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Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by an expansion
of CAG repeats in the IT15 gene. The age-at-onset (AAO) of HD is inversely related to the CAG
repeat length and the minimum length thought to cause HD is 36. Accurate estimation of the AAO
distribution based on CAG repeat length is important for genetic counseling and the design of
clinical trials. In the Cooperative Huntington’s Observational Research Trial (COHORT) study, the
CAG repeat length is known for the proband participants. However, whether a family member
shares the huntingtin gene status (CAG expanded or not) with the proband is unknown. In this
work, we use the expectation-maximization (EM) algorithm to handle the missing huntingtin gene
information in first-degree family members in COHORT, assuming that a family member has
the same CAG length as the proband if the family member carries a huntingtin gene mutation.
We perform simulation studies to examine performance of the proposed method and apply the
methods to analyze COHORT proband and family combined data. Our analyses reveal that the
estimated cumulative risk of HD symptom onset obtained from the combined data is slightly lower
than the risk estimated from the proband data alone.

1. Introduction

Huntington’s disease (HD) is a severe, autosomal dominantly inherited neurodegenerative
disorder that affects motor, cognitive, and psychiatric function and is uniformly fatal. HD
is caused by the expansion of CAG trinucleotide repeats at the huntingtin gene (IT15)
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[1, 2]. Affected individuals typically begin to show motor signs around 30–50 years of age
and typically die 15–20 years after the disease onset [3]. Despite identification of the causative
gene, there is currently no treatment that modifies disease progression.

One large genetic epidemiological study of HD, the Cooperative Huntington’s
Observational Research Trial (COHORT), including 42 Huntington study group research
centers in North America and Australia, was initiated in 2005 and concluded in 2011 [4–
6]. Participants in COHORT (probands) underwent a clinical evaluation and DNA from
whole blood was genotyped for the length of the CAG-repeat huntingtin mutation. Since
2005, COHORT probands from sites with IRB approval have participated in family history
interviews and have provided information on HD affection status in their family members.
While CAG repeat length is ascertained in probands, the high cost of conducting in-person
interviews of family members prevents the collection of all family members’ blood samples.
However, family members’ age-at-onset (AAO) of HD and vital status are obtained through
systematic interviews of the probands or the family members themselves. Although a
relative’s HD genotype is unavailable, the corresponding distribution of the HD gene can
be estimated based on the relative’s relationship with the proband, the proband’s mutation
status, and assumptions regarding within-family similarity of CAG length [7, 8].

In a genetic counseling setting, subjects with CAG repeats of 36 or greater are defined
as carrying the HD mutation (carrier; [9]), and CAG less than 36 is defined as screened
negative, or noncarrier [9]. It is known that there is an inverse association between the CAG
repeat length and AAO of HD, that is, the longer the repeat length, the earlier the motor
onset [10]. Modeling such a relationship as well as the conditional distribution of HD onset
given CAG repeat length accurately and precisely is important for genetic counseling and
the design of clinical trials for HD. The AAO of HD onset is subject to right censoring by
constraints of the observation periods. Carriers who have not been diagnosed with HD are
right-censored for AAO. Several formulae were proposed in the literature to estimate the
survival function of age at HD diagnosis given CAG repeat length (e.g., [9–11]). Langbehn
et al. [10] have shown that the standard semiparametric survival models, such as the Cox
proportional hazards model, do not fit the HD data and proposed a new logistic-exponential
parametric model. Specifically, the conditional distribution of HD onset given the CAG repeat
length is modeled as a logistic function, with a location and a scale parameter both depending
on CAG through nonlinear relationships. Using a large clinical data set, they observed that
separate exponential relationships with CAG length gave excellent empirical goodness of
fit to both the mean AAO and its variance. Other parametric models, such as Gamma
distribution, have also been proposed in the literature [12, 13]. Langbehn et al. [14] examine
several AAO models in the literature and show the superior performance of Langbehn et al.
[10] in terms of predicting the two-year probability of new HD diagnosis with independent
prospective data.

