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We present a class of spherically symmetric random variables defined by the property that as
dimension increases to infinity the mass becomes concentrated in a hyperspherical shell, the width
of which is negligible compared to its radius. We provide a sufficient condition for this property
in terms of the functional form of the density and then show that the property carries through to
equivalent elliptically symmetric distributions, provided that the contours are not too eccentric, in
a sense which we make precise. Individual components of such distributions possess a number of
appealing Gaussian-like limit properties, in particular that the limiting one-dimensional marginal
distribution along any component is Gaussian.

1. Introduction

Any spherically symmetric random variable can be represented as a mixture of spherical
“shells” with distribution function proportional to 1{‖x‖≥r}. We consider a class of the
spherically symmetric random variables for which as dimension d → ∞ the effective range
of the mixture of “shells” becomes infinitesimal relative to a typical scale from the mixture.
We then generalise this class to include a subset of the corresponding elliptically symmetric
random variables. This offers a relatively rich class of random variables, the components of
which are shown to possess appealing Gaussian-like limit properties.

Specifically we consider sequences of spherically symmetric random variables {Xd}
which satisfy

either
‖Xd‖
rd

p−→ 1, (1.1)

or
‖Xd‖
rd

m.s.−→ 1, (1.2)
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for some positive sequence {rd}. Here and throughout this paper ‖ · ‖ refers to the Euclidean
norm. The set of such sequences includes, for instance, the sequence of standard d-
dimensional Gaussians, for which ‖Xd‖/d1/2 m.s.→ 1; indeed the Gaussian-like limit properties
of the whole class arise from this fact. More generally, we provide a sufficient condition for
(1.2) for sequences of random variables with densities of the form

fd(xd) ∝ exp
[−g(‖xd‖)

]
. (1.3)

We then consider elliptically symmetric random variables, which are obtained by a
sequence of (potentially) random linear transformations of spherically symmetric random
variables satisfying either (1.1) or (1.2) and show that the properties (1.1) and (1.2) are
unaffected by the transformation provided that the eccentricity of the elliptically symmetric
random variable is not too extreme, in a sense which we make precise. Finally we show
Gaussian-like limiting behaviour for individual components of a random variable from this
class, both in terms of their marginal distribution, and in terms of their maximum.

Section 2 presents the main results, which are briefly summarised and placed in
context in Section 3; proofs are provided in Section 4.

2. Results

Our first result provides a class of densities and associated scaling constants that satisfy (1.2).

Theorem 2.1. Let {Xd} be a sequence of spherically symmetric random variables with density given
by (1.3). Let g ∈ C2 satisfy

(
r
d

dr

)2

g(r) −→ ∞ as r −→ ∞, (2.1)

and let rd be a solution to

r
d

dr
g(r) = d. (2.2)

Then there is a sequence of solutions which satisfies rd → ∞, where rd is unique for sufficiently large
d. Elements of this sequence and Xd together satisfy (1.2).

The class of interest therefore includes the exponential power family, which has
densities proportional to exp(−‖x‖a) (a > 0), and rd = (d/a)1/d; indeed the class includes
any density with polynomial exponents.

Heuristically, the mass of Rd := ‖Xd‖ must concentrate around a particular radius, rd,
so that the effective width of the support becomes negligible compared to rd as d → ∞.
Essentially (2.2) ensures that rd is at least a local mode of the density of logRd, and (2.1)
together with the existence of a sequence of solutions rd → ∞ forces the curvature (compared
to the scale of log rd) of the log-density of logRd at this sequence of modes to increase without
bound.

Condition (2.1) fails for densities where the radial mass does not become concentrated,
such as the log-normal, f(x) ∝ ‖x‖−1 exp(−(log ‖x‖ − μ)2/(2σ2)). To see this explicitly for
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the log-normal form for the density of x, note that the marginal radial density, that is, the
density of R = ‖X‖, is proportional to

rd−1 exp
[−g(r)] ∝ r−1 exp

[
− 1
2σ2

(
log r −

(
μ + (d − 1)σ2

))2]
, (2.3)

which is itself a log-normal density with parameters (μ + (d − 1)σ2, σ2). Taking rd = exp[μ +
(d − 1)σ2] we therefore find that for all d ≥ 1

||Xd||
rd

∼ LN
(
0, σ2

)
. (2.4)

Theorem 2.1 requires g ∈ C2; however, other functional forms can also lead to the
desired convergence, although not necessarily with rd → ∞. For example, if exp g(r) = 1{r≤1}
then the marginal radial density is proportional to rd−11{r≤1}; trivially, in this case, the mass
therefore concentrates around rd = 1 as d → ∞.

