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We describe a design for cancer phase I clinical trials that takes into account patients heterogeneity
thought to be related to treatment susceptibility. The goal is to estimate the maximum tolerated
dose (MTD) given patient’s specific dichotomous covariate value. The design is Bayesian adaptive
and is an extension of escalation with overdose control (EWOC). We will assess the performance
of this method by comparing the following designs via extensive simulations: (1) design using a
covariate; patients are accrued to the trial sequentially and the dose given to a patient depends on
his/her baseline covariate value, (2) design ignoring the covariate; patients are accrued to the trial
sequentially and the dose given to a patient does not depend on his/her baseline covariate value,
and (3) design using separate trials; in each group, patients are accrued to the trial sequentially and
EWOC is implemented in each group. These designs are compared with respect to safety of the
trial and efficiency of the estimates of the MTDs via extensive simulations. We found that ignoring
a significant baseline binary covariate in the model results in a substantial number of patients
being overdosed. On the other hand, accounting for a nonsignificant covariate in the model has
practically no effect on the safety of the trial and efficiency of the estimates of the MTDs.

1. Introduction

The main objective of cancer phase I clinical trials is to determine a maximum tolerated dose
(MTD) of a new experimental drug or combination of known drugs for use in a phase II
trial. These trials enroll advanced stage cancer patients who have exhausted all standard
therapies sequentially in cohorts of size one or more patients and dose level assignment to
a given cohort of patients is dependent upon the dose levels and toxicity outcomes of the
previously treated cohorts of patients. Adaptive statistical designs for cancer phase I clinical
trials have been studied extensively in the last two decades, see for example, O’Quigley et al.
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[1], Durham and Flournoy [2], Korn et al. [3], Whitehead [4], Babb et al. [5], Gasparini and
Eisele [6], Mukhopadhyay [7], and Haines et al. [8]. See also Ting [9] and Chevret [10] for a
more comprehensive review of these statistical designs.

A key assumption implied by the definition of the phase I target dose (MTD) is that
every subgroup of the patient population has the same MTD. That is, it is assumed that
the patient population is homogeneous in terms of treatment tolerance and every patient
should be treated at the same dose. As a result, no allowance is made for individual
patient differences in susceptibility to treatment. Recent progress in our understanding of
pharmacokinetics and the genetics of drug metabolism has led to the development of new
strategies of drug allocation that accommodate individual patient needs, see [11–13]. For
example, Newell [14] showed how impaired renal function can result in reduced clearance
of carboplatin and a dosing formulae based on renal function was developed. In this paper,
we present design operating characteristics of a design proposed by Babb et al. [5] known as
escalation with overdose control (EWOC) by accounting for patients heterogeneity thought
to be related to treatment susceptibility. In the case of a binary covariate, we will assess the
performance of this method by comparing the following designs via extensive simulations:
(1) design using a covariate; patients are accrued to the trial sequentially and the dose
given to a patient depends on his/her covariate value, (2) design ignoring the covariate;
patients are accrued to the trial sequentially and the dose given to a patient does not depend
on his/her covariate value, and (3) design using separate trials; in each group, patients
are accrued to the trial sequentially and EWOC is implemented in each group. O’Quigley
et al. [15] investigated the performance of a two-stage continual reassessment method
(CRM) using a binary covariate. They considered 3 different models for the dose-toxicity
relationship and maximum likelihood method was used to estimate the model parameters.
This required starting the escalation scheme using some ad hoc mechanism until the first
toxicity is observed. They found that significant gains can be made using the two-sample
CRM when there are group imbalances. However, there may not be enough patients in one
group to detect that effect. O’Quigley and Paoletti [16] considered a two-group CRM design
incorporating ordering of the two groups with respect to treatment tolerability in designing a
phase I trial. Babb and Rogatko [17] extended EWOC to allow the utilization of information
concerning individual patient differences in susceptibility to treatment. This was applied to
a trial involving patients with advanced adenocarcinomas of gastrointestinal origin treated
with PNU-214565 (PNU). PNU is a murine Fab fragment of the monoclonal antibody 5T4
fused to a mutated superantigen staphylococcal enterotoxin A (SEA). Preclinical testing
demonstrated that the action of PNU is moderated by the neutralizing capacity of anti-
SEA antibodies. Consequently, dose levels were adjusted during the trial according to
each patient’s pretreatment plasma concentration of anti-SEA antibodies. However, design
operating characteristics were not studied.

