Research Article

Improved Estimators of the Mean of a Normal Distribution with a Known Coefficient of Variation

Wuttichai Srisodaphol and Noppakun Tongmol
Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
Correspondence should be addressed to Wuttichai Srisodaphol, wuttsr@kku.ac.th

Received 1 August 2012; Revised 10 November 2012; Accepted 13 November 2012
Academic Editor: Shein-chung Chow
Copyright © 2012 W. Srisodaphol and N. Tongmol. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is to find the estimators of the mean θ for a normal distribution with mean θ and variance $a \theta^{2}, a>0, \theta>0$. These estimators are proposed when the coefficient of variation is known. A mean square error (MSE) is a criterion to evaluate the estimators. The results show that the proposed estimators have preference for asymptotic comparisons. Moreover, the estimator based on jackknife technique has preference over others proposed estimators with some simulations studies.

1. Introduction

For the population that is distributed as normal with mean (θ) and variance $\left(\sigma^{2}\right)$, the sample mean (\bar{X}) is the unbiased and minimum variance estimator. In the situation that coefficient of variation (β) is known where $\beta^{2}=a=\sigma^{2} / \theta^{2}$ for $a>0$ and $\theta>0$, Khan [1] proposed the unbiased estimator $\left(d^{*}\right)$ and the asymptotic variance of d^{*} is $a \theta^{2} / n(1+2 a)$. This estimator is the linear combination between \bar{X} and sample variance (S) and the asymptotic variance of estimator d^{*} is the Cramer-Rao bound.

Arnholt and Hebert [2] improved the estimator $\delta_{k}^{*}=k T$ where T is an unbiased estimator of $\theta, k=\left(c \beta^{2}+1\right)^{-1}$, and constant c are known. They found that δ_{k}^{*} has smaller mean square error (MSE) than the estimator T. They also gave the example for $T=\overline{\mathrm{X}}$ and obtained the estimator $\delta_{k}^{*}=n\left(\beta^{2}+n\right)^{-1} \overline{\mathrm{X}}$ and $\operatorname{MSE}\left(\delta_{k}^{*}\right)=a \theta^{2} /(a+n)$. Then, δ_{k}^{*} has MSE smaller than the estimator \bar{X}.

This paper focuses on improving the estimators of θ when the coefficient of variation is known. MSE is a criterion for evaluating the estimators. The estimators are proposed by using the method of Khan [1] and Arnholt and Hebert [2]. Also, the jackknife technique [3]
is used to reduce the bias of estimator. Moreover, The Bayesian estimator [4] is proposed based on noninformative prior distribution by using Jeffreys' prior distribution.

The paper is organized as follows. The improved estimators are proposed in Section 2. Asymptotic comparison and simulation study results are presented in Section 3. Finally, Section 4 contains conclusions.

2. Improved Estimators

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and distributed as normal with mean (θ) and variance $\left(\sigma^{2}\right)$, and coefficient of variation (β) is known where $\beta^{2}=a=\sigma^{2} / \theta^{2}$ for $a>0$ and $\theta>0$. There are three estimators proposed as follows.
(1) Let T_{1} be the proposed estimator of θ based on Khan [1], and Arnholt and Hebert [2], $T_{1}=k d^{*}$ where k is a constant. T_{1} is a biased estimator of θ with $\operatorname{Bias}\left(T_{1}\right)=\theta(k-1)$ and $\operatorname{MSE}\left(T_{1}\right)=k^{2} \operatorname{Var}\left(d^{*}\right)+\theta^{2}(k-1)^{2}$ where the asymptotic variance of d^{*} is $a \theta^{2} / n(1+2 a)$. The minimum MSE of T_{1} is obtained by

$$
\begin{equation*}
\operatorname{MSE}\left(T_{1}^{*}\right)=\frac{a \theta^{2}}{(a+n+2 a n)^{2}} \tag{2.1}
\end{equation*}
$$

since $k=(n+2 a n) /(a+n+2 a n)$.
(2) Let T_{2} be the proposed estimator of θ based on the jackknife technique. The estimator T_{1}^{*} is used to construct the jackknife estimator T_{2} as follows. Let $T_{1,-i}^{*}$ be an estimator T_{1}^{*} based on the sample size $n-1$ by deleting the i th sample. Denote

$$
\begin{equation*}
T_{1, i}^{*}=n T_{1}^{*}-(n-1) T_{1,-i}^{*} \quad i=1,2, \ldots, n . \tag{2.2}
\end{equation*}
$$

The estimator T_{2} is given by

$$
\begin{equation*}
T_{2}=\sum_{i=1}^{n} \frac{T_{1, i}^{*}}{n} \tag{2.3}
\end{equation*}
$$

The MSE of T_{2} is shown in the simulation study in Section 3.
(3) Bayes estimator T_{3} is obtained as follows.

