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In a classic significance test, based on a random sample with size n, a P value will be calculated
at size n aiming to reject the null hypothesis. The sample size n, however, can retrospectively be
divided into partial samples (1, 2, 3, . . . , n−2, n−1, n) and a test of significance can be calculated for
each partial sample. As a result, several partial samples will provide significant P values whereas
others will not show significant P values. In this paper, we propose a significance test that takes
into account the additional information from the P values of the n − 1 partial samples of a random
sample. We show that the n−1 P values can greatly modify the results of a classic significance test.

1. Introduction

In this day and age testing for significance has become a ritual which, if it leads to a significant
result, still opens the doors to many well-known journals in nearly every scientific field. This
is the case even though for a long time the application of null hypothesis significance testing
has been criticized and even rejected [1]. What will be shown here is that by extending the
classic significance test additional information from a random sample can be obtained and
a “not significant” result can possibly be made “significant”. A misuse of null hypothesis
significance testing can however not be prevented with this method [2].

In the significance test as defined by Fisher [3, 4] the probability that a specific sample
will occur is calculated based on the validity of the null hypothesis. This probability is
usually abbreviated with P and is compared with a conventionally determined level of
significance which is normally 5%. When P is equal to or less than this level of significance
then the null hypothesis is rejected. If this is not the case then, as defined by Fisher, the null
hypothesis cannot be rejected but also not accepted [5]. This procedure is valid for a given
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Figure 1: P values of 30 partial samples with π = 0.55 and H0 : π = 0.50. The partial samples 1 to n are
given on the abscissa, on the ordinate the corresponding P values. The red line indicates the significance
level of 5%.

sample provided it is a random sample. This means that the units of the sample are drawn
from the population randomly and the probability with which a unit is drawn out of the
population is given. If you presuppose, as is customary, a simple random sample (“idd”
assumption = “independent and identically distributed” assumption), thenwe have the same
probability for each unit being part of the sample and the drawings from the population occur
independently of each other.

Even though the randomness of the sample is a premise for a test of significance, it
is seldom certified. Additionally, the “iid” assumption requires that the order of drawings
from the population is known and this allows the split of a random sample into a series
of smaller subsamples. The sample size n can thus be retrospectively divided into partial
samples (1, 2, 3, . . . , n − 2, n − 1, n) and a test of significance can be calculated for each partial
sample. As a result, several partial samples will provide significant P values whereas others
will not show significant P values and the third category will lead to nearly only significant
P values.

2. Illustrative Examples

A series of examples with randomly drawn samples should illustrate the typical situations.
In a first example, the null hypothesis H0 : π = 0.50 should be verified at a significance level
of 5% with the help of a significance test and a random sample size of n = 30. If a random
sample of this size is created by a random generator for the binomially distributed random
variable and the “true” value π = 0.55, then consequently the corresponding random sample
with a P value of 0.100 does not suggest a significant result. However, if the partial samples 1
to n − 1 = 29 of this random sample are examined then we get a different result. The P values
of this partial sample are depicted in the Figure 1 below. One can see that the P values lie
both above and under the level of significance. Yet in the case of n = 18, P = 0.119 is clearly
above the 5% level which is similar to what can be seen at n = 30.

In this specific case we know however that the true value is 0.55, hence the null
hypothesis does not apply, but the rejection of the null hypothesis based on the given sample
is not possible. This would nevertheless be possible if one would, for example, only take the
first 28 units into consideration. As a result the P value (0.044) is smaller than the significance
level of 5% and the null hypothesis can be rejected. Such a rejection of the null hypothesis,
however, requires that the information of the two following units is ignored. A method
that simply ignores valid information is not sensible and can hardly be accepted. So in our
approach we do not intend to ignore valid information, as we show below. We try to capture
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Figure 2: P values of 30 partial samples with π = 0.50 and H0 : π = 0.50. The partial samples 1 to n are
given on the abscissa, on the ordinate the corresponding P values. The red line indicates the significance
level of 5%.

all the information that comeswith a valid drawn sample. The null hypothesis in our example
can only be rejected if all P values from the n − 1 subsamples are considered.