We next show that (1.1) and (1.2) continue to hold after a linear transformation is
applied to each Xd, providing that the resulting sequence of elliptically symmetric random
variables is not too eccentric.

Theorem 2.2. Let {Xd} be a sequence of spherically symmetric random variables and {rd} a sequence
of positive constants. Further let {Td} be a sequence of random linear maps on R

d which are
independent of {Xd}. Denote the eigenvalues of Tt

d
Td by λd,1 ≥ λd,2 · · · ≥ λd,d ≥ 0, and set

Bd :=
∑d

i=1 λd,i. If

λd,1
Bd

p−→ 0, (2.5)

then

‖Xd‖
rd

p−→ 1 =⇒ d1/2‖TdXd‖
B1/2
d
rd

p−→ 1, (2.6)

‖Xd‖
rd

m.s.−→ 1 =⇒ d1/2‖TdXd‖
B1/2
d rd

m.s.−→ 1. (2.7)

The class of elliptically symmetric random variables therefore includes, for example,
densities of the form exp(−(xtΛx)a) (a > 0), for symmetric Λ for which the sum of the
eigenvalues is much larger than their maximum.

Our final theorem demonstrates that even if the weaker condition (1.1) is satisfied by
a spherically symmetric sequence, then any limiting one-dimensional marginal distribution
is Gaussian; it also provides a slightly weaker result for elliptically symmetric sequences as
well as a limiting bound on the maximum of all of the components.

Theorem 2.3. Let the sequence of spherically symmetric random variables {Xd} and the sequence of
positive constants {rd} satisfy (1.1), and let the sequence of d-dimensional linear maps, {Td}, satisfy
(2.5).
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(1) For any sequence of unit vectors {ed}, which may be random, but is independent of {Xd},

d1/2

rd
Xd · ed D−→N(0, 1). (2.8)

(2) For any sequence of random unit vectors {ed}, with ed ∈ R
d uniformly distributed on the

surface of a unit d-sphere and independent of Xd and Td,

d

B1/2
d rd

(TdXd) · ed D−→N(0, 1). (2.9)

(3) Denote the ith component of Xd as Xd,i. Then

d1/2

(
2 logd

)1/2
rd

max
i=1,...,d

Xd,i
p−→ 1. (2.10)

It should be noted that the first part of Theorem 2.3 is not simply a standard
consequence of the central limit theorem. Rather it results from the fact that the standard d-
dimensional Gaussian satisfies condition (1.1), and hence any other sequence which satisfies
(1.1) becomes in some sense “close” to a d-dimensional Gaussian as d → ∞, close enough
that the marginal one-dimensional distributions start to resemble each other.

The resemblance to a standard multivariate Gaussian is sufficient for a similar
deterministic limit on the maximum of all of the components (Part 3); however, the well-
known limiting Gumbel distribution for the maximum of a set of independent Gaussians
(see Section 4.3) is not shared by all members of this class.

3. Discussion

It is well known (e.g., [1]) that any given spherically (or elliptically) symmetric random
variable can be represented as a mixture of Gaussians; the marginal distribution of any given
component is therefore also a mixture of Gaussians. The authors in [2] consider spherically
symmetric distributions with support confined to the surface of a sphere and show that the
limiting distribution of any k fixed components as total the number of components d → ∞
is muitivariate normal. Further, in [3] they show that for a sequence of independent and
identically distributed components, the marginal one-dimensional distribution along all but
a vanishingly small fraction of random unit vectors becomes closer and closer to Gaussian as
dimension d → ∞.

In a sense we have presented an intersection of these ideas: a class of spherical
and elliptical distributions, which are not confined to a spherical or elliptical surface, but
which become concentrated about the surface as d → ∞, and for which the limiting
marginal distribution is Gaussian, not a mixture. Moreover, the maximum component size is
bounded in proportion to (logd)1/2, in a similar manner to the maximum component size of
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a high-dimensional Gaussian. A sufficient condition for the functional form has been
provided, and this is satisfied, for example, by the exponential power distribution.