None of the aforementioned existing methods can be directly used to analyze
COHORT family data because family members are not always genotyped and their HD
mutation status is unknown. The inclusion of family data contributes additional information;
however, the unobserved HD mutation sharing status in family members (CAG-elongated
or not) complicates the analysis. To see this, note that the affected parent carrying huntingtin
mutation has a 50% chance of transmitting themutation to an offspring. An added complexity
is that the likelihood of the offspring having a higher CAG repeat than the parent is higher
if the parent is the father. Since the offspring is not genotyped, whether he or she carries
expanded CAG repeats is unknown. In this work, we treat the unknown huntingtin gene
sharing status in first-degree family members (CAG-elongated or not) as missing data and
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use the EM algorithm to carry out the maximum likelihood estimation of the proband and
family data jointly. Conditionally on the transmission status in family members, we use the
logistic-exponential model in Langbehn et al. [14] to model the AAO as a function of CAG
repeat length. We perform simulation studies to examine finite sample performances of the
proposed methods. Finally, we apply these methods to analyze the COHORT proband and
family combined data. Our results show a slightly lower estimated cumulative risk of HD
symptom onset using the combined data compared to using proband data alone.

2. Methods

We start by introducing some notations. For the ith subject, let Ti denote the age-at-onset of
HD, let δi be the event indicator, let Ci denote the censoring time, and letXi = min(Ti, Ci). Let
Ai denote the CAG repeat length. Langbehn et al. [10] model distribution of Ti given Ai by a
logistic function. The cumulative distribution function (CDF) given Ai is

F(t | Ai) = Pr(Ti ≤ t | Ai) =
1

1 + e−[t−μ(Ai)]/s(Ai)
, (2.1)

and the density function is

f(t | Ai) =
e−[t−μ(Ai)]/s(Ai)

s(Ai)
{
1 + e−[t−μ(Ai)]/s(Ai)

}2 . (2.2)

Here μ(Ai) is a location parameter depending on the covariate Ai and s(Ai) is a scale
parameter depending on Ai. Let S(t | Ai) = 1 − F(t | Ai) denote the survival function of
HD onset. The location and scale parameters have the following relationship with the mean
and variance of Ti given Ai:

E(TiAi) = μ(Ai), var(TiAi) = π23s2(Ai). (2.3)

Various parametric functions for the location and scale parameters were compared in
Langbehn et al. [10, 14], and the exponential function provides the best fit. Therefore, we
use the same model where

μ(Ai) = μ1 + exp
(
μ2 − μ3Ai

)
,

var(Ai) = σ1 + exp(σ2 − σ3Ai).
(2.4)

Substitute these into F(t | Ai) and f(t | Ai) to obtain a parametric model for the distribution
of AAO of HD with six parameters, β = (μ1, μ2, μ3, σ1, σ2, σ3)

T . Langbehn et al. [10] fitted
estimates of β = (21.54, 9.56, 0.146, 35.55, 17.72, 0.327)T .



4 Journal of Probability and Statistics

2.1. Proband-Only Analysis

First, consider probands’ data where all Ai’s are observed. Since a subject’s AAO of HD is
subject to the right censoring, the likelihood function is

L
(
β
)
=

n∏

i=1

fδi
(
Xi | Ai; β

)
S1−δi(Xi | Ai; β

)
, (2.5)

and the log-likelihood is

l
(
β
)
=

n∑

i=1

{
−δi log[s(Ai)] −

Xi − μ(Ai)
s(Ai)

− (1 + δi) log
[
1 + e−(Xi−μ(Ai))/s(Ai)

]}
. (2.6)

The maximum likelihood estimate (MLE) of the parameters, β̂, can be obtained via a general-
purpose optimization algorithm such as Newton-Raphson or Nelder-Mead implemented in
the R program version 2.13.1. The variance-covariance matrix of β̂ is estimated by the inverse
of the estimated Hessian matrix

ĉov
(
β̂
)
=
[
H
(
β̂
)]−1

. (2.7)

