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Copyright q 2012 Jesús A. Fajardo. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We propose a criterion to estimate the regression function by means of a nonparametric and fuzzy
set estimator of the Nadaraya-Watson type, for independent pairs of data, obtaining a reduction of
the integrated mean square error of the fuzzy set estimator regarding the integrated mean square
error of the classic kernel estimators. This reduction shows that the fuzzy set estimator has better
performance than the kernel estimations. Also, the convergence rate of the optimal scaling factor
is computed, which coincides with the convergence rate in classic kernel estimation. Finally, these
theoretical findings are illustrated using a numerical example.

1. Introduction

The methods of kernel estimation are among the nonparametric methods commonly used to
estimate the regression function r, with independent pairs of data. Nevertheless, through the
theory of point processes (see e.g, Reiss [1]) we can obtain a new nonparametric estimation
method, which is based on defining a nonparametric estimator of the Nadaraya-Watson type
regression function, for independent pairs of data, by means of a fuzzy set estimator of the
density function. The method of fuzzy set estimation introduced by Falk and Liese [2] is
based on defining a fuzzy set estimator of the density function by means of thinned point
processes (see e.g, Reiss [1], Section 2.4); a process framed inside the theory of the point
processes, which is given by the following:

̂θn =
1
nan

n
∑

i=1

Ui, (1.1)
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where an > 0 is a scaling factor (or bandwidth) such that an → 0 as n → ∞, and the random
variables Ui, 1 ≤ i ≤ n, are independent with values in {0, 1}, which decides whether Xi

belongs to the neighborhood of x0 or not. Here x0 is the point of estimation (for more details,
see Falk and Liese [2]). On the other hand, we observe that the random variables that define
the estimator ̂θn do not possess, for example, precise functional characteristics in regards to
the point of estimation. This absence of functional characteristics complicates the evaluation
of the estimator ̂θn using a sample, as well as the evaluation of the fuzzy set estimator of the
regression function if it is defined in terms of ̂θn.

The method of fuzzy set estimation of the regression function introduced by Fajardo
et al. [3] is based on defining a fuzzy set estimator of the Nadaraya-Watson type, for
independent pairs of data, in terms of the fuzzy set estimator of the density function
introduced in Fajardo et al. [4]. Moreover, the regression function is estimated by means of
an average fuzzy set estimator considering pairs of fixed data, which is a particular case if
we consider independent pairs of nonfixed data. Note that the statements made in Section 4
in Fajardo et al. [3] are satisfied if independent pairs of nonfixed data are considered. This
last observation is omitted in Fajardo et al. [3]. It is important to emphasize that the fuzzy
set estimator introduced in Fajardo et al. [4], a particular case of the estimator introduced by
Falk and Liese [2], of easy practical implementation, will allow us to overcome the difficulties
presented by the estimator ̂θn and satisfy the almost sure, in law, and uniform convergence
properties over compact subsets on R.

In this paper we estimate the regression function by means of the nonparametric and
fuzzy set estimator of the Nadaraya-Watson type, for independent pairs of data, introduced
by Fajardo et al. [3], obtaining a significant reduction of the integrated mean square error
of the fuzzy set estimator regarding the integrated mean square error of the classic kernel
estimators. This reduction is obtained by the conditions imposed on the thinning function,
a function that allows to define the estimator proposed by Fajardo et al. [4], which implies
that the fuzzy set estimator has better performance than the kernel estimations. The above
reduction is not obtained in Fajardo et al. [3]. Also, the convergence rate of the optimal scaling
factor is computed, which coincides with the convergence rate in classic kernel estimation of
the regression function. Moreover, the function that minimizes the integrated mean square
error of the fuzzy set estimator is obtained. Finally, these theoretical findings are illustrated
using a numerical example estimating a regression function with the fuzzy set estimator and
the classic kernel estimators.

On the other hand, it is important to emphasize that, along with the reduction of the
integrated mean square error, the thinning function, introduced through the thinned point
processes, can be used to select points of the sample with different probabilities, in contrast
to the kernel estimator, which assigns equal weight to all points of the sample.