This paper is organized as follows. Section 2 describes the model likelihood and prior
distributions and the conduct of the trial using EWOC scheme for three different designs.
We present some simulation results in Section 3 and concluding remarks are presented in
Section 4.

2. Method

2.1. Model

In this section, we describe a Bayesian adaptive design which accounts for patient
heterogeneity thought to be related to treatment susceptibility. Let Xmin and Xmax denote
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the minimum and maximum dose levels available for use in the trial. Clinicians choose these
levels in the belief that Xmin is safe when administered to humans and Xmax is too toxic, see
[18] how these levels were selected for a real prospective trial. Denote by Z the observable
baseline binary covariate taking values 0 or 1 and let

Pz(x) = Prob(DLT | Dose = x,Z = z), (2.1)

be the probability of dose limiting toxicity (DLT) for a patient with baseline covariate z and
treated with dose level x. For simplicity, we consider the logistic model to describe the dose-
toxicity relation

Pz(x) =
exp

(
β0 + β1x + ηz

)

1 + exp
(
β0 + β1x + ηz

) . (2.2)

We assume that β1 ≥ 0 so that Pz(x) is an increasing function of dose x. This is a reasonable
assumption for cytotoxic agents. Model (2.2) implies a constant odds ratio of toxicity between
the two groups of patients in the sense that this odds ratio does not depend on the dose level.

The MTD for a patient with covariate value z is defined as the dose γ(z) that results
in a probability equal to θ(z) that a DLT will manifest within one cycle of therapy. The value
chosen for the target probability of DLT θ(z) would depend on the nature and consequences
of the dose-limiting toxicity; it would be set relatively high when the DLT is a transient,
correctable or nonfatal condition, and low when it is life threatening or lethal [5]. We will
assume that θ(z) is constant in z although themethodology can be adapted to different target
probabilities of toxicities. In practice, clinicians use a constant target probability of DLT θ
since we do not know a priori how the treatment under study affects the different groups
of patients defined by their baseline covariate value. It follows from the dose-toxicity model
(2.2) that the MTD is

γ(z) =
1
β1

(
logit(θ) − α − ηz

)
. (2.3)

Let ρ0,z be the probability of DLT at the initial dose given to a patient with covariate
value z. In the statistical design of a phase I clinical trial, it is convenient to specify the prior
distribution on parameters the clinicians can easily interpret. For instance, Babb and Rogatko
[17] reparameterized model (2.2) in terms of the MTD associated with the maximum-
anticipated plasma concentration of anti-SEA antibodies and the probabilities of DLT
when the minimum allowable dose is administered to patients with pretreatment anti-SEA
concentrations selected to span the range of this covariate. Here, we reparameterize model
(2.2) in terms of γ0 = γ(0), γ1 = γ(1), and ρ0,0. We chose this reparameterization because the
MTDs for each group are the parameters of interest. However, other parameterizations such
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as difference between theMTDs in both groups are possible. Using the definition of theMTDs
and probability of toxicity at the initial dose x1, one can show that

β0 =
1

(
γ0 − x1

)
[
γ0logit

(
ρ0,0

) − x1logit(θ)
]
,

β1 =
1

(
γ0 − x1

)
[
logit(θ) − logit

(
ρ0,0

)]
,

η =

(
γ0 − γ1

)

(
γ0 − x1

)
[
logit(θ) − logit

(
ρ0,0

)]
.

(2.4)

We note that the probability of DLT does not depend on the parameter γ1 when z = 0. Denote
by p(ρ0,0, γ0, γ1, x1) and p(ρ0,0, γ0, x0) the probabilities of DLT for a patient with covariate
value 1 and 0, respectively. These probabilities are obtained using the dose-toxicity model
(2.2) with β0, β1, η given by (2.4).