The Gaussian-like limit properties are fundamental to results in [4, 5] where, it is
shown that if the proposal distribution for a random walk Metropolis algorithm is chosen
from this class then some aspects of the behaviour of the algorithm can become deterministic
and, in particular, that the optimal acceptance rate approaches a known fixed value as
d → ∞.

4. Proofs of Results

4.1. Proof of Theorem 2.1

It will be helpful to define Rd := ‖Xd‖ and Ud := logRd and to transform the problem to that
of approximating a single integral:

P(R ∈ (a, b)) ∝
∫b

a

dr rd−1 exp
[−g(r)] =

∫ log b

loga
du exp

[
ud − g(eu)]. (4.1)

Here and elsewhere for clarity of exposition we sometimes omit the subscript, d.
Theorem 2.1 is proved in three parts.

(i) We first show that, for d > d∗ (for some d∗ > 0), the density ∝ exp[ud−g(eu)] attains
a unique maximum in [u∗,∞) for some fixed u∗ ∈ R. We will denote the value at
which this maximum occurs as ud. The required sequence of scalings will turn out
to be rd = exp(ud).

(ii) Convexity arguments are then applied to show that

‖Xd‖
rd

p−→ 1. (4.2)

(iii) It is then shown that for any fixed k > 0

1

rkd
E

[
‖Xd‖k

]
−→ 1. (4.3)

Applying this with k = 1 and k = 2 provides the required result.

4.1.1. Existence of a Unique Maximum in [u∗,∞)

Define η(u) := g(eu). Clearly η : R → R and η ∈ C2; also condition (2.1) is equivalent to

lim
u→∞

η′′(u) = ∞. (4.4)
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Hence, we may define

u∗ := inf
{
u : η′′

(
u′
)
> 1 ∀u′ > u}. (4.5)

Lemma 4.1. Subject to condition (4.4), ∃d∗ such that for all d > d∗ there is a solution ud > u∗ to the
equation η′(u) = d which is unique in [u∗,∞). Moreover, ud → ∞.

Proof. For u > u∗, η′(u) > η′(u∗) + u − u∗. Let d∗ be the first positive integer greater than η′(u∗)
then clearly there is a solution to η′(u) = d for all d ≥ d∗.

If there are two such solutions, u′ and u′′ with u′ > u′′ > u∗, then we obtain a
contradiction since, by the intermediate value theorem.

0 =
η′(u′) − η′(u′′)

u′ − u′′ = η′′
(
u′′′
)

for some u′′′ ∈ [u′, u′′]. (4.6)

Next consider successive solutions, ud and ud+1 for d > d∗ and again apply the intermediate
value theorem.

1
ud+1 − ud =

η′(ud+1) − η′(ud)
ud+1 − ud = η′′

(
u′
)
> 0, (4.7)

for some u′, since u′ > u∗. Therefore, ud+1 > ud and the sequence {ud : d ≥ d∗} is monotonic
and therefore must approach a limit. Suppose that this limit is finite, ud → c. Then, since η′ is
continuous, η′(ud) → η′(c) <∞. This contradicts the fact that η′(ud) = d, hence ud → ∞.

4.1.2. Convergence in Probability

Lemma 4.2. Let {Xd} be a sequence of spherically symmetric random variables with density given by
(1.3). If g ∈ C2 and satisfies (2.1), then there is a sequence rd → ∞ such that

‖Xd‖
rd

p−→ 1. (4.8)

In proving Lemma 4.2 we consider the log-density (up to a constant) ofUd:

ψd(u) = ud − η(u). (4.9)

Note that condition (4.4) implies that ψ ′′
d(u) → −∞ as u → ∞, and ψ ′′

d(u) <
−1 for all u > u∗.

We now assume d > d∗ and consider the integral
∫∞
−∞ du exp[ψd(u)]. This integral must

be finite for all d greater than some d∗∗, since otherwise {Rd} cannot be an infinite sequence
of random variables. For a given δ ∈ (0, 1), the area of integration is partitioned into five
separate regions:

(i) R(d)
1 := (−∞, u∗];

(ii) R(d)
2 := (u∗, ud + log(1 − δ)];
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(iii) R(d)
3 := (ud + log(1 − δ), ud];

(iv) R(d)
4 := (ud, ud + log(1 + δ)];

(v) R(d)
5 := (ud + log(1 + δ),∞).