The standard error of the estimated survival function, Ŝ(t | Ai), is then estimated by the Delta
method, that is,

v̂ar
[
Ŝ(t | Ai)

]
= GT

(
β̂
)
v̂ar

(
β̂
)
G
(
β̂
)
, (2.8)

where the gradient vector

G
(
β̂
)
=

∂S(t | Ai)
∂β

∣∣∣∣
β=β̂

. (2.9)

Since the parameters are estimated by maximum likelihood, it is straightforward to carry
out likelihood ratio tests (LRTs) to compare the model fit from the COHORT data with the
one obtained by applying parameters from other studies such as Langbehn et al. [10] to the
COHORT data. Here, twice the difference in the log-likelihood follows an asymptotic chi-
square distribution with 6 degrees of freedom.

2.2. Incorporating Family Members

Next, we consider incorporating family members’ AAO data. We do not directly observe
whether a family member shares the huntingtin mutation with the proband, but we do have
data regarding family members’ age-at-onset of the first symptoms, as well as the family
members’ current ages. When we incorporate the additional family data, the likelihood for
the survival takes a mixture form. Let pi denote the probability of the ith subject sharing
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a deleterious allele with a proband and therefore becoming a carrier. Such probabilities
are calculated based on Mendelian transmission and a family member’s relationship to the
proband [8]. For example, offspring and siblings of a carrier proband have a probability of
50% of receiving the huntingtin allele that contains the CAG expansion (Homozygotes for
HD are extremely rare since prevalence of HD in general population is rare). We assume
that, conditioning on a family member receiving the expanded huntingtin allele, the CAG
repeat length is the same as observed in the proband, although this is a simplification [7].
For subjects who receive a wild-type allele (CAG < 36), their probability of developing HD
is zero, thus f(t | Ai < 36) = 0, and S(tAi < 36) = 1, for all t. For the family members, the
likelihood is

L
(
β
)
=

n∏

i=1

[
pif

δi
(
Xi | Ai; β

)
S1−δi(Xi | Ai; β

)
+
(
1 − pi

)
(1 − δi)

]
, (2.10)

where the above second term follows from the assumption that noncarriers do not develop
HD. Note that for all carrier probands we observe pi = 1, thus the likelihood reduces to (2.5).

The above likelihood can bemaximized by a combination of EM andNewton-Raphson
algorithms. Let Gi denote the unobserved carrier status indicator for the ith family member
(i.e., Gi = 1 indicates a family member receives a mutation and Gi = 0 indicates otherwise).
Then the complete data log-likelihood is

n∑

i=1

I(Gi = 1)
{
δi log

[
f
(
Xi | Ai; β

)]
+ (1 − δi) log

[
S
(
Xi | Ai; β

)]}
. (2.11)

At the (k+1)th iteration of the E-step, we compute the conditional expectation of the complete
data log-likelihood, given the observed data. Essentially, we compute

w
(k+1)
i = E

[
I(Gi = 1) | Xi, δi, β

(k)
]

=
pif

δi
(
Xi | Ai; β(k)

)
S1−δi(Xi | Ai; β(k)

)

pifδi
(
Xi | Ai; β(k)

)
S1−δi(Xi | Ai; β(k)

)
+
(
1 − pi

)
(1 − δi)

.
(2.12)

In the M-step, we update β(k+1) by maximizing the weighted log-likelihood

n∑

i=1

w
(k+1)
i

{
δi log

[
f
(
Xi | Ai; β

)]
+ (1 − δi) log

[
S
(
Xi | Ai; β

)]}
(2.13)

using the Newton-Raphson algorithm developed for the proband data.
Since for the combined analysis, the parameters are estimated by maximizing the like-

lihood through an EM algorithm, the standard asymptotic theory applies and the standard
errors of parameters can be estimated by inverting the expected or observed information
matrix based on the log-likelihood of the observed data. When there is missing data and
an EM algorithm is used to obtain the MLE, the information matrix based on the observed
data likelihood can be difficult to compute analytically or computationally. In such situations,
Louis [15] proposed to compute the observed information matrix in terms of the conditional
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moments of the first and second derivatives of the complete data log likelihood which can
be obtained easily under the EM algorithm framework. In some cases, these moments are
easier to compute than the corresponding derivatives of the incomplete, observed data log-
likelihood.