This paper is organized as follows. In Section 2, we define the fuzzy set estimator of
the regression function and we present its properties of convergence. In Section 3, we obtain
the mean square error of the fuzzy set estimator of the regression function, Theorem 3.1,
as well as the optimal scale factor and the integrated mean square error. Moreover, we
establish the conditions to obtain a reduction of the constants that control the bias and the
asymptotic variance regarding the classic kernel estimators; the function that minimizes
the integrated mean square error of the fuzzy set estimator is also obtained. In Section 4 a
simulation study was conducted to compare the performances of the fuzzy set estimator with
the classical Nadaraya-Watson estimators. Section 5 contains the proof of the theorem in the
Section 3.
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2. Fuzzy Set Estimator of the Regression Function and
Its Convergence Properties

In this section we define by means of fuzzy set estimator of the density function introduced
in Fajardo et al. [4] a nonparametric and fuzzy set estimator of the regression function of
Nadaraya-Watson type for independent pairs of data. Moreover, we present its properties of
convergence.

Next, we present the fuzzy set estimator of the density function introduced by Fajardo
et al. [4], which is a particular case of the estimator proposed in Falk and Liese [2] and satisfies
the almost sure, in law, and uniform convergence properties over compact subset on R.

Definition 2.1. Let X1, . . . , Xn be an independent random sample of a real random variable
X with density function f . Let V1, . . . , Vn be independent random variables uniformly on
[0, 1] distributed and independent of X1, . . .,Xn. Let ϕ be such that 0 <

∫

ϕ(x)dx < ∞ and
an = bn

∫

ϕ(x)dx, bn > 0. Then the fuzzy set estimator of the density function f at the point
x0 ∈ R is defined as follows:

̂ϑn(x0) =
1
nan

n
∑

i=1

Ux0,bn(Xi, Vi) =
τn(x0)
nan

, (2.1)

where

Ux0,bn(Xi, Vi)= 1[0,ϕ((Xi−x0)/bn)](Vi). (2.2)

Remark 2.2. The events {Xi = x}, x ∈ R, can be described in a neighborhood of x0 through the
thinned point process

N
ϕn
n (·) =

n
∑

i=1

Ux0,bn(Xi, Vi)εXi(·), (2.3)

where

ϕn(x) = ϕ
(

x − x0
bn

)

= P(Ux0,bn(Xi, Vi) = 1 | Xi = x), (2.4)

and Ux0,bn(Xi, Vi) decides whether Xi belongs to the neighborhood of x0 or not. Precisely,
ϕn(x) is the probability that the observation Xi = x belongs to the neighborhood of x0. Note
that this neighborhood is not explicitly defined, but it is actually a fuzzy set in the sense of
Zadeh [5], given its membership function ϕn. The thinned processNϕn

n is therefore a fuzzy set
representation of the data (see Falk and Liese [2], Section 2). Moreover, we can observe that
N

ϕn
n (R) = ̂ϑn(x0) and the random variable τn(x0) is binomial B(n,αn(x0)) distributed with

αn(x0) = E[Ux0,bn(Xi, Vi)] = P(Ux0,bn(Xi, Vi) = 1) = E
[

ϕn(X)
]

. (2.5)

In what follows we assume that αn(x0) ∈ (0, 1).
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Now, we present the fuzzy set estimator of the regression function introduced in
Fajardo et al. [3], which is defined in terms of ̂ϑn(x0).

Definition 2.3. Let ((X1, Y1), V1), . . . , ((Xn, Yn), Vn) be independent copies of a random
vector ((X,Y ), V ), where V1, . . . , Vn are independent random variables uniformly on [0, 1]
distributed, and independent of (X1, Y1), . . . , (Xn,Yn). The fuzzy set estimator of the
regression function r(x) = E[Y | X = x] at the point x0 ∈ R is defined as follows:

r̂n(x0) =

⎧

⎪

⎨

⎪

⎩

∑n
i=1 YiUx0,bn(Xi, Vi)

τn(x0)
if τn(x0)/= 0,

0 if τn(x0) = 0.
(2.6)

Remark 2.4. The fact that U(x, v)= 1[0,ϕ(x)](v), x ∈ R, v ∈ [0, 1], is a kernel when ϕ(x)
is a density does not guarantee that r̂n(x0) is equivalent to the Nadaraya-Watson kernel
estimator. With this observation the statement made in Remark 2 by Fajardo et al. [3] is
corrected. Moreover, the fuzzy set representation of the data (Xi, Yi) = (x, y) is defined over
the window Ix0 ×R with thinning function ψn(x, y) = ϕ((x − x0)/bn)1R(y), where Ix0 denotes
the neighborhood of x0. In the particular case |Y | ≤M,M > 0, the fuzzy set representation of
the data (Xi, Yi) = (x, y) comes given by ψn(x, y) = ϕ((x − x0)/bn)1[−M,M](y).