It will be convenient to define the respective integrals

I
(d)
i :=

∫

R
(d)
i

du exp
[
ψd(u)

]
(i = 1, . . . , 5). (4.10)

Note that

I
(d)
3 + I(d)4 ∝

∫ (1+δ) exp(ud)

(1−δ) exp(ud)
dr fr(r), (4.11)

where fr(r) is the density of R. The required convergence in probability will therefore be
proven if we can show that, by taking d large enough, each of I(d)1 , I

(d)
2 , and I(d)5 can be made

arbitrarily small compared with either I(d)3 or I(d)4 .
The next three propositions arise from convexity arguments and will be applied

repeatedly to bound certain ratios of integrals.

Proposition 4.3. Let ψ : [u∗,∞) → R have ψ ′′(u) < 0. For any u0, u1 ∈ [u∗,∞),

∫u1

u0

du eψ(u) ≥ eψ(u1) u1 − u0
ψ(u0) − ψ(u1)

(
eψ(u0)−ψ(u1) − 1

)
. (4.12)

Proof. Define the interval K := [u0, u1] if u1 > u0, and [u1, u0] otherwise. By the concavity of
ψ,

ψ(u) ≥ ψ(u1) +
ψ(u1) − ψ(u0)

u1 − u0 (u − u1), ∀u ∈ K. (4.13)

Hence,

∫u1

u0

du eψ(u) ≥ eψ(u1)
∫u1

u0

du exp
[
ψ(u1) − ψ(u0)

u1 − u0 (u − u1)
]
. (4.14)

The result follows on evaluating the right-hand integral.

Proposition 4.4. Let ψ : [u∗,∞) → R have ψ ′′(u) ≤ 0. For any u0, u1 ∈ [u∗,∞) with u1 > u0 and
ψ(u0) > ψ(u1),

∫∞

u1

du eψ(u) ≤ eψ(u1) u1 − u0
ψ(u0) − ψ(u1) . (4.15)



8 Journal of Probability and Statistics

Proof. By the concavity of ψ,

ψ(u) ≤ ψ(u1) + ψ ′(u1)(u − u1) ≤ ψ(u1) +
ψ(u1) − ψ(u0)

u1 − u0 (u − u1), ∀u ∈ [u1,∞). (4.16)

Hence,

∫∞

u1

du eψ(u) ≤ eψ(u1)
∫∞

u1

du exp
[
ψ(u1) − ψ(u0)

u1 − u0 (u − u1)
]
. (4.17)

Since (ψ(u1) − ψ(u0))/(u1 − u0) is negative, the result follows on evaluating the right-hand
integral.

The proof for the following is almost identical to that of Proposition 4.4 and is therefore
omitted.

Proposition 4.5. Let ψ : R → R have ψ ′′(u) ≤ 0. For any u0, u1 ∈ R with u1 < u0 and ψ(u0) >
ψ(u1),

∫u1

−∞
du eψ(u) ≤ eψ(u1) u0 − u1

ψ(u0) − ψ(u1) . (4.18)

Corollary 4.6. One has

I5
I4 + I5

≤ exp
[
ψ
(
ud + log(1 + δ)

) − ψ(ud)
]
. (4.19)

Proof. Set u0 = ud and u1 = ud + log(1 + δ) in Propositions 4.3 and 4.4 to obtain

I4
I5

≥ exp
[
ψ(ud) − ψ

(
ud + log(1 + δ)

)] − 1. (4.20)

But

I5
I4 + I5

=
1

1 + I4/I5
, (4.21)

and so the result follows.

Corollary 4.7. One has

I2
I2 + I3

≤ exp
[
ψ
(
ud + log(1 − δ)) − ψ(ud)

]
. (4.22)
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Proof. Define

ψc(u) :=

{
ψ(u), u > u∗,

ψ(u∗) − (u∗ − u)ψ ′(u∗), u < u∗.
(4.23)

By definition, ψc(u) : R → R, and ψ ′′(u) ≤ 0 for all u ∈ R. Let

I1c :=
∫

R1

du exp
[
ψc(u)

]
, (4.24)

and note that ψ ′(u∗) > 0 since ψ ′′(u) ≤ 0 for all u ≥ u∗, and ψ ′(ud) = 0 with ud > u∗. Hence,∫
R1
du exp[ψc(u)] exists.

