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Imputation is a popular technique for handling missing data especially for plenty of missing
values. Usually, the empirical log-likelihood ratio statistic under imputation is asymptotically
scaled chi-squared because the imputing data are not i.i.d. Recently, a bias-corrected technique
is used to study linear regression model with missing response data, and the resulting empirical
likelihood ratio is asymptotically chi-squared. However, it may suffer from the “the curse of high
dimension” inmultidimensional linear regressionmodels for the nonparametric estimator of selec-
tion probability function. In this paper, a parametric selection probability function is introduced to
avoid the dimension problem.With the similar bias-correctedmethod, the proposed empirical like-
lihood statistic is asymptotically chi-squared when the selection probability is specified correctly
and even asymptotically scaled chi-squared when specified incorrectly. In addition, our empirical
likelihood estimator is always consistent whether the selection probability is specified correctly or
not, and will achieve full efficiency when specified correctly. A simulation study indicates that the
proposed method is comparable in terms of coverage probabilities.

1. Introduction

Consider the following multidimensional linear regression model:

Yi = X′
iβ + εi, 1 ≤ i ≤ n, (1.1)

where Yi is a scalar response variable,Xi is a p×1 vector of design variable, β is a p×1 vector of
regression parameter, and the errors εi are independent random variables with E[εi | Xi] = 0,
Var[εi | Xi] = σ2. Suppose that we have incomplete observations (Xi, Yi, δi), i = 1, 2, . . . , n,
from this model, where all the X′

is are observed, and δi = 0 if Yi is missing, δi = 1 otherwise.
Throughout this paper, we assume that Y is missing at random (MAR); that is, the probability
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that Y is missing may depend on X but not on, Y that is, P(δ = 1 | X,Y ) = P(δ = 1 | X). We
focus on constructing confidence regions on β with the incomplete data (Xi, Yi, δi), i = 1,
2, . . . , n.

The empirical likelihood (EL)method, introduced by Owen [1], has many advantages
over normal approximation methods for constructing confidence intervals [1]. One is that
it produces confidence intervals and regions whose shape and orientation are determined
entirely by the data; the other is that empirical likelihood regions are range preserving
and transformation respecting. But it cannot directly to be used in missing responses situa-
tion. A natural method is to impute the predictor of Y based on the completely observed
pairs, which is provided by Wang and Rao [2]. Unfortunately, the empirical log-likelihood
ratio under this imputation is always asymptotically scaled chi-squared. Therefore, the
empirical log-likelihood ratio cannot be applied directly to make a statistical inference on the
parameter.

Recently, a bias-corrected technique combined imputation method, and Horvitz-
Thompson inverse-selectionweightedmethod is separately explored by Xue [3] andQin et al.
[4]. The provided empirical likelihood ratios obeyWilks theorem and the empirical likelihood
estimator is consistent. However, the true selection probability function is ordinarily un-
known, its nonparametric estimator may suffer from “the curse of high dimensionality” in
multidimensional linear regression models.

To avoid “the curse of high dimensionality”, it is customary to suppose a parametric
selection probability function, but the risk of misspecified function maybe exist. In this paper,
we consider the following two situations, one is that the selection probability is specified cor-
rectly, the other is that specified incorrectly. To the best of our knowledge, this issue is rarely
to be discussed. With the similar bias-corrected method, the provided empirical likelihood
statistic is asymptotically chi-squared in the first situation and asymptotically weighted sum
of chi-squared in the second situation. In addition, the following desired feature is worth
mentioning. The auxiliary random vector to construct the empirical likelihood statistic is
just the same form as that of proposed by Robins et al. [5]. The Robins’ estimator has the
characteristic of “doubly robust”, that is, the estimator is asymptotically unbiased either
the underlying missing data mechanism or the underlying regression function is correctly
specified. Because the underlying regression function is asymptotically correct in our situa-
tion, our estimator is always consistent in both cases. Even our estimator can achieve asymp-
totically full efficiency in the first situation. From this point, it is feasible to use the parametric
selection probability function to construct an EL statistic.

The rest of the paper is organized as follows. In Section 2, separately, the EL statistic
for β is constructed and the asymptotically results are shown in the two situations. Section 3
reports some simulation results on the performance of the proposed EL confidence region.
The proof of the main result is given in the Appendix.