Consider the following conditions.

(C1) Functions f and r are at least twice continuously differentiable in a neighborhood
of x0.

(C2) f(x0) > 0.

(C3) Sequence bn satisfies: bn → 0, nbn/ log(n) → ∞, as n → ∞.

(C4) Function ϕ is symmetrical regarding zero, has compact support on [−B, B], B > 0,
and it is continuous at x = 0 with ϕ(0) > 0.

(C5) There existsM > 0 such that |Y | < M a.s.

(C6) Function φ(u) = E[Y 2 | X = u] is at least twice continuously differentiable in a
neighborhood of x0.

(C7) nb5n → 0, as n → ∞.

(C8) Function ϕ(·) is monotone on the positives.

(C9) bn → 0 and nb2n/ log(n) → ∞, as n → ∞.

(C10) Functions f and r are at least twice continuously differentiable on the compact set
[−B, B].

(C11) There exists λ > 0 such that infx∈[−B,B]f(x) > λ.

Next, we present the convergence properties obtained in Fajardo et al. [3].

Theorem 2.5. Under conditions (C1)–(C5), one has

r̂n(x0) −→ r(x0) a.s. (2.7)
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Theorem 2.6. Under conditions (C1)–(C7), one has

√
nan(r̂n(x0) − r(x0)) L−→N

(

0,
Var[Y | X = x0]

f(x0)

)

. (2.8)

The “ L−→” symbol denotes convergence in law.

Theorem 2.7. Under conditions (C4)–(C5) and (C8)–(C11), one has

sup
x∈[−B,B]

|r̂n(x) − r(x)| = oP(1). (2.9)

Remark 2.8. The estimator r̂n has a limit distribution whose asymptotic variance depends only
on the point of estimation, which does not occur with kernel regression estimators. Moreover,
since an = o(n−1/5)we see that the same restrictions are imposed for the smoothing parameter
of kernel regression estimators.

3. Statistical Methodology

In this section we will obtain the mean square error of r̂n, as well as the optimal scale factor
and the integrated mean square error. Moreover, we establish the conditions to obtain a
reduction of the constants that control the bias and the asymptotic variance regarding the
classic kernel estimators. The function that minimizes the integrated mean square error of r̂n
is also obtained.

The following theorem provides the asymptotic representation for the mean square
error (MSE) of r̂n. Its proof is deferred to Section 5.

Theorem 3.1. Under conditions (C1)–(C6), one has

E

[

[r̂n(x) − r(x)]2
]

=
1
nbn

VF(x) + b4nB
2
F(x) + o

(

a4n +
1
nan

)

, (3.1)

where

VF(x) =

[

φ(x) − r2(x)
f(x)

]

1
∫

ϕ(x)dx
=

c1(x)
∫

ϕ(x)dx
,

BF(x) =
1

2
∫

ϕ(u)du

[

g(2)(x) − f (2)(x)r(x)
f(x)

]

∫

u2ϕ(u)du

=
c2(x)

∫

u2ϕ(u)du

2
∫

ϕ(u)du
,

(3.2)

with

an = bn

∫

ϕ(x)dx. (3.3)
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Next, we calculate the formula for the optimal asymptotic scale factor b∗n to perform
the estimation. The integrated mean square error (IMSE) of r̂n is given by the following:

IMSE[r̂n] =
1
nbn

∫

VF(x)dx + b4n

∫

B2
F(x)dx. (3.4)

From the above equality, we obtain the following formula for the optimal asymptotic scale
factor

b∗nϕ =

[ ∫

ϕ(u)du
∫

c1(u)du

n
[∫

u2ϕ(u)du
]2 ∫ [c2(u)]

2du

]1/5

. (3.5)

We obtain a scaling factor of order n−1/5, which implies a rate of optimal convergence for the
IMSE∗[r̂n] of order n−4/5. We observe that the optimal scaling factor order for the method of
fuzzy set estimation coincides with the order of the classic kernel estimate. Moreover,