Set u0 = ud and u1 = ud + log(1 − δ) in Propositions 4.3 and 4.5 to obtain

I3
I1c + I2

≥ exp
[
ψ(ud) − ψ

(
ud + log(1 − δ))] − 1. (4.25)

But

I2
I2 + I3

≤ I1c + I2
I1c + I2 + I3

=
1

1 + I3/(I1c + I2)
(4.26)

and so the result follows.
We now consider I(d)1 and use the fact that

∫
R1
du exp[ψd(u)] must exist for all d > d∗∗

(for some d∗∗ > 0) for {Rd} to be an infinite sequence of random variables. Also note that
ψd(u) − ψk(u) = (d − k)u, which is an increasing function for d > k.

Corollary 4.8. If I(k)1 <∞ for some k > 0 and if for all d > k, ψd(u)−ψk(u) is an increasing function
of u, then

I
(d)
1

I
(d)
2 + I(d)3

≤ e−ψk(u∗)I(k)1

ud − u∗ . (4.27)

Proof. By the monotonicity of ψd − ψk,

I
(d)
1 =

∫u∗

−∞
du eψd(u)−ψk(u)eψk(u) ≤ eψd(u∗)−ψk(u∗)I(k)1 . (4.28)

By Proposition 4.3 with u0 = ud and u1 = u∗

I
(d)
2 + I(d)3 ≥ eψd(u∗) ud − u∗

ψd(ud) − ψd(u∗)
(
eψd(ud)−ψd(u∗) − 1

)
≥ eψd(u∗)(ud − u∗), (4.29)

where the last statement follows since for x > 0, ex > 1 + x.
The result follows from combining the two inequalities.
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We next combine Corollaries (1.1), (1.2), and (1.3) to prove the sufficient condition for
the required convergence in probability. We show that if Condition (4.4) is satisfied, then

I
(d)
1 + I(d)2 + I(d)5

I
(d)
1 + I(d)2 + I(d)3 + I(d)4 + I(d)5

−→ 0 as d −→ ∞. (4.30)

By Lemma 4.1 ud → ∞ as d → ∞, and so from Corollary 4.8

I
(d)
1

I
(d)
2 + I(d)3

−→ 0. (4.31)

Since ud → ∞, given some δ ∈ (0, δ0) and anyM > 0, we may choose a d0 such that,
for all d > d0 and all δ∗ ∈ (0, δ),

(
log(1 + δ)

)2
η′′
(
ud + log(1 + δ∗)

) ≥M. (4.32)

Taylor expand ψd about ud, recalling that ψ ′
d
(ud) = 0 and ψ ′′

d
(u) = −η′′(u):

ψd(ud) − ψd
(
ud + log(1 + δ)

)
=

1
2
(
log(1 + δ)

)2
η′′
(
ud + log(1 + δ∗)

) ≥ 1
2
M, (4.33)

for some δ∗ ∈ (0, δ). From Corollary 4.6 we therefore see that

I
(d)
5

I
(d)
4 + I(d)5

≤ e−(1/2)M. (4.34)

Similarly, from Corollary 4.7

I
(d)
2

I
(d)
2 + I(d)3

≤ e−(1/2)M. (4.35)

But

I
(d)
1 + I(d)2 + I(d)5

I
(d)
1 + I(d)2 + I(d)3 + I(d)4 + I(d)5

≤ I
(d)
1

I
(d)
2 + I(d)3

+
I
(d)
2

I
(d)
2 + I(d)3

+
I
(d)
5

I
(d)
4 + I(d)5

, (4.36)

and each of the terms on the right-hand side can be made as small as desired by taking
d large enough.
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4.1.3. Convergence of kth Moment

Proposition 4.9. Let rd be the (eventually) unique solution to the equation

rg ′(r) = d − 1. (4.37)

If g(r) satisfies (2.1) then for any fixed k > 0

lim
d→∞

rd
rd+k

= 1. (4.38)

Proof. Without loss of generality assume that rd+k > rd. Hence, by the Intermediate Value
Theorem, there exists a value r∗ ∈ [rd, rd+k] such that

krd+k
rd+k − rd >

r∗k
rd+k − rd = r∗

rd+kg
′(rd+k) − rdg ′(rd)
rd+k − rd = r∗

d

dr

(
rg ′(r)

)
∣∣∣∣
r∗
−→ ∞. (4.39)

Thus,

rd+k − rd
rd+k

−→ 0, (4.40)

and the result follows.

