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The false discovery proportion (FDP), the proportion of incorrect rejections among all rejections,
is a direct measure of abundance of false positive findings in multiple testing. Many methods have
been proposed to control FDP, but they are too conservative to be useful for power analysis. Study
designs for controlling the mean of FDP, which is false discovery rate, have been commonly used.
However, there has been little attempt to design study with direct FDP control to achieve certain
level of efficiency. We provide a sample size calculation method using the variance formula of the
FDP under weak-dependence assumptions to achieve the desired overall power. The relationship
between design parameters and sample size is explored. The adequacy of the procedure is assessed
by simulation. We illustrate the method using estimated correlations from a prostate cancer
dataset.

1. Introduction

Modern biomedical research frequently involves parallel measurements of a large number
of quantities of interest, such as gene expression levels, single nucleotide polymorphism
(SNP) and DNA copy number variations. The scientific question can often be formulated
as a multiple testing problem. In order to address the multiplicity issue, many methods have
been proposed to control the family-wise error rate (FWER), false discovery rate (FDR) or
false discovery proportion (FDP). Controlling FDR has beenwidely used in high-dimensional
data analysis [1–3]. FDR is the expected value of the FDP, which is the proportion of incorrect
rejections among all rejections. Controlling FDR ensures that the average of FDP from many
independently repeated experiments is under control. However, the variability of FDP is
ignored, and the actual FDP could bemuch greater than FDRwith high probability, especially
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when test statistics are correlated. Consequently, researchers have proposedmany procedures
to control FDP directly [4–11]:

P ( FDP ≤ r1) ≥ c1 (1.1)

for given r1 and c1. This is a more stringent criterion than FDR because the proportion of false
rejections is bounded above by r1 with high probability. The FDP controlling procedures are
generally too conservative to be useful for the purpose of study design or power analysis.

When we design studies involving multiple testing, it is important to determine
sample size to ensure adequate statistical power. Methods for calculating sample size have
been proposed to control various criteria, for example, FWER [12–14], FDR [15–20], the
number of false discoveries [19, 21] and FDP [22]. For controlling FDP, Oura et al. [22]
provided a method to calculate sample size using the beta-binomial model for the sum
of rejection status of true alternative hypotheses. It is assumed that only test statistics
of true alternative hypotheses are dependent, with a parametric correlation structure.
This assumption is restrictive because null test statistics can also be correlated and the
dependence structure can be more complicated than the assumed parametric correlation
structure. Furthermore, the computation is intensive because computation of the beta-
binomial distribution is required. However, to our knowledge this is the only paper that
directly deals with this important design problem.

In this paper, we provide a more general method of sample size calculation
for controlling FDP under weak-dependence assumptions. Under some assumptions on
dependence among test statistics, explicit formulas for the mean and variance of FDP have
been derived for each fixed effect size [23]. The formulas elucidate the effects of various
design parameters on the variance of FDP. Moreover, the formulas provide a convenient
tool to calculate sample size for controlling the FDP. As in [13, 18, 19, 24], we consider the
probability of detecting at least a specified proportion of true alternative hypotheses as the
power criterion. An iterative computation algorithm for calculating sample size is provided.
Simulation experiments indicate that studies with the resultant sample sizes satisfy the power
criterion at the given rejection threshold. We illustrate the sample size calculation procedure
using a prostate cancer dataset.

2. Methods

2.1. Notation

Suppose that m hypotheses are tested simultaneously. Let M0 denote the index set of m0

tests for which null hypotheses are true and M1 the index set of m1 = m −m0 tests for which
alternative hypotheses are true. Denote the proportion of true null hypotheses by π0 = m0/m.
We reject a hypothesis if the P value is less than some threshold α, and denote the rejection
status of the ith test by Ri(α) = I(pi < α), where pi denotes the P value of the ith test and I(·)
is an indicator function. The number of rejections is R =

∑m
i=1 Ri(α). Let the comparison-wise

type II error of the ith test be βi and the average type II error be

β =
1
m1

∑

i∈M1

βi. (2.1)

Table 1 summarizes the outcomes of m tests and their expected values.
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Table 1: Outcomes and expected outcomes of testingm hypotheses.