2.2. Likelihood

Suppose that after the lth patient with baseline covariate value z is treated with dose xz,l,
there are ml patients with covariate value z = 0 and kl patients with covariate value z = 1.
Let yz,l be the toxicity outcome (1 for DLT and 0 for no DLT) for the ith patient with covariate
value z. The likelihood of the data is

L
(
ρ0,0, γ0, γ1 | Dl

)
=

ml∏

i=1

[
p
(
ρ0,0, γ0, x0,i

)y0,i
(
1 − p

(
ρ0,0, γ0, x0,i

))1−y0,i
]

×
kl∏

j=1

[
p
(
ρ0,0, γ0, γ1, x1,i

)y1,i
(
1 − p

(
ρ0,0, γ0, γ1, x1,i

))1−y1,i
]
,

(2.5)

where Dl = {(x0,1, y0,1), . . . , (x0,ml , y0,ml), (x1,1, y1,1), . . . , (x1,kl , y0,kl)} andml + kl = l.
Let h(ρ0,0, γ0, γ1) be a prior distribution on the parameters ρ0,0, γ0, and γ1. The

posterior distribution is

π
(
ρ0,0, γ0, γ1 | Dl

)
= c(Dl)L

(
ρ0,0, γ0, γ1 | Dl

)
h
(
ρ0,0, γ0, γ1

)
, (2.6)

where c(Dl) is a normalizing constant. This joint posterior is clearly intractable and WinBugs
and a Markov chain Monte Carlo sampler will be devised to estimate features of this joint
posterior distribution as in Tighiouart et al. [18].

2.3. Prior Distributions

Another advantage of the reparameterization in (2.4) is the natural specification of vague
but proper prior densities for the model parameters. Indeed, under the assumption that
γ0, γ1 belong to [Xmin, Xmax] with prior probability 1 and no prior assumptions on whether
one group can tolerate higher doses better than the other, we can take (γ0, γ1) ∼ Uniform
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[Xmin, Xmax]
2 and γ0 independent of γ1. If on the other hand, we have a priori belief that one

group can tolerate higher doses better than the other group for example, then (γ0, γ1) can be
taken to be uniform on the triangle Xmin < γ0 < γ1 < Xmax. Design operating characteristics
should be performedwhen designing prospective trials when considering informative priors.
The prior distribution for ρ0,0 is taken as a uniform in [0, θ], which reflects a lack of prior
knowledge regarding the probability of DLT at the initial dose.

2.4. Trial Design

Denote by A and B the two groups of patients corresponding to covariate values 0 and 1,
respectively. We assume that the support of the MTDs γ0 and γ1 are contained in [Xmin, Xmax].
That is, we assume that dose levels Xmin and Xmax are identified a priori such that γ0, γ1
belong to [Xmin, Xmax] with prior (and hence posterior) probability 1. We note that if the
prior distribution π(γ1) is independent of the joint prior distribution of (ρ0,0, γ0), then π(γ1)
is never updated unless a patient in group B is enrolled in the trial. In the case of such priors,
the trial proceeds as follows.

The first patient in either group receives the dose x1 = Xmin. Let Πz,1 be the marginal
posterior cdf of the MTD γz, z = 0, 1. Suppose that the first patient belongs to group A. If the
second patient belongs to group A, then he or she will receive the dose x0,2 = Π−1

0,1(α) so that
the posterior probability of exceeding the MTD γ0 is equal to the feasibility bound α. If the
second patient belongs to group B, then he or she will receive the dose x1 = Xmin. In general,
the first time a patient is assigned to a given group always receives x1 = Xmin no matter how
many patients have been enrolled in the other group. Once l patients have been enrolled in
the trial with at least one patient treated in each group, the l + 1-st patient with covariate
value z receives the dose xz,l+1 = Π−1

z,l
(α). The trial proceeds until a total of npatients have

been accrued. At the end of the trial, we estimate the MTD as γ̂z = Π−1
z,n(α), z = 0, 1.

3. Simulation Studies

3.1. Comparison of Three Designs

In order to assess the operating characteristics of this design when designing a prospective
trial, we explored the behavior of this method when we adjust for a significant covariate. We
also evaluated the performance of this design when adjusting for a nonsignificant baseline
covariate. Finally, its performance was also explored when two parallel trials are used
instead of adjusting for a binary baseline covariate. Therefore, we study design operating
characteristics by comparing the following designs.

(i) Design using a covariate; patients are accrued to the trial sequentially and the dose
given to a patient is calculated assuming model (2.2).