2. Main Result

For simplicity, denote the true selection probability function by p0(x) and a specified proba-
bility distribution function by p(x, θ) for given θ, a p × 1 unknown vector parameter. Thus,
the first situation means p0(x) = p(x, θ0) for some θ0, where θ0 is the true parameter and
the second situation means p0(x)/= p(x, θ) for any θ. And let ̂βr be the least square estimator
of β based on the completely observed pairs (Xi, Yi, δi = 1), i = 1, 2, . . . , n that is, ̂βr =
(
∑n

i=1 δiXiX
′
i)
−1∑n

i=1 δiXiYi.
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2.1. Empirical Likelihood

In this subsection, an empirical likelihood statistic is conducted, and then some asymptotic
results are shown when the selection probability is specified correctly, that is, p0(x) = p(x, θ0)
for some θ0.

Since the design variable Xi is observable for each subject, the maximum likelihood
estimator ̂θ can be obtained by maximizing the likelihood function

L(θ) =
n
∏

i=1

p(Xi, θ)
δi
(

1 − p(Xi, θ)
)1−δi . (2.1)

The following regularity assumptions on L(θ) are sufficiently strong to ensure both
consistency and asymptotic normality of the maximum likelihood estimator. Suppose U(θ0)
is some field of θ0 where θ0 is the true parameter:

(C1) ∂ lnLB(θ)/∂θ, ∂2 lnLB(θ)/∂θ2 and ∂3 lnLB(θ)/∂θ3 exist in U(θ0) for all X;

(C2) |∂3 lnLB(θ)/∂θ3| ≤ H(X) inU(θ0), and EH(X) < ∞;

(C3) Eθ0[lnL
′
B(θ)/ lnLB(θ)] = 0, Eθ0[lnL

′′
B(θ)/ lnLB(θ)] = 0, I(θ0) = Eθ0[lnL

′
B(θ)/

lnLB(θ)]
2 > 0.

Then, we use Y̌i = (δi/p(Xi, ̂θ))Yi +(1−δi/p(Xi, ̂θ))X′
i
̂βr , i = 1, 2, . . . , n, as “complete” data set

for Y to construct the auxiliary random vectors

Z∗
in
(

β
)

= Xi

(

Y̌i −X′
iβ
)

= Xi

⎧

⎪

⎨

⎪

⎩

δi

p
(

Xi, ̂θ
)

(

Yi −X′
iβ
)

+

⎛

⎜

⎝1 − δi

p
(

Xi, ̂θ
)

⎞

⎟

⎠X′
i

(

̂βr − β
)

⎫

⎪

⎬

⎪

⎭

.

(2.2)

Thus, an empirical log-likelihood ratio is defined as

l∗n
(

β
)

= −2max

{

n
∑

i=1

log(nωi) | ωi ≥ 0,
n
∑

i=1

ωi = 1,
n
∑

i=1

ωiZ
∗
in
(

β
)

= 0

}

. (2.3)

Further, the maximum empirical likelihood estimator ˜β of β is to maximize {−l∗n(β)}.
To ensure asymptotic results, the following assumptions are needed:

(C4) p(x, θ) is uniformly continued in U(θ0) for all X;

(C5) A, D1 is a positive definite matrix, where A = E{XXT} and D1 = E{{1/p(X, θ0)}
XX′ε2};

(C6) p(x, θ0) has bounded almost surely and in fxp(x, θ0) > 0;

where condition (C4) is common for some selection probability function. Condition, (C5)-
(C6) are necessary for asymptotic normality of the maximum empirical likelihood estimator.
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Theorem 2.1. Suppose that conditions (C1)–(C6) above hold. If β is the true parameter and p(x, θ)
is specified correctly, then

l∗n
(

β
) D−→ χ2

p, (2.4)

where χ2
p means the chi-square variable with p degrees of freedom. D→ represents the convergence in

distribution.
Let the χ2

p(1 − α) be the 1 − α quartile of the χ2
p for 0 < α < 1. Using Theorem 2.1, we obtain

an approximate 1 − α confidence region for β, defined by

{

β̌ | l∗n
(

β̌
)

≤ χ2
p(1 − α)

}

. (2.5)

Theorem 2.1 can also be used to test the hypothesis H0 : β = β0. One could reject H0 if l∗n(β̌) >
χ2
p(1 − α).

Remark 2.2. In general, plug-in empirical likelihood will asymptotically lead to a sum of
weighted χ2

1 variables with unknown weights for the EL statistics proposed. However, when
p(x, θ) is specified correctly, the EL statistic with two plug-ins has the limiting distribution
of χ2

p which is due to the following reasons. Firstly, the bias-correction method, that is, the

selection function as inverse weight will eliminate the influence by the ̂βr . Secondly, the esti-
mating function has special structure, that is, the influence of ̂θ will be also eliminated if θ is
concluded in the denominator of function.

