
n2

∑
i1<i2<i3≤k−j

E
(
S
(α)
i3+1

− S
(α)
i3

)2(
S
(α)
i2+1

− S
(α)
i2

)(
S
(α)
i1+1

− S
(α)
i1

)

+
1
n2

∑
i1<i2<i3<i4≤k−j

E

(
4∏

a=1

S
(α)
ia+1

− S
(α)
ia

)

≤ 1
n2

k−1∑
i=j

1 +
1
n2

(
k − j
2

)(
k − j
2

)
+

1
n2

C1
∣∣k − j

∣∣2 + 1
n2

C2
∣∣k − j

∣∣2

≤ C3|t − s|2,

(2.15)

for a large enough constant C3 > 0.
To conclude the proof of Theorem 1.1, it remains to observe that for nongrid points

s and t one can use an approximation by neighbor grid points. In fact, the approximation
argument given in [9, pages 100-101] for regular random walks goes through verbatim.
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