The likelihood function of θ given data is

$$
\begin{equation*}
L(\theta \mid \text { data })=\frac{1}{\left(2 \pi a \theta^{2}\right)^{n / 2}} \exp \left\{-\frac{1}{2 a \theta^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right\} \tag{2.4}
\end{equation*}
$$

The log likelihood function is

$$
\begin{equation*}
\log L\left(\sigma^{2}, \rho \mid \text { data }\right)=-\frac{n}{2} \ln 2 \pi-\frac{n}{2} \ln a \theta^{2}-\frac{1}{2 a \theta^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2} \tag{2.5}
\end{equation*}
$$

The Jeffreys prior distribution is

$$
\begin{equation*}
\pi(\theta) \propto I^{1 / 2}(\theta) \tag{2.6}
\end{equation*}
$$

where $I(\theta)$ is Fisher's information.
Then, the prior distribution is

$$
\begin{equation*}
\pi(\theta) \propto \sqrt{\frac{1+2 a}{a \theta^{2}}} \tag{2.7}
\end{equation*}
$$

The posterior distribution, the distribution of θ given data is

$$
\begin{equation*}
\pi(\theta \mid \text { data })=\frac{\sqrt{(1+2 a) / a \theta^{2}}\left(1 /\left(2 \pi a \theta^{2}\right)^{n / 2}\right) \exp \left\{-\left(1 / 2 a \theta^{2}\right) \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right\}}{\int_{0}^{\infty} \sqrt{(1+2 a) / a \theta^{2}}\left(1 /\left(2 \pi a \theta^{2}\right)^{n / 2}\right) \exp \left\{-\left(1 / 2 a \theta^{2}\right) \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right\} d \theta} \tag{2.8}
\end{equation*}
$$

Therefore, The Bayes estimator of θ, T_{3} is given as

$$
\begin{equation*}
E(\theta \mid \text { data })=\int_{0}^{\infty} \theta \pi(\theta \mid \text { data }) d \theta \tag{2.9}
\end{equation*}
$$

The MSE of T_{3} is shown in the simulation study in Section 3.

3. Asymptotic Comparison and Simulation Study Results

(1) For asymptotic comparison, the estimators are compared based on the relative efficiency (RE) of MSEs. The RE of d^{*} with respect to T_{1}^{*} is obtained by

$$
\begin{equation*}
\operatorname{RE}=\frac{\operatorname{MSE}\left(d^{*}\right)}{\operatorname{MSE}\left(T_{1}^{*}\right)}=\frac{a \theta^{2} /(n+2 a n)}{a \theta^{2} /(a+n+2 a n)}=\frac{a+n+2 a n}{n+2 a n}>1 . \tag{3.1}
\end{equation*}
$$

It shows that $\operatorname{MSE}\left(T_{1}^{*}\right)$ is smaller than $\operatorname{MSE}\left(d^{*}\right)$.
The RE of δ_{k}^{*} with respect to T_{1}^{*} is obtained by

$$
\begin{equation*}
\operatorname{RE}=\frac{\operatorname{MSE}\left(\delta_{k}^{*}\right)}{\operatorname{MSE}\left(T_{1}^{*}\right)}=\frac{a \theta^{2} /(a+n)}{a \theta^{2} /(a+n+2 a n)}=\frac{a+n+2 a n}{a+n}>1 . \tag{3.2}
\end{equation*}
$$

It shows that $\operatorname{MSE}\left(T_{1}^{*}\right)$ is smaller than $\operatorname{MSE}\left(\delta_{k}^{*}\right)$.
Therefore, from (3.1) and (3.2), the proposed estimator T_{1}^{*} has smaller MSE than d^{*} and δ_{k}^{*}.
(2) The simulation results are shown for the comparison MSEs among the three proposed estimators, T_{1}^{*}, T_{2}, and T_{3}. Let parameters $\theta=5,10$, and 15 , and $a=0.01,0.09$, and 0.25 with small sample size $n=10,20$, and 30 . The results are shown in Tables 1,2 , and 3 .

Table 1: MSEs of the proposed estimators T_{1}^{*}, T_{2}, and T_{3} when $n=10$.