Theorem 2.3. Under Conditions (C1)–(C6), if p(x, θ) is specified correctly, then

√
n
(

̂β − β
)

D−→ N(0,Σ1), (2.6)

where Σ1 = A−1D1A
−1.

To apply Theorem 2.3 to construct the confidence region of β, we give the estimator
of Σ1, say ̂Σ1 = ̂A−1

̂D1 ̂A
−1, where ̂A and ̂D1 are defined by ̂A = (1/n)

∑n
i=1 XiX

T
i , ̂D1 =

(1/n)
∑n

i=1(1/p(X, ̂θ))XiX
T
i (Yi −X′

i
̂βr)

2
.

It is easily proved that ̂Σ1 is a consistent estimator of Σ1. Thus, by Theorem 2.3, we
have

̂Σ−1/2
1

√
n
(

̂β − β
)

D−→ N
(

0, Ip
)

, (2.7)

where Ip is an identity matrix of order p. Using (10.2d) in Arnold [6], we can obtain

(

̂β − β
)T

n̂Σ−1
1

(

̂β − β
)

D−→ χ2
p. (2.8)

Therefore, the confidence region of β can be constructed by using (2.8).
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2.2. Adjusted Empirical Likelihood When p0(x)/= p(x, θ)

In this subsection, we also construct the empirical likelihood statistic and discuss some
asymptotic results when the selection probability is specified incorrectly, that is, p0(x)/=
p(x, θ) for any θ.

Since the design variable Xi is observable for each subject, the quasi-maximum like-
lihood estimator ˜θ, other than the maximum likelihood estimator, can be obtained by maxi-
mizing the likelihood function

L(θ) =
n
∏

i=1

p(Xi, θ)
δi
(

1 − p(Xi, θ)
)1−δi (2.9)

under some regularity assumptions.
The following regularity assumptions are sufficiently strong to ensure both consis-

tency and asymptotic normality of the quasi-maximum likelihood estimator. Let u = (x, δ),
Ω = (Rp, {0, 1}), g(u) = p0(x)

δ(1−p0(x))
1−δ, f(u, θ) = p(x, θ)δ(1−p(x, θ))1−δ. It is natural that

g(u) is the true density function of u, and f(u, θ) does not contain the true structure
g(u). The Kullback-Leibler Information Criterion (KLIC) can be defined by I(g : f, θ) =
E(log[g(U)/f(U, θ)]), here, and in what follows, expectations are taken with respect to the
true distribution g(u). When expectations of the partial derivatives exist, we define the
matrices A(θ) = E(∂2 log f/∂θiθj), B(θ) = E((∂ log f/∂θi)(∂ log f/∂θj)).

(C7) g(u) is measurable on Ω.

(C8) f(u, θ) are measurable in u for every θ in Θ, a compact subset of a Rp, and con-
tinuous u for every θ in Θ.

(C9) (a) E[log(g(U))] exists and | log f(u, θ)| ≤ m(u) for all θ inΘ, wherem is integrable
with respect to g; (b) I(g : f, θ) has a unique minimum at θ∗ in Θ.

(C10) E((∂2 log f)/(∂θi)), i = 1, . . . , p, are measurable functions of u for each θ in Θ and
continuously second-order differentiable functions of θ for each u in Ω.

(C11) |∂2 log f/∂θiθj | and |(∂ log f/∂θi)(∂ log f/∂θj)|, i, j = 1, . . . , p are dominated by
functions integrable with respect to g for all u in Ω and θ in Θ.

(C12) (a) θ∗ is interior to Θ; (b) B(θ∗) is nonsingular; (c) θ∗ is a regular point of A(θ∗).

Then, we use ˜Yi = (δi/p(Xi, ˜θ))Yi + (1− (δi/p(Xi, ˜θ)))X′
i
̂βr , i = 1, 2, . . . , n as “complete”

data set for Y to construct the auxiliary random vectors

Zin
(

β
)

= Xi

(

˜Yi −X′
iβ
)

= Xi

⎧

⎪

⎨

⎪

⎩

δi

p
(

Xi, ˜θ
)

(

Yi −X′
iβ
)

+

⎛

⎜

⎝1 − δi

p
(

Xi, ˜θ
)

⎞

⎟

⎠X′
i

(

̂βr − β
)

⎫

⎪

⎬

⎪

⎭

.