However, in our application, the derivatives of the observed data log likelihood are
easy to compute. Thus, we computed the gradient and Hessian matrix of the observed data
log-likelihood directly and estimated the standard errors of β̂ by the inverse of the Hessian
matrix and estimated the standard errors of F̂(t) by the Delta method similar to the proband-
only analysis. Simulation studies in the next section show satisfactory performance of this
direct and relatively simpler approach.

3. Simulation Studies

We conducted two simulation studies closely related to the observed COHORT data to
illustrate the performance of the Newton-Raphson optimization and the EM algorithm [16].
In all our optimization procedures, we centered bothAi and Xi. Since the direct optimization
and EM algorithm need reasonable initial values, we fitted two nonlinear least square (NLS)
to the observed sample mean and variance of the AAO on subjects with δi = 1. To be specific,
we fit

m1(ai) = μ1 + exp
(
μ2 − μ3ai

)
, s21(ai) = σ1 + exp(σ2 − σ3ai), (3.1)

where m1(ai) and s21(ai) are the sample mean and variance for all subjects with Ai = ai,
respectively. The six NLS estimators were used as the initial values for further optimization.
We denoted the estimated β from the centered data as β̂c. For each simulation, the uncentered
β̂ were then calculated based on β̂c and the sample mean of Ai and Xi.

We restricted simulations to CAG repeat lengths between 41 and 56 to guard against
sensitivity to the extremely high or low CAG repeats to be consistent with Langbehn et al.
[10]. For the analysis of proband data, we generated a sample of 2000 subjects, each with
a CAG length ranging from 41 to 56 that follows a multinomial distribution in which the
probability pr(Ai = a) equals to the observed proportion of Ai = a in the COHORT proband
data set. The failure times Ti were simulated from the distribution (2.1), where the parameters
β were fixed at the values fitted from the COHORT proband data (see next section for their
values). The censoring times, Ci, were generated from a rescaled Beta distribution with a
scale and shape parameter of four. The parameters for the Beta distribution were chosen so
that the proportion of censored subjects is the same in the simulated data and the observed
COHORT proband data.

For the analysis of the combined proband and family data, we generated a sample of
4000 subjects. We assume the same proportion of the probands and relatives as observed in
the combined COHORT data. For the family members, the probabilities pi were generated
by resampling the observed pi’s in the COHORT data. With a given pi for each subject,
we simulated his or her huntingtin carrier status from a Bernoulli distribution with success
probability pi. For family members simulated to receive an expanded CAG repeat (carriers),
their CAG repeats Ai were set to be the same as the probands and their failure times
were simulated from (2.5) with β fixed at estimates from the COHORT combined data. For
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Figure 1: Estimated CDF of HD onset for Ai = 41, 43, 46, and 50 with simulated proband data.
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Figure 2: Estimated CDF of HD onset for Ai = 41, 43, 46, and 50 with simulated combined proband and
relative data.

noncarrier family members, their failure times were set to be infinity and their Xi = Ci. We
used the same censoring distribution for generating Ci as in the first simulation study.

We provide simulation results of the proband only and combined analyses in Tables 1
and 2. We present mean F̂(t | Ai), empirical standard deviation of F̂(t | Ai), and the mean
estimated standard error of F̂(t | Ai) at various ages in. We see from these tables that mean
F̂(t | Ai) is very close to true F(t | Ai) in both studies. The mean estimated standard errors
of F̂(t | Ai) are close to the empirical standard deviations, indicating that the estimation of
variability is appropriate. Figures 1 and 2 present three curves of F̂(t | Ai) at Ai = 41, 46,
50 and their 95% empirical confidence intervals for the proband data and combined data,
respectively. We see that F̂(t | Ai) coincide with the circles representing true F(t | Ai) at
various ages.
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ŝd

F
(t

|A
i)