IMSE∗[r̂n] = n−4/5Cϕ, (3.6)

where

Cϕ =
5
4

[
[∫

c1(u)du
]4[∫

u2ψ(u)du
]2 ∫ [c2(u)]2du

[∫

ϕ(u)du
]4

]1/5

, (3.7)

with

ψ(x) =
ϕ(x)
∫

ϕ(u)du
. (3.8)

Next, we will establish the conditions to obtain a reduction of the constants that control
the bias and the asymptotic variance regarding the classic kernel estimators. For it, we will
consider the usual Nadaraya-Watson kernel estimator

r̂NWK(x) =
∑n

i=1 YiK((Xi − x)/bn)
∑n

i=1K((Xi − x0)/bn)
, (3.9)

which has the mean squared error (see e.g, Ferraty et al. [6], Theorem 2.4.1)

E

[

[r̂NWK(x) − r(x)]2
]

=
1
nbn

VK(x) + b4nB
2
K(x) + o

(

b4n +
1
nbn

)

, (3.10)
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where

VK(x) = c1(x)
∫

K2(u)du,

BK(x) =
c2(x)

∫

u2K(u)du
2

.

(3.11)

Moreover, the IMSE of r̂NWK
is given by the following:

IMSE[r̂NWK] =
1
nbn

∫

VK(x) dx + b4n

∫

B2
K(x) dx. (3.12)

From the above equality, we obtain the following formula for the optimal asymptotic scale
factor

b∗n NWK

=

[ ∫

K2(u)du
∫

c1(u)du

n
[∫

u2K(u)du
]2 ∫ [c2(u)]2du

]1/5

. (3.13)

Moreover,

IMSE∗[r̂NWK] = n
−4/5CK, (3.14)

where

CK =
5
4

[

[∫

c1(u)du
]4[∫

K2(u)du
]4[∫

u2K(u)du
]2 ∫

[c2(u)]2du

]1/5

. (3.15)

The reduction of the constants that control the bias and the asymptotic variance,
regarding the classic kernel estimators, are obtained if for all kernel K

∫

ϕ(u)du ≥
[∫

K2(u)du
]−1

,

∫

u2ψ(u)du ≤
∫

u2K(u)du. (3.16)

Remark 3.2. The conditions on ϕ allows us to obtain a value of B such that

∫B

−B
ϕ(u)du >

[∫

K2(u)du
]−1

. (3.17)

Moreover, to guarantee that

∫

u2ψ(u)du ≤
∫

u2K(u)du, (3.18)
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we define the function

ψ(x) =
ϕ(x)
∫

ϕ(u)du
, (3.19)

with compact support on [−B′, B′] ⊂ [B, B]. Next, we guarantee the existence of B′. As

1
∫

ϕ(u)du
<

∫

K2(u)du, ϕ(x) ∈ [0, 1], (3.20)

we have

x2ψ(x) ≤ x2
(∫

K2(u)du
)

. (3.21)

Observe that for each C ∈ (0,
∫

u2K(u)du] exists

B′ = 3

√

3C
2
∫

K2(u)du
, (3.22)

such that

C =
∫B′

−B′

(∫

K2(u)du
)

x2dx ≤
∫

u2K(u)du. (3.23)

Combining (3.21) and (3.23), we obtain

∫B′

−B′
u2ψ(u)du ≤

∫

u2K(u)du. (3.24)

In our case we take B′ ≤ B.

On the other hand, the criterion that we will implement to minimizing (3.6) and obtain
a reduction of the constants that control the bias and the asymptotic variance regarding the
classic kernel estimation, is the following

Maximizing
∫

ϕ(u)du, (3.25)

subject to the conditions

∫

ϕ2(u)du =
5
3
;

∫

uϕ(u)du = 0;
∫

(

u2 − v
)

ϕ(u)du = 0, (3.26)
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with u ∈ [−B, B], ϕ(u) ∈ [0, 1], ϕ(0) > 0 and v ≤ ∫ u2KE(u)du, where KE is the Epanechnikov
kernel

KE(x) =
3
4

(

1 − x2
)

1
[−1,1]

(x). (3.27)

The Euler-Lagrange equation with these constraints is

∂

∂ϕ

[

ϕ + aϕ2 + bxϕ + c
(

x2 − v
)

ϕ
]

= 0, (3.28)

where a, b, and c the three multipliers corresponding to the three constraints. This yields

ϕ(x) =

[

1 −
(

16x
25

)2
]

1
[−25/16,25/16]

(x). (3.29)

The new conditions on ϕ, allows us to affirm that for all kernel K

IMSE∗[r̂n] ≤ IMSE∗[r̂NWK]. (3.30)

Thus, the fuzzy set estimator has the best performance.