Lemma 4.10. For fixed k > 0,

1

rk
d

Ed

[
Rk
]
−→ 1. (4.41)

Proof. Set

I1 :=
∫∞

0
dr rd−1 exp

[−g(r)],

I2 :=
∫∞

0
dr rd−1+k exp

[−g(r)].
(4.42)

If g(r) satisfies (2.1) then so does g(r)− k log(r). Therefore, from Lemma 4.2, given ε > 0 and
δ > 0 there is a d1 such that, for all d > d1,

(1 − ε)I2 <
∫ rd+k(1+2δ)

rd+k(1−2δ)
dr rd−1+k exp

[−g(r)] < I2. (4.43)

Furthermore, by Proposition 4.9, there is a d2 such that, for all d > d2,

rd(1 − δ) < rd+k < (1 + δ)rd. (4.44)
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Therefore, since the integrand is positive, for all d > max(d1, d2),

(1 − ε)I2 <
∫ rd(1+2δ)(1+δ)

rd(1−2δ)(1−δ)
dr rd−1+k exp

[−g(r)]

≤ rkd(1 + 2δ)k(1 + δ)k
∫ rd(1+2δ)(1+δ)

rd(1−2δ)(1−δ)
dr rd−1 exp

[−g(r)].
(4.45)

Similarly

I2 >

∫ rd(1+2δ)(1−δ)

rd(1−2δ)(1+δ)
dr rd−1+k exp

[−g(r)]

≥ rkd(1 − 2δ)k(1 + δ)k
∫ rd(1+2δ)(1−δ)

rd(1−2δ)(1+δ)
dr rd−1 exp

[−g(r)].
(4.46)

Applying Lemma 4.2 again, there is a d3 such that, for all d > d3,

(1 − ε)I1 <
∫ rd(1+2δ)(1−δ)

rd(1−2δ)(1+δ)
dr rd−1 exp

[−g(r)] < I1. (4.47)

Therefore, for all d > max(d1, d2, d3),

(1 − ε)I2 < rkd(1 + 2δ)k(1 + δ)kI1,

I2 > r
k
d(1 − 2δ)k(1 + δ)k(1 − ε)I1.

(4.48)

Hence,

(1 − 2δ)k(1 + δ)k(1 − ε) < 1

rk
d

I2
I1
< (1 + 2δ)k(1 + δ)k(1 − ε)−1. (4.49)

The result follows since δ and ε can be made arbitrarily small.

4.2. Proof of Theorem 2.2

Any spherically symmetric random variable can be decomposed into a uniform angular
component and a radial distribution. We may therefore create an invertible map from any d-
dimensional spherically symmetric random variable V with a continuous radial distribution
function to a standard d-dimensional Gaussian, Z. We will apply the following map: set

‖Z‖ = F−1
‖Z‖
(
F‖V‖(‖V‖)), (4.50)



Journal of Probability and Statistics 13

where F‖V‖(·) and F‖Z‖(·) are the distribution functions of ‖V‖ and ‖Z‖, respectively, and then
fix

Z =
‖Z‖
‖V‖V. (4.51)

This mapping is key both to the proofs of both Theorems 2.2 and 2.3. To simplify the
exposition in both this section and Section 4.3 we define

Vd :=
1
rd

Xd. (4.52)

The following is therefore equivalent to (2.6).

Lemma 4.11. Define {Vd}, {Td}, {λd,i}, and {Bd} as in (4.52) and the statement of Theorem 2.2. If

(2.5) holds and ‖Vd‖
p−→1, then

d

Bd
Vt
dT

t
dTdVd

p−→ 1. (4.53)

Proof. For some δ > 0, let

Ad :=

{

Td :
λd,1

∑d
i=1 λd,i

< δ3
}

. (4.54)

For now fix d and Td ∈ Ad, and suppress the subscript d. Denote the spectral decomposition
of TtT as LtΛL, where Λ = diag(λ1, . . . , λd). We will initially consider the Gaussian Z and
define Z∗ = LZ; since L is orthonormal, it follows that Z∗ ∼N(0, Id).

Define

W =
ZtTtTZ

B
=

Z∗tΛZ∗

B
. (4.55)

Then, for fixed d,

EZ[W] =
1
B

EZ

[
d∑

i=1

λiZ
∗2
i

]

= 1,

VarZ[W] =
1
B2

VarZ

[
d∑

i=1

λiZ
∗2
i

]

= 2
∑d

i=1 λ
2
i

(∑d
i=1 λi

)2 ≤ 2
λ1

∑d
i=1 λi

< 2δ3.