M
ea
n
F̂
(t

|A
i)

E
m
pi
:s
d

M
ea
n
ŝd
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4. COHORT Data Analysis Results

COHORT is a multicenter observational study of individuals in the HD community.
COHORT recruitment is open to subjects who have HD symptoms and signs (manifest HD),
subjects who have an expanded CAG repeat but have not yet developed symptoms of HD
(presymptomatic), subjects who have an HD affected parent but have not been tested and
do not have symptoms (at risk), subjects who have an affected grandparent (secondary
risk), and control subjects who are not at risk for HD. Information available on participating
probands include genetic status (whether or not they carry HD mutation, and the number
of CAG repeats), clinical diagnosis of HD, and the timing of symptom onset and timing of
diagnosis. In our analyses, only probands with expanded CAG (CAG ≥ 36) and their family
members were included. Details of the cohort are cited in a publication in press [6].

We first describe the proband and family data in the COHORT study. Information on
CAG repeat length and age was available for 1357 probands with CAG repeats varying from
36 to 100 (Table 3). There were 3409 first-degree relatives available from 675 probands. We
do not have information on whether some of the probands are from the same family. We
show the descriptive statistics for the relatives stratified by relationship type in Table 4. Each
proband potentially has three versions of age-at-the-first-symptom (rater’s report, subject’s
self-report, and a family member’s report). We gave the rater reported AAO of symptom the
highest priority. If the rater reported version is not available, we then used subject report. If
neither rater nor subject’s self-report is available, we then used the family member’s report.
Twenty-one subjects whose self-reported and rater-reported AAO of symptom differed by
greater than 15 years were removed. Our proband data set has 1151 subjects with CAG
length between 41 and 56 and was used for the proband-only analysis. Similar to Langbehn
et al. [10], we restricted the analysis to CAG repeat lengths between 41 and 56 to guard
against sensitivity to the extremely high or low CAG repeats and against bias due to likely
under ascertainment (relative to the population) of subjects with CAG length between
36 and 40.

Information on CAG repeat length, age at time of evaluation and the probability of
being a carrier (receiving huntingtin mutation from the proband) was available for 2851
family members of 1151 probands. In the proband data set, both individuals with manifest
HD and presymptomatic carriers (24%) are included. Their age-at-diagnosis and age-at-first-
motor sign were recorded. Among 1151 probands, 876 (76%) subjects had experienced HD
onset and the average AAO of the HD diagnosis was 44 years of age (standard deviation:
10.7). There were 54% females and 94% Caucasians. Our combined proband and family data
set has 4002 subjects. In this combined data set, 51% were females and 35% subjects had
experienced HD onset. Among the 4002 subjects, 467 are singletons (probands with no family
member included). The other 3535 subjects belong to 623 pedigrees with an average size of
5.674 (sd = 2.609) members. In the combined data, there are two different probabilities of
being a carrier: pi = 1 (1199 subjects with known CAG expansions or known HD onset) or
pi = 0.5 (2803 subjects). Among the 2851 family members, 966 are parents of the probands,
1095 are siblings of the probands, and 790 are children of the probands.

When using the age-at-diagnosis in our proband data as Ti, the estimated cumulative
risk of HD is

F̂(t | Ai) =

(

1 + exp

{

− π√
3

[
t − 16.284 − exp(8.325 − 0.111Ai)

]

√
22.379 + exp(15.657 − 0.284Ai)

})−1
. (4.1)
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Table 4: Descriptive statistics of the first-degree relatives of COHORT proband subjects stratified by
relationship.

Relationship
Parents Siblings Children Total

Not affected

Number 739 1110 931 2780
Ave age 70 50 26 42
Min age 27 0 0 18
Max age 111 93 62 88

sd 13 15 14 13
% 26.6 39.9 33.5

Affected

Number 379 237 13 629
Ave age 45 42 36 45
Min age 18 7 23 11
Max age 82 70 44 82

sd 11 11 7 12
% 60.3 37.7 2.1

Total Number 1118 1347 944 3409

Table 5: Mean and standard deviation of the AAO estimated from the model (2.1) for four analyses.