4. Simulations

A simulation study was conducted to compare the performances of the fuzzy set estimator
with the classical Nadaraya-Watson estimators. For the simulation, we used the regression
function given by Härdle [7] as follows:

Yi = 1 −Xi + e(−200(Xi−0.5)2) + εi, (4.1)

where the Xi were drawn from a uniform distribution based on the interval [0, 1]. Each εi
has a normal distribution with 0 mean and 0.1 variance. In this way, we generated samples
of size 100, 250, and 500. The bandwidths was computed using (3.5) and (3.13). The fuzzy
set estimator and the kernel estimations were computed using (3.29), and the Epanechnikov
and Gaussian kernel functions. The IMSE∗ values of the fuzzy set estimator and the kernel
estimators are given in Table 1.

As seen from Table 1, for all sample sizes, the fuzzy set estimator using varying
bandwidths have smaller IMSE∗ values than the kernel estimators with fixed and different
bandwidth for each estimator. In each case, it is seen that the fuzzy set estimator has
the best performance. Moreover, we see that the kernel estimation computed using the
Epanechnikov kernel function shows a better performance than the estimations computed
using the Gaussian kernel function.

The graphs of the real regression function and the estimations of the regression
functions computed over a sample of 500, using 100 points and v = 0.2, are illustrated in
Figures 1 and 2.
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Table 1: IMSE∗ values of the estimations for the fuzzy set estimator and the kernel estimators.

v n IMSE∗ [r̂n] IMSE∗ [r̂NWKE
] IMSE∗ [r̂NWKG

]

100 0.0093∗ 0.0111 0.0115
0.2 250 0.0045∗ 0.0053 0.0055

500 0.0026∗ 0.0031 0.0032
100 0.0083∗ 0.0111 0.0115

0.15 250 0.0040∗ 0.0053 0.0055
500 0.0023∗ 0.0031 0.0032
100 0.0070∗ 0.0111 0.0115

0.10 250 0.0034∗ 0.0053 0.0055
500 0.0019∗ 0.0031 0.0032

∗Minimum IMSE∗ in each row.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

r

ꉱrn
r̂NWKE

Figure 1: Estimation of r with r̂n and r̂NWKE
.

5. Proof of Theorem 3.1

Proof. Throughout this proof C will represent a positive real constant, which can vary from
one line to another, and to simplify the annotation we will write Ui instead of Ux,bn(Xi, Vi).
Let us consider the following decomposition

E

[

[r̂n(x) − r(x)]2
]

= Var[r̂n(x)] + (E[r̂n(x) − r(x)])2. (5.1)

Next, we will present two equivalent expressions for the terms to the right in the above
decomposition. For it, we will obtain, first of all, an equivalent expression for the expectation.
We consider the following decomposition (see e.g, Ferraty et al. [6])

r̂n(x) =
ĝn(x)

E

[

̂ϑn(x)
]

⎛

⎜

⎝1 −
̂ϑn(x) − E

[

̂ϑn(x)
]

E

[

̂ϑn(x)
]

⎞

⎟

⎠ +

[

̂ϑn(x) − E

[

̂ϑn(x)
]]2

[

E

[

̂ϑn(x)
]]2

r̂n(x). (5.2)
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r̂NWKG

Figure 2: Estimation of r with r̂n and r̂ NWKG
.

Taking the expectation, we obtain

E[r̂n(x)] =
E
[

ĝn(x)
]

E

[

̂ϑn(x)
] − A1
[

E

[

̂ϑn(x)
]]2

+
A2

[

E

[

̂ϑn(x)
]]2

, (5.3)

where

A1 = E

[

ĝn(x)
(

̂ϑn(x) − E

[

̂ϑn(x)
])]

,

A2 = E

[

(

̂ϑn(x) − E

[

̂ϑn(x)
])2

r̂n(x)
]

.