(ii) Design ignoring the covariate; patients are accrued to the trial sequentially and the
dose given to a patient is calculating assuming model (2.2) without the covariate,
that is, as in the original EWOC.

(iii) Design using separate trials; in each group, patients are accrued to the trial
sequentially and EWOC is implemented in each group.

Comparisons will be carried out under several scenarios for the true values of the MTDs γ0
and γ1. Since the main goal of cancer phase I clinical trials is to efficiently estimate the MTD
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while protecting patients from potentially toxic side effects, we will assess the safety of the
trial and efficiency of the estimate of the MTDs by simulating a large number of trials M
under each model and compare the proportion of patients exhibiting DLT, the average bias
biasave = M−1 ∑M

i=1 γ̂z,i − γz,true and the estimated mean square error MSE = M−1 ∑M
i=1(γ̂z,i −

γz,true)
2, where γ̂z,i is the MCMC estimate of the Bayes estimate of the marginal posterior

distribution of the MTD at the end of the ith trial, z = 0, 1. In addition, the models are further
compared with respect to the proportion of patients that were overdosed. Here, a patient
with baseline covariate z is overdosed if this patient has been given a dose x such that x >
x∗, where x∗ is defined as the dose for which P(DLT | x∗, z) = θ + 0.05. This probability is
calculated using the parameter values from the corresponding scenario.

3.2. Simulation Setup

The simulation results presented below all assume that the feasibility bound α = 0.25 and
that the dose levels are standardized so that the starting dose x1 equals to the minimum dose
for each trial Xmin = 0 and all subsequent dose levels are selected from the unit interval.
The target probability of DLT is fixed at θ = 0.33, ρ0,0 = 0.05, and the total sample size is
n = 42. We consider several scenarios corresponding to combinations of four possible values
of γ0, γ1, 0.2, 0.4, 0.6, and 0.8. In all simulations, the prior distributions for ρ0,0, γ0, γ1 were
taken as uniform in [0, θ] × [Xmin, Xmax]

2 with ρ0,0, γ0, γ1 independent a priori.
For design (1), a patient is randomly selected from either group A or B with equal

probability so that the total number of patients in group A, m, equals to the total number of
patients in group B, k. For each pair (γ0, γ1) in {0.2, 0.4, 0.6, 0.8}×{0.2, 0.4, 0.6, 0.8}, we simulate
1000 trials and calculate the proportion of patients that were overdosed, the proportion of
patients exhibiting DLT, the average bias, and the estimatedMSE. For design (2), the covariate
for each patient is recorded but it is not taken into account when calculating the dose level
for the next patient. Again, we simulate 1000 trials and calculate the proportion of patients
that were overdosed, the proportion of patients exhibiting DLT, the average bias, and the
estimated MSE. For the third design, separate trials are simulated in each group and the
summary statistics are calculated based on 1000 simulated trials in each group. In all cases,
the responses yz,i are generated from model (2.2).

3.3. Results

Table 1 gives the overall proportion of patients exhibiting DLT, the proportion exhibiting
DLT in each group, the proportion of patients in each group that are overdosed, the bias,
and MSE of the estimates of the MTDs when design (i) in Section 3.1 is used. Table 2 gives
the summary statistics corresponding to the safety of the trial when design (ii) is used.
The overall proportion of patients exhibiting DLT is always less than θ = 0.33 under all
entertained scenarios and it is uniformly lower for a design which accounts for the baseline
covariate relative to the design ignoring this covariate. The same conclusion holds when
comparison of these two designs is carried out within each group. On the other hand, the
proportion of patients being overdosed in group A is much higher when the two groups of
patients differ in their susceptibility to treatment and this difference is not taken into account.
This proportion can be as high as 16% in the case where (γ0, γ1) = (0.4, 0.8). This is not
surprising because when a difference in theMTDs is not taken into account in themodel, then
the sequence of doses generated by the design tends to cluster around a weighted average of
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Table 1: EWOC with Covariate. Design operating characteristic with respect to safety and efficiency of the
trial.