Langbehn COHORT data
data Probands diagnosis∗ Probands symptom∗∗ Combined symptom†

CAG Mean SD Mean SD Mean SD Mean SD
41 57.06 10.50 59.84 8.78 57.74 9.13 59.33 11.68
43 48.06 8.62 51.17 7.31 49.32 7.90 50.63 9.60
46 38.66 7.08 41.29 5.97 39.66 6.57 41.20 7.59
48 34.32 6.57 36.31 5.47 34.75 5.95 36.69 6.79
50 31.08 6.28 32.32 5.16 30.80 5.50 33.21 6.28
∗ : using proband age-at-diagnosis data;
∗∗: using proband age-at-first-symptom data;
†: using proband and relative combined age-at-first-symptom data.

The estimated parameters for the CDF from the proband-only analysis are slightly different
from the ones obtained from Langbehn et al. [10]. Our estimated mean and standard
deviation of the AAO of HD is about 1 to 3 years later than the ones obtained in Langbehn
et al. [10], and the standard deviation (SD) is slightly smaller (Table 5). In addition, the
estimated CDF is smaller for most Ai values using COHORT data. We ran a joint likelihood
ratio test on the goodness-of-fit of parameters obtained in Langbehn et al. [10] and the P
value was less than 0.001 (test statistic = 66.0). When analyzing the age-at-first-symptom in
our proband data, the estimated cumulative risk of HD is

F̂(t | Ai) =

(

1 + exp

{

− π√
3

[
t − 14.266 − exp(7.987 − 0.104Ai)

]

√
28.933 + exp(17.130 − 0.312Ai)

})−1
. (4.2)

We present F̂(t | Ai) curves for age-at-diagnosis and age-at-symptom at various CAG lengths
and their 95% confidence intervals for the proband data in Figure 3. It can be seen that with
a given Ai, the estimated probability of having the first symptoms of HD is higher than
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Figure 3: Estimated CDFs of age-at-diagnosis and age-at-first-symptom of HD for Ai = 41, 43, 46, and 50
with COHORT proband data.
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Figure 4: Kaplan-Meier curve and estimated CDF of age-at-diagnosis of HD forAi = 41, 43, 46, and 50 with
COHORT proband data.

the probability of a diagnosis of HD at the same age. This is consistent with the intuition
that symptoms of HD will be observed before a diagnosis. The mean AAO of first symptom
is estimated to be about 2 years earlier than AAO of diagnosis (Table 5) and the standard
deviation of the former is slightly larger, indicating that reported age-at-first-symptom is
more variable. It is unclear to what extent this difference represents true physical variability
in illness development versus possibly lower reliability in the retrospective reporting of
symptom onset [17].

As a sensitivity analysis, we compared the estimated CDF based on the parametric
model with a nonparametric Kaplan-Meier estimator for subjects with a given Ai. Figure 4
presents this comparison using probands’ age-at-diagnosis data. We show in the figure that
the parametric model fit is consistent with the Kaplan-Meier fit. However, as expected,
the confidence interval for the parametric model estimate at a given age is narrower than
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Figure 5: Estimated CDF of age-at-first-symptom ofHD forAi = 41, 43, 46, and 50with COHORT combined
proband and relative data.

the Kaplan-Meier estimate (results not shown). The figure comparing age-at-symptom
models is similar and therefore omitted.

We reanalyzed only the AAO of the first symptom using the combined proband and
family data, since the age-at-diagnosis was not available for family members who are not
seen in person. The estimated cumulative risk of HD at age t is

F̂(t | Ai) =

(

1 + exp

{

− π√
3

[
t − 18.832 − exp(8.461 − 0.118Ai)

]

√
32.365 + exp(14.823 − 0.248Ai)

})−1
. (4.3)

The corresponding F̂(t | Ai) curves at various CAG lengths and their 95% confidence
intervals are shown in Figure 5. In Table 5, we compare the estimated mean and SD of the
AAO from the proband and combined data. We can see that the estimated mean AAOs
for several CAGs are similar regardless of whether family members are included. The SD
estimated from the model is larger for the combined data. This is a reflection of the observed
data in that there is a wider range of AAO in the combined data than in the proband data. For
example, the SD for CAG = 41 of the former is 11 years, whereas it is 10 years in the probands,
and the SD for CAG = 42 is 10 in the combined and 8 in the probands.