In a second example random values for the “true” value π = 0.50, and thus the
same value as the null hypothesis, were created with the help of a random generator. The
corresponding sample with a size of n = 30 has a P value of 0.100 and thus does not indicate
a significant result on the 5% level of significance. The null hypothesis cannot be rejected. The
P values of the n − 1 = 29 possible partial samples are shown in Figure 2.

What is striking here is that the P value for the partial sample n = 16 is P = 0.04
and therefore lies under the 5% level of significance and consequently leads to a rejection
of the null hypothesis even though the “true” value upon which the random sample was
created is π = 0.50 and thus the same as the null hypothesis. The same is true for the sample
sizes n = 23, 24, and 26. Their P values also lead to a rejection of the null hypothesis. Once
again the temptation is great in these cases to report a significant result by choosing sample
sizes of 16, 23, 24, or 26 in which we have significant P values. This would once again mean
that valid information is dropped; this is inacceptable. If, in contrast, the P values from all
subsamples are considered, it appears likely that the null hypothesis cannot be rejected, as
discussed below.

A final example should clarify the situation further: the “true” value that the
binomially distributed random value creates is π = 0.70. The P value of the corresponding
random sample with a size of n = 30 is P = 0.100. The null hypothesis can therefore not be
rejected at a significance level of 5%. A graph of the resulting n − 1 = 29 partial samples’ P
values can be seen in Figure 3.

From a sample size of n = 13 onwards nearly all of the P values until n = 27 are smaller
than the level of significance. Only when n = 27 is the P value greater than 0.05. In this case,
in contrast to the previous examples, it would not be possible to reject the null hypothesis
at a sample size of n = 27 as we have a P value of 0.062 which is greater than the level of
significance. The same is true for n = 29. In this example again, using all P values will lead to
the correct result, namely, the rejection of the null hypothesis.

Consequently, we can draw the following conclusions. If as in usual practice only a
P value at n = 30 is calculated, the null hypothesis cannot be rejected in the three examples
even though this decision is wrong in two of the three situations. A decision based solely
on a random sample’s significance test, with the full sample size of n, does not take all
the available information into consideration. What is missing for a well-rounded picture
of any random sample is given in the n − 1 partial sample’s P values as demonstrated in
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Figure 3: P values of 30 partial samples with π = 0.70 and H0 : π = 0.50. The partial samples 1 to n are
given on the abscissa, on the ordinate the corresponding P values. The red line indicates the significance
level of 5%.

the examples and graphs above. The question that remains unanswered is how, based on the
additional information, can we numerically make a distinction between a significant rejection
or a nonrejection of the null hypothesis?

3. Bootstrap

Onemethod to include the additional information given in the partial sample’s P values is the
bootstrap method [6]. This method does not require a particular type of P value distribution
and still enables an estimation of the P value’s unknown distribution function including
mean and variance. Consequently, the confidence interval for the unknown “true” P value
can also be determined, which contains not only information about the sample n, but also
about its n − 1 partial samples.

In the first example given here the “true” value was π = 0.55, which created a random
sample with a size of n = 30. In this sample the null hypothesis H0 : π = 0.50 cannot
be rejected at a significance level of 5%. The P value for this sample size equals 0.100. The
following results are obtained if one does not only take the information from the sample size
n = 30 into consideration, but also from the n − 1 = 29 partial samples calculated with the
bootstrap method.

The null hypothesis can be rejected as the sample was taken from a population with
π = 0.50. The probability of this sample result if the null hypothesis is valid is not 0.100
anymore but equals 0.044. The mean and standard deviation of the bootstrap distribution of
P values are E(p) = 0.044, St(p) = 0.0301.