(γ0, γ1) 0.2, 0.4 0.2, 0.6 0.2, 0.8 0.4, 0.6 0.4, 0.8 0.6, 0.8
Proportion of DLTs 0.3032 0.2735 0.2505 0.2442 0.2231 0.1954
Proportion of DLTs in group A 0.3058 0.2758 0.2495 0.2432 0.2230 0.1932
Proportion of DLTs in group B 0.3007 0.2713 0.2514 0.2451 0.2232 0.1975
Proportion overdosed in group A 0.5958 0.6236 0.6199 0.3174 0.3738 0.1029
Proportion overdosed in group B 0.0934 0.0448 0.0102 0.0373 0.0044 0.0019
Bias (γ1) −0.0090 −0.0122 −0.0174 −0.0326 −0.0432 −0.0910
Bias of (γ2) −0.0585 −0.1218 −0.2185 −0.1075 −0.2014 −0.2013
MSE (γ1) 0.0484 0.0501 0.0505 0.0916 0.0968 0.1476
MSE (γ2) 0.1068 0.1711 0.2622 0.1635 0.2451 0.2437

Table 2: EWOC with no Covariate. Design operating characteristic with respect to safety of the trial.

(γ0, γ1) 0.2, 0.4 0.2, 0.6 0.2, 0.8 0.4, 0.6 0.4, 0.8 0.6, 0.8
Proportion of DLTs 0.3156 0.3172 0.3143 0.2824 0.2702 0.2370
Proportion of DLTs in group A 0.3170 0.3180 0.3105 0.2856 0.2737 0.2389
Proportion of DLTs in group B 0.3142 0.3164 0.3180 0.2791 0.2668 0.2350
Proportion overdosed in group A 0.6495 0.7415 0.775 0.4091 0.5298 0.1761
Proportion overdosed in group B 0.0184 0.0006 0.0000 0.0109 0.0000 0.0003

the two “true” MTDs, where the weights depends on the number of patients in each group. If
on the other hand, the models accounts for the difference in the MTDs, then the distribution
of the sequence of doses is bimodal clustering around the two “true” MTDs, as displayed
in Figure 1, which shows the histogram of all doses with fitted density (dashed line) when
(γ0, γ1) = (0.3, 0.6). The difference in the proportion of patients being overdosed in group
B between the two designs is practically negligible. When the two MTDs are equal and the
design does account for the baseline covariate, Tables 3 and 4 show that the proportions of
DLTs (overall and within each group) is no more than the target probability of DLT θ, and
the differences in these proportions between the two designs are practically not important.
No design is uniformly better than the other in terms of the proportion of patients being
overdosed. For instance, when γ0 = γ1 = 0.2, the proportion of patients in group A is 0.336
when a covariate is used and this proportion is 0.275 when the covariate is not taken into
account. On the other hand, when γ0 = γ1 = 0.4, the proportion of patients in group A is
0.179 when a covariate is used but this proportion is 0.21 when the covariate is not taken into
account. In fact, these proportions are equal on the average across the four scenarios for the
true value of the MTD γ = γ0 = γ1. Tables 3 and 4 also show that the bias and MSE of the
estimates of the MTD is higher when a nonsignificant covariate is used in the model, with the
higher values obtained the true MTD is high, γ = 0.6, 0.8.

Table 5 gives the summary statistics when separate trials enrolling n = 21 patients
are used. As before, the proportion of patients exhibiting DLT does not exceed the target
probability of DLT θ. When the true MTDs are the same, the overall proportion of patients
that are overdosed using a model with a baseline covariate (Table 3) is lower than the
corresponding proportion if parallel trials were used (Table 5) when γ = 0.2, 0.4. The
differences in these proportions for γ = 0.6, 0.8 are negligible. The bias of the estimate of
the MTD is about the same for both designs. In the case where the MTDs γ0 and γ1 are
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Table 3: EWOC with Covariate. Design operating characteristic with respect to safety and efficiency of the
trial.

γ0 = γ1 0.2 0.4 0.6 0.8
Proportion of DLTs 0.3337 0.2721 0.2183 0.1759
Proportion of DLTs in group A 0.3319 0.2751 0.2222 0.1764
Proportion of DLTs in group B 0.3356 0.2691 0.2143 0.1754
Proportion overdosed in group A 0.3361 0.1790 0.04995 0.0008
Proportion overdosed in group B 0.3346 0.1802 0.0497 0.0010
Bias (γ1) −0.0134 −0.0387 −0.0965 −0.2002
MSE (γ1) 0.0716 0.1373 0.2142 0.3425

Table 4: EWOC with no Covariate. Design operating characteristic with respect to safety and efficiency of
the trial.