One of the utilities of the estimated curves is to estimate the conditional probability
of having an HD onset (or staying HD free) in the next five or ten years, given a subject has
not had an onset by a given age. Similar to Langbehn et al. [10], in Table 6, we present such
conditional probabilities in five-year intervals for a subject without HD at age 40 and with
given CAG repeats. For example, a 40-year presymptomatic subject with a CAG of 42 has a
probability of 34% (CI: 32%, 36%) for developing HD in the next 10 years (by age 50), while
for a subject with a CAG of 50 this probability increases to 0.93 (CI: 0.91, 0.95).

5. Discussion

We propose methods to predict disease risk from a known mutation (or to estimate
the penetrance function). For most complex diseases, predicting the AAO of a disease
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from genetic markers such as single-nucleotide polymorphisms (SNPs) continue to be a
challenging issue [18]. Even with diseases like HDwhere the gene is identified, the predictive
model can be complicated: a special feature of HD is that the mutation severity is quantifiable
and varies significantly among the affected population. This contrasts with the typical
categorical approach needed, for example, in genome-wide association studies. The proposed
methods are also applicable to other expanded trinucleotide repeat diseases similar to HD.

One of the contributions of this work is to use the family data as well as the proband
data to maximize available information in building a model. Our results reveal that the
estimated risk obtained from the combined proband and family data is slightly lower than
the risk estimated from the proband data alone. It is possible that the proband data consists
of a biased clinical sample of gene positive or HD-affected subjects (e.g., subjects with
more severe disease or with earlier onset may be more likely to participate; presymptomatic
subjects might be undersampled) and is therefore not a fair representative sample of the
entire HD population, especially underrepresenting subjects at risk. The plausibility of such
underascertainment is so strong for CAG lengths of 40 or less [7] that we did exclude
observations within that range from analysis. The family data may be a better representative
of the population since the family members are included in the analysis only through the
inclusion of the probands. Although proband may participate the study because they had
HD or they had more severe symptoms of HD, the relatives were not included based on their
CAG repeat lengths or affection status. Of course, some of the family members will not share
an expanded CAG repeat huntingtin with the probands and therefore are noncarriers who
will never develop HD.

Note that our estimated cumulative risk of onset of a positive HD diagnosis in the
proband data is also slightly lower than Langbehn et al. [10] which also examined age-at-
HD diagnosis. We estimated later mean AAO for each CAG repeat length shorter than 54
than did Langbehn et al. [10]. For example, the mean AAO of HD diagnosis for probands
with a CAG of 42 in the former data was 3 years later and, for a CAG of 43, it was 4 years
later (Table 3). On average, for all subjects with a CAG between 41 and 50, the mean AAO
in Langbehn data was 2 years earlier than in the COHORT data. More detailed comparisons
are presented in Table 5. There are several possible reasons for these differences. The model
end point, AAO, should probably be considered to be slightly different in the two models.
The outcome in Langbehn et al. [10] was earliest age at which a clinician documented an
irreversible objective sign of the illness. This may occur earlier than the point at which an
actual diagnosis of manifest HD is given. (Many clinicians wait until there are several such
signs.) This may also occur, however, at a point that is later than the proband’s or family’s
first report of subjective symptoms or their first perception of disease signs. In the CAG range
of 41–49, the Langbehn et al. means are very close to the symptom onset means in the current
data. For longer CAG lengths, the Langbehn et al. estimates more closely resemble the current
models for disease diagnosis. Possible systematic variability between the clinicians in the two
studies may also account for the differences in the estimates.