(5.4)

The hypotheses of Theorem 3.1 allow us to obtain the following particular expressions for
E[ĝn(x)] and E[ ̂ϑn(x)], which are calculated in the proof of Theorem 1 in Fajardo et al. [3].
That is

E
[

ĝn(x)
]

= E

[

YU

an

]

= g(x) +O
(

a2n

)

,

E

[

̂ϑn(x)
]

= E

[

U

an

]

= f(x) +O
(

a2n

)

.

(5.5)

Combining the fact that ((Xi, Yi), Vi), 1 ≤ i ≤ n, are identically distributed, with condition
(C3), we have

A1 = Cov
[

ĝn(x), ̂ϑn(x)
]

=
1
nan

E

[

YU

an

]

− 1
n

E

[

YU

an

]

E

[

U

an

]
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=
1
nan

[

g(x) + o(1)
] − 1

n

[

g(x) + o(1)
][

f(x) + o(1)
]

=
1
nan

g(x) + o
(

1
nan

)

.

(5.6)

On the other hand, by condition (C5) there exists C > 0 such that |r̂n(x)| ≤ C. Thus, we can
write

|A2| ≤ CE

[

[

̂ϑn(x) − E

[

̂ϑn(x)
]]2
]

=
C

na2n

(

E

[

U2
]

− (E[U])2
)

=
C

nan

E[U]
an

{1 − E[U]}.
(5.7)

Note that

αn(x)
an

= E

[

̂ϑn(x)
]

= f(x) +O
(

a2n

)

. (5.8)

Thus, we can write

|A2| ≤ C

nan

[

f(x) +O
(

a2n

)]

{1 − E[U]}. (5.9)

Note that by condition (C1) the density f is bounded in the neighborhood of x. Moreover,
condition (C3) allows us to suppose, without loss of generality, that bn < 1 and by (2.5) we
can bound (1 − E[U]). Therefore,

A2 = O
(

1
nan

)

. (5.10)

Now, we can write

A1
(

E

[

̂ϑn(x)
])2

=
(

1
f2(x0)

+ o(1)
)(

1
nan

g(x0) + o
(

1
nan

))

= o(1),

A2
(

E

[

̂ϑn(x)
])2

=
(

1
f2(x)

+ o(1)
)

O

(

1
nan

)

= O
(

1
nan

)

+ o
(

1
nan

)

= O

(

1
nan

)

.

(5.11)
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The above equalities, imply that

E[r̂n(x)] =
E
[

ĝn(x)
]

E

[

̂ϑn(x)
] + o(1) +O

(

1
nan

)

=
E
[

ĝn(x)
]

E

[

̂ϑn(x)
] +O

(

1
nan

)

. (5.12)

Once more, the hypotheses of Theorem 3.1 allow us to obtain the following general
expressions for E[ ̂ϑn(x)] and E[ĝn(x)], which are calculated in the proofs of Theorem 1 in
Fajardo et al. [3, 4], respectively. That is

E

[

̂ϑn(x)
]

= f(x) +
a2n

2
[∫

ϕ(u)du
]3
f ′′(x)

∫

u2ϕ(u)du

+
a2n

2
[∫

ϕ(u)
]3

∫

u2ϕ(u)
[

f ′′(x + βubn
) − f ′′(x)

]

du,

(5.13)

E
[

ĝn(x)
]

= g(x) +
a2n

2
[∫

ϕ(u)du
]3
g ′′(x)

∫

u2ϕ(u)du

+
a2n

2
[∫

ϕ(u)du
]3

∫

u2ϕ(u)
[

g ′′(x + βubn
) − g ′′(x)

]

du.

(5.14)

By conditions (C1) and (C4), we have that

∫

u2ϕ(u)
[

g ′′(x + βubn
) − g ′′(x)

]

du = o(1),

∫

u2ϕ(u)
[

f ′′(x + βubn
) − f ′′(x)

]

du = o(1).

(5.15)

Then

E[r̂n(x)] =
g(x) +

(

b2n/2
∫

ϕ(u)du
)

g ′′(x)
∫

u2ϕ(u)du

f(x) +
(

b2n/2
∫

ϕ(u)du
)

f ′′(x)
∫

u2ϕ(u)du
+O
(

1
nan

)

= Hn(x) +O
(

1
nan

)

.