γ0 = γ1 0.2 0.4 0.6 0.8
Proportion of DLTs 0.3243 0.2939 0.2527 0.2109
Proportion of DLTs in group A 0.3251 0.2944 0.2515 0.2083
Proportion of DLTs in group B 0.3236 0.2934 0.2539 0.2134
Proportion overdosed in group A 0.2755 0.2108 0.0774 0.0023
Proportion overdosed in group B 0.2761 0.2050 0.0749 0.0026
Bias (γ1) −0.0119 −0.0197 −0.0537 −0.1198
MSE (γ1) 0.0353 0.0684 0.1032 0.1537

Table 5: EWOC. Design operating characteristic with respect to safety and efficiency of the trial.

γ 0.2 0.4 0.6 0.8
Proportion of DLTs 0.3372 0.2778 0.2162 0.1737
Proportion overdosed 0.3684 0.2067 0.0417 0.0001
Bias (γ) −0.0086 −0.0249 −0.08124 −0.1915
MSE (γ) 0.0464 0.0858 0.1381 0.2246
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Figure 1: Histogram and fitted density (dashed line) of dose allocations for patients 2 through 80 based
on 1000 simulated trials using the model with covariate. The true MTDs are γ0 = 0.3, γ1 = 0.6, and ρ0 =
0.05, θ = 0.33, α = 0.25.
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different, more patients are overdosed using a model with a baseline covariate compared to
using parallel trials and the differences in the bias and MSE are negligible, see Tables 1 and 5.

Based on these results, we recommend adjusting for a baseline covariate thought to be
related to treatment susceptibility when designing a cancer phase I trials whenever possible.
We stand to lose little if we were to use a design with a covariate when in fact there is no
difference between the MTDs of the two groups.

4. Discussion

We have presented design operating characteristics of a Bayesian adaptive design which
accounts for a patient dichotomous baseline covariate using EWOC scheme. The design is
suitable for cancer phase I clinical trials where the goal is to estimate the conditional MTD
given patients’ covariate value.

We have found that if the two MTDs are different and the design does not adjust for
this heterogeneity, then the trial will result in more patients being overdosed. If the two
MTDs are the same and the design adjusts for patients’ heterogeneity, then slightly more
patients can be overdosed if the true MTD is low relative to a design with no covariate but
these proportions are equal on the average across the four scenarios for the true value of the
MTD. Thus, we stand to lose little if we do include a statistically nonsignificant covariate
in the model. Incidentally, this conclusion is in agreement with the findings in O’Quigley
et al. [15]. We carried out other simulations (results not shown) for various sample sizes,
allocation ratios, probability of DLT at the initial dose ρ0. The results and conclusions were
essentially the same. Ratain et al. [13] showed the importance of including patient’s plasma
concentration of anti-SEA antibodies in order to determine theMTD of the agent PNU-214565
as a function of this continuous baseline covariate. In a similar trial, Tighiouart and Rogatko
[16] showed how more patients were overdosed when a baseline covariate, cancer type,
was not accounted for in the model. Indeed, a retrospective analysis of a cancer phase I
trial using a baseline continuous covariate showed that nonsmall cell cancer patients and
pancreatic patients were treated at suboptimal doses whereas renal cell carcinoma patients
were overdosed, with 36.4% experiencing DLT; the target probability of DLTwas θ = 0.2. This
last example is in agreement with the simulation results we obtained in this paper. We are in
the process of determining model operating characteristics in the presence of a continuous
covariate, more than one covariate, and interaction term. An important question is to decide
whether or not to include patients’ covariate values during the trial. Although the previous
results seem to indicate that we stand to lose little in terms of the proportion of patients being
overdoses and the efficiency of the estimate of the MTDs when covariate information is taken
into account in the model when in fact, this covariate is not predictive of DLT, determining
the value of this covariate may involve a monetary cost. This is the case when patients need
to be genotyped and certain biomarker expressions need to be determined.
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