Other potential differences between the data sources include potential research-center-
specific heterogeneity in diagnostic and rating conventions and slight variations in the
methods used to determine CAG repeat length. In the Langbehn study, these were measured
by a variety of laboratories while in the COHORT they were all measured in the same
laboratory.

We do note that the differences between the fitted models here and those in Langbehn
et al. are substantially smaller than differences among other formulae in the literature [14].
AAO probabilities, conditioned on current age, are especially similar. In HD research and
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genetic counseling, these conditional probabilities are perhaps the most commonly used
statistic deriving from these formulae. Finally, the logistic-exponential form of the parametric
model proposed in Langbehn et al. [10] does indeed fit the empirical AAO distributions quite
well in the COHORT data. This validates use of this relatively complicated survival model for
HD AAO research and may encourage considerations of quantitative biological mechanisms
that would generate exponential relationships between CAG and both AAO and its variance.

There has often been ambiguity in the modeling literature concerning the exact
meaning of HD “onset.” The first onset of observable signs or reportable symptoms of HD
generally occurs before the actual diagnosis of clinically manifest HD is given. Much of the
earlier modeling literature, reviewed in Langbehn et al. [14], does not clearly address this
distinction, although the resultant formulas have often been used for subsequent prediction
of HD diagnosis [14]. The event modeled in Langbehn et al. [10] was “the first time that
neurological signs representing a permanent change from the normal state was identified in
a patient.” This might be considered to the concept of “subject’s first noted symptom” rather
than age of diagnosis. Nonetheless, this model has been used frequently as a predictor of
future diagnosis in HD [14]. In the current study, we do distinguish between first symptom
onset and diagnosis.

Here, we assumed Mendelian transmission of huntingtin without interference so
that the CAG length does not change from parents to offspring. There are several possible
violations of these assumptions. CAG lengths do, in reality, vary somewhat among family
members, and those inheriting the gene from their father have, on average, a slightly longer
CAG repeat length than their father. The probability of this occurring is much lower if
inheritance is from the mother [19]. An explanation is that there are many more biological
opportunities for the CAG length to change in the father’s process of sperm formation than in
themother’s process of egg formation. These processes and their dynamics have been studied
extensively in vitro [7, 20], but we know of no well-verified in vivo dynamic population
genetics models. Assuming the CAG length does not change from father to offspring may
lead to a slightly lower estimated risk for affected fathers of probands.

Consistent with Langbehn et al. [10] and other studies [20, 21], we estimated reduced
penetrance for lower CAG repeat lengths (≤40). We point out that the parameter estimates
from the current model do not include subjects with CAG less than 41; therefore, the risk
estimates for these subjects are extrapolations. However, it is conceivable that as long as the
inverse relationship between AAO and CAG still holds for the lower CAGs, the life time
disease risk for these subjects will be less than 100%, since the life time risk for a CAG of 41
is about 100%.

In the literature, no proportional odds model has been fitted to model the age-at-onset
of HD. Proportional odds model, or along a similar line, transformation model, belongs to
the semiparametric model framework and is beyond the scope of this paper. We are currently
investigating semiparametric models other than the Cox proportional hazards model.

Finally, we stress that our current model does not include other observed covariates,
such as additional genetic polymorphisms. In addition, we assumed conditional indepen-
dence of family members’ age-at-onset (AAO) of HD given their CAG repeats. This assump-
tion implies that we do not account for residual correlation among family members’ AAO
caused by factors other than the CAG repeats, such as life style factors. When there exists
such residual correlation, point estimates from our current approach are still consistent hence
still valid, although the standard error estimates are no longer correct. A practical limitation
of using family members’ AAO data is that they may be less reliable than the data directly
collected from the probands. This limitation applies to all other diseases, especially those
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with late onset. This limitation can be more pronounce when there is incomplete penetrance
and variability of phenotype. Future work would consider incorporating such measurement
error in the analysis. Lastly, the proposedmethods do not include possible unobserved effects
that may be site or clinician-specific and perhaps related to the interpretation of the point of
“onset.” Future research will focus on incorporating observed covariates and adding family-
specific random effects to account for residual familial aggregation.
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