(2.10)

Thus, an empirical log-likelihood ratio is defined as

ln
(

β
)

= −2max

{

n
∑

i=1

log(nωi) | ωi ≥ 0,
n
∑

i=1

ωi = 1,
n
∑

i=1

ωiZin
(

β
)

= 0

}

. (2.11)

And the maximum empirical likelihood estimator ˜β of β is to maximize {−ln(β)}.
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To ensure asymptotic results, the following assumptions are needed.

(C4′) p(x, θ) is uniformly continued in U(θ∗) for all x;

(C5′) A, C, E, F, G, D1, D2 is a positive definite matrix, where A = E{XXT}, C =
E[XXT (1 − p0(X)/p(X, θ∗))], E = E[p0(X)XXT ], F = E[p0(X)XXTε2], G =
E[(p0(X)/p(X, θ∗))XXTε2], D2 = E{(p0(X)/p2(X, θ∗))XX′ε2}, and D3 = D2 +
CE−1FE−1CT + 2CE−1G;

(C6′) p0(x) has bounded almost surely and in fxp0(x) > 0,

where condition (C4′) is common for some selection probability function. Condition (C5′)-
(C6′) are necessary for asymptotic normality of the maximum empirical likelihood estimator.

Theorem 2.4. Suppose that conditions (C7)–(C12) and (C4′)–(C6′) above hold. If β is the true
parameter and p(x, θ) is specified incorrectly, then

ln
(

β
) D−→

p
∑

i=1

ω̃iχ
2
1,i , (2.12)

where χ2
1 means the chi-square variable with 1 degrees of freedom. The weights ω̃i, i = 1, 2, . . . , p are

the eigenvalues of matrix D−1
3 D2.

D→ represents the convergence in distribution.

Let r(β) = p/tr(D−1
3 D2) be adjustment factor. Along the lines of [7], it is straight-

forward to show that r(β)Σp

i=1ω̃iχ
2
1i

D→ χ2
p.

Let Sn1(β) = Σn
i=1Zin(β)ZT

in(β), Sn2(β) = (Σn
i=1Zin(β))(Σn

i=1Zin(β))
T , r̂(β) = tr( ̂S−1

n2(β)
Sn2(β))/tr( ̂S−1

n1(β)Sn2(β)). We define an adjusted log-likelihood ratio by

ln,ad
(

β
)

= r̂
(

β
)

ln
(

β
)

. (2.13)

Corollary 2.5. Under the conditions of Theorem 2.4, one has

ln,ad
(

β
) D−→ χ2

p. (2.14)

Let the χ2
p(1 − α) be the 1 − α quartile of the χ2

p for 0 < α < 1. Using Corollary 2.5, we obtain an
approximate 1 − α confidence region for β, defined by

{

β̌ | ln,ad
(

β̌
)

≤ χ2
p(1 − α)

}

. (2.15)

Corollary 2.5 can also be used to test the hypothesis H0 : β = β0. One could reject H0 if ln,ad(β̌) >
χ2
p(1 − α).

Note that r(β) → 1, when p(x, θ) is close to correct one. Actually, the adjustment factor
r(β) reflects information loss due to the misspecification of p(x, θ).
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Theorem 2.6. Under the conditions of Theorem 2.4, one has

√
n
(

˜β − β
)

D−→ N(0,Σ2), (2.16)

where Σ2 = A−1D3A
−1.

To apply Theorem 2.6 to construct the confidence region of β, we give the estimator
of Σ2, say ̂Σ2 = ̂A−1

̂D3 ̂A
−1, where ̂A and ̂D3 are defined by ̂A = (1/n)

∑n
i=1 XiX

T
i , ̂C =

(1/n)
∑n

i=1 XiX
T
i (1 − δi/p(Xi, θ

∗)), ̂E = (1/n)
∑n

i=1 δiXiX
T
i , ̂F = (1/n)

∑n
i=1 δiXiX

T
i (Yi − X′

i
̂βr)

2,
̂G = (1/n)

∑n
i=1(δi/p(x, θ

∗))XiX
T
i (Yi−X′

i
̂βr)

2, ̂D2 = (1/n)
∑n

i=1(δi/p
2(x, θ∗))XiX

T
i (Yi−X′

i
̂βr)

2),
̂D3 = ̂D2 + ̂C ̂E−1

̂F ̂E−1
̂CT + 2 ̂C ̂E−1

̂G.
It is easily proved that ̂Σ2 is a consistent estimator of Σ2. Thus, by Theorem 2.6, we

have

̂Σ
−1/2
2

√
n
(

˜β − β
)

D−→ N
(

0, Ip
)

, (2.17)

where Ip is an identity matrix of order p. Using (10.2d) in Arnold [6], we can obtain

(

˜β − β
)T

n̂Σ
−1
2

(

˜β − β
)

D−→ χ2
p. (2.18)

Therefore, the confidence region of β can be constructed by using (2.18).