θ	a	$\operatorname{MSE}\left(T_{1}^{*}\right)$	$\operatorname{MSE}\left(T_{2}\right)$	$\operatorname{MSE}\left(T_{3}\right)$
	0.01	$1.061 e-5$	$1.039 e-5$	$5.362 e-4$
5	0.09	$5.831 e-5$	$4.921 e-5$	$5.183 e-4$
	0.25	$9.867 e-3$	$7.116 e-3$	$1.383 e-2$
	0.01	$1.277 e-4$	$1.244 e-4$	$1.785 e-3$
10	0.09	$2.016 e-3$	$1.302 e-3$	$2.026 e-2$
	0.25	$5.127 e-2$	$3.014 e-2$	$3.691 e-1$
	0.01	$1.446 e-5$	$1.307 e-5$	$2.748 e-4$
15	0.09	$1.260 e-2$	$1.068 e-2$	$1.598 e-1$
	0.25	1.31905	1.08686	3.91847

Table 2: MSEs of the proposed estimators T_{1}^{*}, T_{2}, and T_{3} when $n=20$.

θ	a	$\operatorname{MSE}\left(T_{1}^{*}\right)$	$\operatorname{MSE}\left(T_{2}\right)$	$\operatorname{MSE}\left(T_{3}\right)$
5	0.01	$2.061 e-5$	$2.601 e-5$	$5.362 e-4$
	0.09	$1.068 e-4$	$5.353 e-5$	$5.362 e-4$
	0.25	$1.303 e-2$	$8.556 e-3$	$1.439 e-2$
	0.01	$2.366 e-5$	$2.315 e-5$	$1.785 e-3$
	0.09	$1.573 e-2$	$1.342 e-2$	$2.003 e-2$
	0.25	$2.511 e-1$	$1.921 e-1$	$3.459 e-1$
	0.01	$1.358 e-5$	$1.286 e-5$	$2.748 e-4$
	0.09	$8.374 e-2$	$7.339 e-2$	$1.849 e-1$
	0.25	$7.765 e-1$	$4.851 e-1$	3.91847

Table 3: MSEs of the proposed estimators T_{1}^{*}, T_{2}, and T_{3} when $n=30$.

θ	a	$\operatorname{MSE}\left(T_{1}^{*}\right)$	$\operatorname{MSE}\left(T_{2}\right)$	$\operatorname{MSE}\left(T_{3}\right)$
	0.01	$3.303 e-8$	$3.106 e-8$	$5.362 e-4$
5	0.09	$9.253 e-4$	$7.898 e-4$	$5.362 e-4$
	0.25	$3.522 e-3$	$1.705 e-3$	$1.342 e-2$
10	0.01	$7.008 e-8$	$6.171 e-8$	$1.785 e-3$
	0.09	$5.700 e-4$	$2.060 e-4$	$2.003 e-2$
	0.25	$1.649 e-1$	$1.034 e-1$	$3.480 e-1$
	0.01	$2.259 e-5$	$2.246 e-5$	$2.748 e-4$
	0.09	$1.606 e-1$	$1.421 e-1$	$1.849 e-1$
	0.25	1.40001	1.02217	3.91846

From Tables 1-3, the results show that, for small sample size n, the estimator T_{2} has smaller MSEs than the estimator T_{3}. We also see that, the estimator T_{2} has smaller MSEs than the estimator T_{1}^{*}, since T_{2} is constructed by using the jackknife technique to reduce bias of the biased estimator T_{1}^{*}. Therefore, the estimator T_{2} is better than the estimators T_{1}^{*} and T_{3} within the intervals of θ and a.

4. Conclusions

These estimators T_{1}^{*}, T_{2}, and T_{3} are proposed. The estimator T_{1}^{*} is improved based on the methods of Khan [1] and Arnholt and Hebert [2]. The estimator T_{2} is obtained by reducing bias of T_{1}^{*}. The estimator T_{3} is a Bayesian estimator for the noninformative prior distribution by using the Jeffreys prior distribution. The estimator T_{1}^{*} is better than the estimators d^{*} and δ_{k}^{*} in the asymptotic comparison. Moreover, the estimator T_{2} is better than the estimators T_{1}^{*} and T_{3} with some simulation studies.

Acknowledgment

The authors would like to thank Computational Science Research Group, Faculty of Science, Khon Kaen University for the financial support.

References

[1] R. A. Khan, "A note on estimating the mean of a normal distribution with known coefficient of variation," Journal of the American Statistical Association, vol. 63, pp. 1039-1104, 1968.
[2] A. T. Arnholt and J. E. Hebert, "Estimating the mean with known coefficient of variation," The Amrican Statistician, vol. 49, pp. 367-369, 1995.
[3] R. G. Miller, "The jackknife: a review," Biometrika, vol. 61, no. 1, pp. 1-15, 1974.
[4] G. Casella and R. L. Berger, Statistical Inference, Duxbury, 2nd edition, 2002.