(4.56)
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Chebyshev’s inequality gives

PZ(|W − EZ[W]| > δ) < VarZ[W]
δ2

, that is, PZ(|W − 1| > δ) < 2δ. (4.57)

By (2.5) there is a d0 such that, for all d > d0, P(Td /∈ Ad) < δ. Thus, for all d > d0,

PT,Z(|W − 1| > δ) ≤ P(|W − 1| > δ | T ∈ A) + P(T /∈ A) < 3δ. (4.58)

Hence,Wd
p−→ 1. Now

d

Bd
Vt
dT

t
dTdVd =

d

‖Zd‖2
‖Vd‖2Wd, (4.59)

and since each of the three terms converge in probability to 1, so does the product.

We now turn to the proof of convergence inmean square and first show an equivalence
of the expected second moments of the norms.

Proposition 4.12. For {Vd}, {Td}, {λd,i}, and {Bd} to be as defined in (4.52) and the statement of
Theorem 2.2,

E

[
‖Vd‖2

]
=

d

Bd
E

[
‖TdVd‖2

]
. (4.60)

Proof. For clarity of exposition we suppress the subscript d. Since V is spherically symmetric
we may without loss of generality consider it with axes along the principle components of T.
Then

E

[
‖TV‖2

]
= E

[
d∑

i=1

λ2i V
2
i

]

=
d∑

i=1

λ2i E
[
V 2
i

]
. (4.61)

But, again, V is spherically symmetric so this is

d∑

i=1

λ2i E
[
V 2
1

]
=

1
d

d∑

i=1

λ2i

d∑

j=1

E

[
V 2
j

]
=
Bd
d

E

[
‖V‖2

]
. (4.62)

Turning now to convergence in mean square itself, note that, by Proposition 4.12,

E

⎡

⎣

(∥∥∥∥∥
d1/2

Bd
TdVd

∥∥∥∥∥
− 1

)2
⎤

⎦ − E

[
(‖Vd‖ − 1)2

]
= −2

(

E

[∥∥∥∥∥
d1/2

Bd
TdVd

∥∥∥∥∥

]

− E[‖Vd‖]
)

. (4.63)
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But (1.2) implies that ‖Vd‖ m.s.→ 1, and hence it is sufficient to show that

E

[∥∥∥∥∥
d1/2

Bd
TdVd

∥∥∥∥∥

]

− E[‖Vd‖] −→ 0. (4.64)

Now, by Lemma 4.11 and Proposition 4.12,

∥∥∥∥∥
d1/2

Bd
TdVd

∥∥∥∥∥
p−→ 1, E

⎡

⎣

∥∥∥∥∥
d1/2

Bd
TdVd

∥∥∥∥∥

2
⎤

⎦ = E

[
‖Vd‖2

]
−→ 1. (4.65)

We now require Scheffe’s Lemma, which states that, for any sequence of random variables
{Yd}, if E[Y 2

d
] → 1 and Yd

p→ 1, then E[Yd] → 1. Hence E[‖(d1/2/Bd)TdVd‖] → 1. Now
(1.2) also implies that E[‖Vd‖] → 1, and hence, (4.64) is satisfied.

4.3. Proof of Theorem 2.3

Throughout this section we define Zd and Vd as in Section 4.2. We first prove Part 1.
Given δ > 0, it will be convenient to define the following event:

Ad :=
∣∣∣∣
‖Zd‖
d1/2

1
‖Vd‖ − 1

∣∣∣∣ < δ. (4.66)

Now, for ed independent of Vd (and Zd),

P

(
d1/2Vd · ed ≤ a

)
= P

(
Zd · ed ≤ a‖Zd‖

d1/2

1
‖Vd‖

)
= Φ
(
a
‖Zd‖
d1/2

1
‖Vd‖

)
, (4.67)

and so

Φ(a(1 − δ)) < P

(
d1/2Vd · ed ≤ a | A(d)

)
< Φ(a(1 + δ)). (4.68)

For any event E,

|P(E) − P(E | A)| = P(Ac)|P(E | Ac) − P(E | A)| ≤ P(Ac) (4.69)

and, in particular,

∣∣∣P
(
d1/2Vd · ed ≤ a

)
− P

(
d1/2Vd · ed ≤ a | A

)∣∣∣ ≤ P
(
Ac
d

)
. (4.70)