(5.16)
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Next, we will obtain an equivalent expression forHn(x). Taking the conjugate, we have

Hn(x) =
1

Dn(x)

⎛

⎝g(x)f(x) +
b2n
∫

u2ϕ(u)du

2
∫

ϕ(u)du

[

g ′′(x)f(x) − f ′′(x)g(x)
]

+

(

bn

2
∫

ϕ(u)du

)2

f ′′(x)g ′′(x)
(∫

u2ϕ(u)du
)2
⎞

⎠

=
1

Dn(x)

(

g(x)f(x) +
b2n
∫

u2ϕ(u)du

2
∫

ϕ(u)du

[

g ′′(x)f(x) − f ′′(x)g(x)
]

)

+ o
(

a2n

)

,

(5.17)

where

Dn(x) = f2(x) −
(

b2nf
′′(x)

∫

u2ϕ(u)du

2
∫

ϕ(u)du

)2

. (5.18)

By condition (C3), we have

1
Dn(x)

=
1

f2(x)
+ o(1). (5.19)

So that,

Hn(x) =
[

1
f2(x)

+ o(1)
]

(

g(x)f(x) +
b2n
∫

u2ϕ(u)du

2
∫

ϕ(u)du

[

g ′′(x)f(x) − f ′′(x)g(x)
]

)

+ o
(

a2n

)

= r(x) +
b2n
∫

u2ϕ(u)du

2
∫

ϕ(u)du

[

g ′′(x) − f ′′(x)r(x)
f(x)

]

+ o
(

a2n

)

.

(5.20)

Now, we can write

E[r̂n(x) − r(x)] =
b2n
∫

u2ϕ(u)du

2
∫

ϕ(u)du

[

g ′′(x) − f (2)(x)r(x)
f(x)

]

+ o
(

a2n

)

+O
(

1
nan

)

.

(5.21)
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By condition (C3), we have

E[r̂n(x) − r(x)] =
b2n
∫

u2ϕ(u)du

2
∫

ϕ(u)du

[

g ′′(x) − f ′′(x)r(x)
f(x)

]

+ o
(

a2n

)

+ o(1) = b2nBF(x) + o
(

a2n

)

,

(5.22)

where

BF(x) =
[

g ′′(x) − f ′′(x)r(x)
f(x)

]

∫

u2ϕ(u)du

2
∫

ϕ(u)du
. (5.23)

Therefore,

(E[r̂n(x) − r(x)])2 = b4nB
2
F(x) + 2b2nBF(x)o

(

a2n

)

+ o
(

a4n

)

= b4nB
2
F(x) + o

(

a4n

)

+ o
(

a4n

)

= b4nB
2
F(x) + o

(

a4n

)

.

(5.24)

Next, we will obtain an expression for the variance in (5.1). For it, we will use the following
expression (see e.g., Stuart and Ord [8])

Var

[

ĝn(x)
̂ϑn(x)

]

=
Var
[

ĝn(x)
]

(

E

[

̂ϑn(x)
])2

+

(

E
[

ĝn(x)
])2

(

E

[

̂ϑn(x)
])4

Var
[

̂ϑn(x)
]

−
2E
[

ĝn(x)
]

Cov
[

ĝn(x), ̂ϑn(x)
]

(

E

[

̂ϑn(x)
])3

.

(5.25)

Since that ((Xi, Yi), Vi) are i.i.d and the (Xi, Vi) are i.i.d, 1 ≤ i ≤ n, we have

Var
[

ĝn(x)
]

=
1
na2n

Var(YU) =
1
nan

E

[

1
an
Y 2U

]

− 1
n

(

E

[

1
an
YU

])2

, (5.26)

Var
[

̂ϑn(x)
]

=
1

(nan)2
Var

[

n
∑

i=1

Ui

]

=
1

(nan)2
nαn(x)(1 − αn(x)), (5.27)

the last equality because
∑n

i=1Ui is binomial B(n, αn(x0)) distributed. Remember that

E

[

YU

an

]

= g(x) +O
(

a2n

)

. (5.28)
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Moreover, the hypothesis of Theorem 3.1 allow us to obtain the following expression

E

[

Y 2
i Ui

an

]

= φ(x)f(x) +O
(

a2n

)

, (5.29)

which is calculated in the proof of Lemma 1 in Fajardo et al. [3]. By condition (C3), we have

Var
[

ĝn(x)
]

=
1
nan

(

φ(x)f(x) + o(1)
) − 1

n

(

g(x) + o(1)
)2

=
1
nan

φ(x)f(x) + o
(

1
nan

)

.