Remark 2.7. The estimator proposed by Robins in this situation is to solve

n
∑

i=1

δi

p
(

Xi, ̂θ
)Xi

(

Yi −X′
iβ
)

+

⎛

⎜

⎝1 − δi

p
(

Xi, ̂θ
)

⎞

⎟

⎠XiX
′
i

(

̂βr − β
)

= 0. (2.19)

Noted that E(X(Y −X′β) | X) = XX′(β−β) = XX′[(̂βr −β)+(β− ̂βr)] = XX′(̂βr −β)+op(1/
√
n)

that is, in that case the underlying regression function can asymptotically correctly specified.
So whether missing data mechanism is specified correctly or not, the estimator is always
consistent and the estimator can achieve asymptotic full efficiency when specified correctly.

3. Simulation

Due to the curse of nonparametric estimation, Xue’s method may be hard to realize. Here
we conducted an extensive simulation study to compare the performances of the weighted-
corrected empirical likelihood(WCEL) proposed in this paper and Wang’s method (AEL)
proposed in Wang and Rao under the covariates of four dimensions.

We considered the linear model (1.1) with d = 4 and β = (0.8, 1.5, 1, 2), where X was
generated from a four-dimensions standard normal distribution, and ε was generated from
the normal distribution with mean zero and variance 0.04.
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Table 1: Empirical coverage probabilities of the confidence regions for β under different selection proba-
bility functions p(x) and sample sizes n when nominal level is 0.95.

n
Case I Case II

p0(x, θ1) p0(x, θ2) p0(x, θ3) p1(x) p2(x) p3(x)

100 0.554 0.61 0.571 0.861 0.772 0.693
WCEL 200 0.594 0.729 0.611 0.971 0.916 0.818

500 0.699 0.914 0.698 0.995 0.987 0.967

100 0.486 0.489 0.516 0.667 0.591 0.521
AEL 200 0.549 0.536 0.564 0.805 0.587 0.587

500 0.655 0.653 0.660 0.932 0.863 0.759

In the first case, the real selection probability function p0(x, θ) was taken to be
exp(x′θ)/(1 + exp(x′θ)). We considered θ equaled to the three following values θ1 = (−0.5,
−0.5,−0.5,−0.5), θ2 = (0, 0, 0, 0), θ3 = (0.5, 0.5, 0.5, 0.5), respectively.

In the second case, the real selection probability function p0(x) was taken to be the
following three cases:

Case 1. p1(x) = 0.8 + 0.2(|x1| + |x2| + |x3| + |x4|) if |x1| + |x2| + |x3| + |x4| ≤ 1, and 0.9 elsewhere.

Case 2. p2(x) = 0.9 − 0.1(|x1| + |x2| + |x3| + |x4|)| if |x1| + |x2| + |x3| + |x4| ≤ 4, and 0.9 elsewhere.

Case 3. p3(x) = 0.6 for all x.

We generated 5000 Monte Carlo random samples of size n = 100, 200, and 500 based
on the above six selection probability functions p(x). When the working model was p(x, θ) =
exp(x′θ)/(1 + exp(x′θ)), the empirical coverage probabilities for β, with a nominal level 0.95,
were computed based on the above two methods with 5000 simulation runs. The results are
reported in Table 1.

From Table 1, we can obtain the following results. Firstly, under both cases, WCEL per-
forms better than AEL because its confidence regions have uniformly higher coverage prob-
abilities. Secondly, all the empirical coverage probabilities increase as n increases for every
fixed missing rate. Observably, the missing rate also affects coverage probability. Generally,
the coverage probability decreases as the missing rate increases for every fixed sample size.
However, under Case I, the values do hardly change by a large amount for both methods
because of the exponential selection probability function.

4. Conclusion

In this paper, a parametric selection probability function is introduced to avoid the dimension
difficulty, and a bias-corrected technique leads to an empirical likelihood (EL) statistic with
asymptotically chi-square distribution when the selection probability specified correctly and
with asymptotically weighted chi-square distribution when specified incorrectly. Also, our
estimator is always consistent and will achieve asymptotic full efficiency when selection
probability function is specified correctly.
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Appendix

A. Proofs

Lemma A.1. Suppose that (C1)–(C4) hold. Then 1/p(X, ̂θ) = (1/p(X, θ0))(1 + op(1)).