In the second example the “true” value was π = 0.50, which created a random sample
with a size of n = 30, the same as the null hypothesis. In this case the null hypothesisH0 : π =
0.50 cannot be rejected at a significance level of 5%. The P value for this sample size equals
0.100. The following results are obtained if one does not only take the information from the
sample size n = 30 into consideration but also from the n − 1 = 29 partial samples calculated
with the bootstrap method.

The null hypothesis cannot be rejected as the sample was taken from a population
with π = 0.50. The probability of this sample result if the null hypothesis is valid has risen
to 0.1479. The mean and standard deviation of the bootstrap distribution of P values are
E(p) = 0.1479, St(p) = 0.0228.
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In the last example the “true” value was π = 0.70. With a sample size of n = 30, the
null hypothesis H0 : π = 0.50 cannot be rejected at a significance level of 5%. The P value for
this sample size equals 0.100. If one, however, does not only take the information from the
sample size n = 30 into consideration, but also from the n−1 = 29 other sample sizes with the
bootstrap method, then it is possible to reject the null hypothesis.

The probability of this sample result if the null hypothesis is valid equals 0.0448. The
mean and standard deviation of the bootstrap distribution of P values are E(p) = 0.0448,
St(p) = 0.0526.

In contrast to our examples, one usually does not know the “true” value of π which
created, with the help of a random generator, each of our binomially distributed random
samples. Our aim was to estimate the “true” value of π in our samples. It does not play a roll
whether we are dealing with a test problem for a π(H0 : π = 0.50) or whether we are looking
at the famous null hypotheses of parameters such as for example,H0 : π1 = π2 orH0 : μ1 = μ2

or H0 : ρ = 0.

4. Discussion

Consequently, should the classic significance test lead to a result that is “not significant”, then
this does not necessarily mean our analysis has come to an end (it does however also not
necessarily indicate a “significant” result). The n − 1 P values can greatly modify the results
of the classic significance test as our examples have shown. This kind of significance test
offers the opportunity to not only take the information provided in a classic significance test
based on a random sample with the size n into consideration, but also gives us additional
information from the P values of the n − 1 partial samples of a random sample. These
values can be considered as the realizations p1, . . . , pn of the random variables P [7], who
also consider the P values random variables but are pursuing a different aim. According to
Bernoulli’s law of large numbers, P values will converge to the true P value with increasing
n:

lim
n→∞

W
(∣∣p − P

∣∣ < ε
)
= 1. (4.1)

The bootstrap method is a possibility to estimate the mean and variance of this random
variable.

Our idea to extend the classical significance testing does not describe a sequential
analysis in the sense of Wald’s sequential probability ratio test [8], where, for example, the
sampling can be stopped after reaching a certain decision limit. In our approach, the sample
size n is fixed and there is no intention to stop sampling at an earlier stage. We further do
not need to consider the type II error and the corresponding effect size since our approach
relies on the Fisher model [3, 4] rather than that of Neyman and Pearson [9]. Based on the
required randomness of a random sample, the sampling order is also fixed and we do not
need to account for the theoretical possibility (sum of binomial coefficients at n − 1, n − 2, . . .)
to analyze more than n − 1 partial subsamples. In addition, our approach does not constitute
a typical multiple testing situation. A multiple testing situation usually requires the testing
of multiple hypotheses. In our case, we test only one hypothesis, our main aim is to improve
the estimation of the P value using the information of the data in the partial subsamples. In
this sense our approach can also be regarded as an estimating problem.
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In summary, in this paper, we propose a significance test that takes into account
information from P values of partial subsamples of a random sample. We show that the use
of the additional P values can greatly modify the results of a classic significance test as an
“extended partial data” analysis approach to data mining.

Appendix

Realisation of Three Random Samples

(1) Sample: 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2 (π = 0.55).

(2) Sample: 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2 (π = 0.50).

(3) Sample: 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1 (π = 0.70).
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