(5.30)

Remember that

E

[

̂ϑn(x)
]

=
1
an

E[U] =
αn(x)
an

= f(x0) + o(1). (5.31)

Thus,

Var
[

̂ϑn(x)
]

=
1
nan

αn(x)
an

− 1
n

[

αn(x)
an

]2

=
1
nan

(

f(x) + o(1)
) − 1

n

(

f(x) + o(1)
)2

=
1
nan

f(x) + o
(

1
nan

)

,

1
(

E

[

̂ϑn(x)
])k

=
1

fk(x)
+ o(1),

(5.32)

for k = 2, 3, 4. Finally, we saw that

Cov
[

ĝn(x), ̂ϑn(x)
]

=
1
nan

g(x) + o
(

1
nan

)

. (5.33)

Therefore,

Var
[

ĝn(x)
]

(

E

[

̂ϑn(x)
])2

=
[

1
f2(x)

+ o(1)
][

1
nan

φ(x)f(x) + o
(

1
nan

)]

=
1
nan

φ(x)
f(x)

+ o
(

1
nan

)

,

(5.34)
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(

E
[

ĝn(x)
])2

(

E

[

̂ϑn(x)
])4

Var
[

̂ϑn(x)
]

=
([

1
f4(x)

+ o(1)
]

[

g2(x) + o(1)
]

×
[

1
nan

f(x) + o
(

1
nan

)])

=
1
nan

g2(x)
f3(x)

+ o
(

1
nan

)

,

(5.35)

2
E
[

ĝn(x)
]

(

E

[

̂ϑn(x)
])3

Cov
[

ĝn(x), ̂ϑn(x)
]

=
(

2
[

1
f3(x)

+ o(1)
]

[

g(x) + o(1)
]

×
[

1
nan

g(x) + o
(

1
nan

)])

=
2
nan

g2(x)
f3(x)

+ o
(

1
nan

)

.

(5.36)

Thus,

Var[r̂n(x)] =
1
nbn

VF(x) + o
(

1
nan

)

, (5.37)

where

VF(x) =

[

φ(x) − r2(x)
f(x)

]

1
∫

ϕ(x)dx
. (5.38)

We can conclude that,

E

[

[r̂n(x) − r(x)]2
]

=
1
nbn

VF(x) + b4nB
2
F(x) + o

(

1
nan

)

+ o
(

a4n

)

=
1
nbn

VF(x) + b4nB
2
F(x) + o

(

a4n +
1
nan

)

,

(5.39)

where

BF(x) =

∫

u2ϕ(u)du

2
∫

ϕ(u)du

[

g ′′(x) − f ′′(x)r(x)
f(x)

]

. (5.40)

Acknowledgment

The author wants to especially thank the referees for their valuable suggestions and revisions.
He also thanks Henrry Lezama for proofreading and editing the English text.



18 Journal of Probability and Statistics

References

[1] R.-D. Reiss, A Course on Point Processes, Springer Series in Statistics, Springer, New York, NY, USA,
1993.

[2] M. Falk and F. Liese, “Lan of thinned empirical processes with an application to fuzzy set density
estimation,” Extremes, vol. 1, no. 3, pp. 323–349, 1999.

[3] J. Fajardo, R. Rı́os, and L. Rodrı́guez, “Properties of convergence of an fuzzy set estimator of the
regression function,” Journal of Statistic, vol. 3, no. 2, pp. 79–112, 2010.

[4] J. Fajardo, R. Rı́os, and L. Rodrı́guez, “. Properties of convergence of an fuzzy set estimator of the
density function,” Brazilian Journal of Probability and Statistics, vol. 26, no. 2, pp. 208–217, 2012.

[5] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338–353, 1965.
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[7] W. Härdle, Applied Nonparametric Regression., New Rochelle, Cambridge, Mass, USA, 1990.
[8] A. Stuart and J. K. Ord, Kendall’s Advanced Theory of Statistics, vol. 1, Oxford University Press, New

York, NY, USA, 1987.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