Proof of Lemma A.1. Under conditions (C1)–(C3), it can be shown that ̂θ is
√
n consistent:

̂θ − θ0 = Op

(

n−1/2
)

= op(1). (A.1)

Together with condition (C4), we have

p
(

X, ̂θ
)

= p(X, θ0) + op(1). (A.2)

By Taylor expanding, it is easily shown that

1

p
(

X, ̂θ
) =

1
p(X, θ0)

(

1 + op(1)
)

. (A.3)

Lemma A.2. Suppose that (C7)–(C12) hold. Then 1/p(X, ˜θ) = (1/p(X, θ∗))(1 + op(1)).

Proof of Lemma A.2. From Theorem 3 of White [8], under conditions (C7)–(C12), it can be
shown that ˜θ is

√
n consistent:

˜θ − θ∗ = Op

(

n−1/2
)

= op(1). (A.4)

Similar to Lemma A.1, it is easy to show that 1/p(X, ˜θ) = (1/p(X, θ∗))(1 + op(1)).

Lemma A.3. Suppose that (C7)–(C12) and (C4′)–(C6′) hold. If p(X, θ) is specified wrongly, then

1√
n

n
∑

i=1

Zin
(

β
) −→ N(0, D3), (A.5)

1
n

n
∑

i=1

Zin
(

β
)

ZT
in

(

β
) −→ D2,

max
∣

∣Zin
(

β
)∣

∣ = o
(

n−1/2
)

.

(A.6)

Proof of Lemma A.3. We prove (A.5) only; (A.6) can be proved similarly.
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By direct calculation, we have

1√
n

n
∑

i=1

Zin
(

β
)

=
1√
n

n
∑

i=1

δi

p
(

Xi, ˜θ
)Xi

(

Yi −X′
iβ
)

+
1√
n

n
∑

i=1

⎛

⎜

⎝1 − δi

p
(

Xi, ˜θ
)

⎞

⎟

⎠XiX
′
i

(

̂βr − β
)

=
1√
n

n
∑

i=1

δi
p(Xi, θ∗)

Xiεi
(
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(A.7)

It is easily to shown that
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(A.8)

Note that
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= CE−1 1√
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∑
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(A.9)

so we have
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(A.10)

Therefore, by using (A.8)–(A.10), the proof of (A.5) is completed.

We just proof Theorems 2.4 and 2.6, the proofs of Theorems 2.1 and 2.3 are similar, only
to replace the ˜θ, θ∗, D3, Zin(β), C by ̂θ, θ0, D1, Z

∗
in(β), 0 separately.

Proof of Theorem 2.4. By the Lagrange multiplier method, Zin(β) can be represented as

ln(θ) = 2
n
∑

i=1

log
(

1 + λTZin
(

β
)

)

, (A.11)

where λ = λ(β) is a d × a vector given as the solution to

n
∑

i=1

Zin
(

β
)

1 + λTZin
(

β
) = 0, (A.12)

by Lemma A.2, and using the same arguments as that of the proof (A.4) of in [9], we can
show that

‖λ‖ = Op

(

n−1/2
)

. (A.13)
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Applying the Taylor expansion to (A.11) and (A.13), we get that

ln(θ) = 2
n
∑

i=1

[

λTZin
(

β
) − λTZin

(

β
)2

2

]

+ o(1). (A.14)

By (A.12), it follows that

0 =
n
∑
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(

β
)
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(

β
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n
∑
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β
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n
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(

β
)
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+ op
(
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)

. (A.15)

This together with Lemma A.3 and (A.13) proves that

n
∑

i=1

λTZin
(

β
)2 =

n
∑
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λTZin
(

β
)

+ o(1),
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(A.16)

Therefore, from (A.14) we have

ln
(

β
)

=

(

1√
n

n
∑

i=1

Zin
(

β
)

)T(

1
n

n
∑

i=1

Zin
(

β
)
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in
(

β
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)−1(
1√
n

n
∑

i=1

Zin
(

β
)

)

+ o(1). (A.17)

This together with Lemma A.3 completes Theorem 2.4.

Proof of Theorem 2.6. From Theorem 1 of Qin [10] and (A.5), we obtain the result of Theorem
2.6 directly.
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