Outcomes
RejectH0 Accept H0 Total

H0 is true V m0 − V m0

H1 is true U m1 −U m1

Total R m − R m

Expected outcomes
RejectH0 Accept H0 Total

H0 is true m0α m0(1 − α) m0

H1 is true m1(1 − β) m1β m1

Total m0α +m1(1 − β) m0(1 − α) +m1β m

Denote the Pearson correlation coefficient of two rejection indicators by

θij = corr
{
Ri(α), Rj(α)

}
. (2.2)

Furthermore, for i, j ∈ M0, define

θ
ij

V = corr
{
Ri(α), Rj(α)

}
. (2.3)

Let the average correlation be denoted as

θV =

∑
i,j∈M0,i /= j θ

ij

V

m0(m0 − 1)
. (2.4)

Similarly, for i, j ∈ M1, we define

θ
ij

U = corr
{
Ri(α), Rj(α)

}
. (2.5)

The average correlation is

θU =

∑
i,j∈M1,i /= j θ

ij

U

m1(m1 − 1)
. (2.6)

In addition, for i ∈ M1, j ∈ M0, denote

θ
ij

UV = corr
{
Ri(α), Rj(α)

}
. (2.7)

Denote the average correlation by

θUV =

∑
i∈M1

∑
j∈M0

θ
ij

UV

m0m1
. (2.8)
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2.2. The Effect of Design Parameters on the Variance of FDP

It has been shown via numerical studies that the variability of FDP increases when test
statistics are dependent [25, 26]. But the relationship between design parameters and the
variance of FDP has not been examined through analytical formulas. Under the assumptions
of common effect size and weak dependence among test statistics, explicit formulas for the
mean (μQ) and variance (σ2

Q) of the FDP have been derived [23]:

μQ ≈ π0α

π0α + (1 − π0)
(
1 − β

) , (2.9)

σ2
Q ≈

π0(1 − π0)2α(1 − α)
(
1 − β

)

{
π0α + (1 − π0)

(
1 − β

)}4
Σ, (2.10)

where

Σ =
1
m

(

1 − β +
π0

1 − π0
ωβ

)

+
(

π0 − 1
m

)(
1 − β

)
θV

+ π0ωβθU − 2π0

√

ωβ
(
1 − β

)
θUV

(2.11)

and ω = α/(1 − α).
The variance formula (2.10) elucidates the effects of various design parameters on the

variance of FDP. To explore the effects, in Figure 1 we calculated σQ using (2.10) and plotted
it against m for different correlations θV . We set π0 = 0.7 and m in the range of 1000 to 10000.
The average correlations θU and θUV are fixed to be 0.001 and 0, respectively. The levels of α
and β are chosen such that FDR is 3% or 5%. At each value of θV , σQ decreases as the number
of tests m increases. The solid line shows the standard deviation of the FDP when θV is 0.
When θV is not 0, σQ increases evidently. If test statistics are highly correlated, FDP can be
much greater than its mean FDR at a given rejection threshold due to its large variability.

In Figure 2, the relationship between σQ and π0 was investigated. When other
parameters are fixed, σQ increases as π0 increases.

Figure 3 shows that σQ increases as β increases. When other factors are fixed, the
variability of FDP is smaller when the comparison-wise type II error is smaller.

2.3. Power and Sample Size Analysis

Under some general regularity conditions including weak dependence among test statistics,
the FDP follows an asymptotic normal distribution N(μQ, σ

2
Q) [23, 27]. As was pointed out

by Shang et al. [23], Y = log(FDP) also has an asymptotic normal distribution by the delta
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Figure 1: Plots of sd(FDP) at different m and θV . π0 = 0.7, α = 0.01, θU = 0.001 and θUV = 0. (a) β = 0.25,
FDR = 3%; (b) β = 0.56, FDR = 5%.
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Figure 2: Plots of sd(FDP) at different π0 and θV .m = 10000, α = 0.01, β = 0.20, θU = 0.001 and θUV = 0.
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Figure 3: Plots of sd(FDP) at different β and θV .m = 10000, π0 = 0.7, α = 0.004, θU = 0.001 and θUV = 0.

method, and under weak dependence log(FDP) is closer to normal than the FDP itself. The
approximate mean and variance of Y = log(FDP) are [23]

μY ≈ log
(
μQ

) ≈ log

⎧
⎨

⎩

π0α

π0α + (1 − π0)
(
1 − β

)

⎫
⎬

⎭
, (2.12)

σ2
Y ≈

(1 − π0)2(1 − α)
(
1 − β

)

π0α
{
π0α + (1 − π0)

(
1 − β

)}2
Σ, (2.13)

where Σ is in (2.11).
To control FDP with desired power, criterion (1.1) has to be satisfied. Asymptotic

normality of log(FDP) implies that

Φ
(
log r1 − μY

σY

)

≥ c1, (2.14)

whereΦ(·) is the cumulative distribution function (CDF) of standard normal distribution, μY

is in (2.12), and σ2
Y is in (2.13).