Given ε > 0, by (1.1)we may define d0 such that, for all d > d0, P(Ac
d
) < ε. Thus, for all

d > d0,

Φ(a(1 − δ)) − ε < PVd

(
d1/2Vd · e(d) ≤ a

)
< Φ(a(1 + δ)) + ε. (4.71)
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By taking d large enough we can make δ and ε as small as desired. Moreover, since
Φ(·) is bounded and monotonic, ∃δ∗ > 0 such that |Φ(a(1 + δ)) − Φ(a)| < ε for all δ with
|δ| < δ∗, and hence

lim
d→∞

P

(
d1/2Vd · ed ≤ a

)
= Φ(a). (4.72)

To prove Part 2, first note that, whereas Zd · ed ∼ N(0, 1), (TdZd) · ed ∼ N(0, ‖Tded‖2),
and so

PVd

(
d

B1/2
d

(TdVd) · ed ≤ a
)

= PZd

(
1

‖Tded‖(TdZd) · ed ≤ a B1/2
d

d1/2‖Tded‖
‖Zd‖
d1/2

1
‖Vd‖

)

= Φ

(

a
B1/2
d

d1/2‖Tded‖
‖Zd‖
d1/2

1
‖Vd‖

)

.

(4.73)

But a unit vector ed chosen uniformly at random can be written as Z∗
d
/||Z∗

d
|| for some

standard d-dimensional Gaussian Z∗
d. Hence, by Theorem 2.2,

d1/2

B1/2
d

‖Tded‖ =
d1/2
∥∥Z∗

d

∥∥

∥∥TdZ∗
d

∥∥

B1/2
d

p−→ 1. (4.74)

We now define the event

A∗
d :=

∣∣∣∣∣
B1/2
d

d1/2‖Tded‖
‖Zd‖
d1/2

1
‖Vd‖ − 1

∣∣∣∣∣
< δ, (4.75)

and the proof follows as for Part 1.
In proving Part 3 we require the following standard result (e.g., Theorem 1.5.3, [4]).

Set

ad :=
(
2 logd

)−1/2
, bd :=

(
2 logd

)1/2 − 1
2
ad
[
log logd + log(4π)

]
. (4.76)

Also let G(·) be the distribution function of a Gumbel random variable, and let
Z1, . . . , Zd be independent and identically distributedN(0, 1) random variables. Then

Gd(c) := P

(
1
ad

(
max
i=1,...,d

Zi − bd
)

≤ c
)

−→ G(c). (4.77)
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Replacing c with cd := [log logd + log(4π)]/2 = ((2 logd)1/2 − bd)/ad or with c∗d :=
−α(2 logd)1/2 + [log logd + log(4π)]/2 = ((1 − α)(2 logd)1/2 − bd)/ad (α > 0) gives

P

(
max
i=1,...,d

Zi ≤
(
2 logd

)1/2
)

∼ G(cd) −→ 1,

P

(
max
i=1,...,d

Zi ≤ (1 − α)(2 logd)1/2
)

∼ G(c∗d
) −→ 0.

(4.78)

Choose δ in (4.66) small enough that (1 − δ)(2 + ε)1/2 > 21/2. Then

P

(
d1/2 max

i=1,...,d
Vd,i ≤

(
(2 + ε) logd

)1/2 | Ad

)

= P

(
max
i=1,...,d

Zd,i ≤ ‖Zd‖
d1/2

1
‖Vd‖

(
(2 + ε) logd

)1/2 | Ad

)

> P

(
max
i=1,...,d

Zd,i ≤ (1 − δ)((2 + ε) logd)1/2 | Ad

)

> P

(
max
i=1,...,d

Zd,i ≤
(
2 logd

)1/2 | Ad

)

> P

(
max
i=1,...,d

Zd,i ≤
(
2 logd

)1/2
)
− P
(
Ac
d

)
.

(4.79)

Similarly by choosing δ in (4.66) small enough that (1 + δ)(2 − ε)1/2 > 21/2(1 − α) for
some small α > 0,

P

(
d1/2 max

i=1,...,d
Vd,i ≥

(
(2 − ε) logd)1/2 | Ad

)
> P

(
max
i=1,...,d

Zd,i ≥ (1 − α)(2 logd)1/2
)
− P
(
Ac
d

)
.

(4.80)

In each case the first term tends to 1 and P(Ac
d
) → 0, proving the desired result.
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