There are two commonly used power criteria in multiple testing: the average power,
defined as E (U/m1), and the overall power, defined as P (U/m1 ≥ r2) for given r2. When
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a study is designed using the average power criterion, the proportion of true alternative
hypotheses rejected will be greater than a prespecified number on average. However, under
dependence among test statistics the variability of U/m1 increases [18], and the study can
be underpowered with high probability. Consequently, the overall power has been used in
[13, 18, 19, 24] and we also use this power criterion,

P
(

U

m1
≥ r2

)

≥ c2 (2.15)

for given r2 and c2.
Under the weak-dependence assumptions in [18, 23],U/m1 has an asymptotic normal

distribution:

U

m1
∼ N

⎛

⎜
⎝1 − β,

β
(
1 − β

)

m1

{
1 + θU(m1 − 1)

}
⎞

⎟
⎠. (2.16)

Setting the inequality in (2.15) to equality, the following equation for β can be obtained as in
[18]:

β = 1 − r2 −
1 − 2r2 +

√
4m∗

1r2(1 − r2) + 1

2m∗
1 + 2

, (2.17)

where m∗
1 = m1/{1 + θU(m1 − 1)}z21−c2 and Φ(z1−c2) = c2.

For illustration, consider that a two-sample one-sided t-test is performed. Let δ denote
the effect size (mean difference divided by the common standard deviation), and a1 and 1−a1

denote the allocation proportion for two groups. We first find α and β which fulfill criteria
(1.1) and (2.15). The required sample size n is the smallest integer satisfying the following
inequality:

1 − β ≤ 1 − Γn−2
(

−tn−2,α
∣
∣
∣
∣δ
√
a1(1 − a1)n

)

, (2.18)

where Γn−2(· | b) is the CDF of a noncentral t-distribution with n − 2 degrees of freedom and
noncentrality parameter b and tn−2,α is the upper α critical value of the central t-distribution
with n − 2 degrees of freedom.
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Following the notation defined in Section 2.1, the correlations can be calculated as:

θ
ij

V =
Ψn−2

(−tn−2,α,−tn−2,α; ρij
) − α2

α(1 − α)
, (2.19)

θ
ij

U =
Ψn−2

(
tn−2,β, tn−2,β; ρ

ij
)
−
(
1 − β

)2

β
(
1 − β

) , (2.20)

θ
ij

UV =
Ψn−2

(
−tn−2,α, tn−2,β; ρij

)
− α

(
1 − β

)

√

α(1 − α)β
(
1 − β

) , (2.21)

where Ψn−2 is the CDF of a bivariate t-distribution with n − 2 degrees of freedom and ρij

denotes the Pearson correlation between the ith and jth test statistics. As can be seen from
these formulas, the correlations depend on α and β. No analytical solutions can be found
for these two parameters. We use the following iterative computation algorithm to calculate
sample size.

Algorithm.

(1) Input design parameters r1, c1, r2, c2, m, π0, δ, a1, ρU, ρV and ρUV .

(2) Start from θU = 0, θV = 0 and θUV = 0.

(3) Calculate β from (2.17).

(4) Using the current values of θU, θV , θUV and β, solve for α from equationΦ((log r1 −
μY )/σY ) = c1.

(5) Using the current estimates of β and α, calculate θV , θU and θUV from (2.19), (2.20)
and (2.21), respectively. Obtain the average correlations θV , θU and θUV .

(6) With updated estimates of θV , θU and θUV , repeat steps 3 to 5 until the estimates of
β and α converge.

(7) Plug the estimated β and α into (2.18) to solve the sample size.

The estimates of rejection threshold α and comparison-wise type II error β can also be
obtained.

3. Numerical Studies

3.1. Simulation

The proposed sample size calculation procedure was illustrated for one-sided t-test
comparing the mean of two groups. The effect size δ = 1 and allocation proportion a1 = 0.5.
Two types of correlation structures were used: blockwise correlation and autoregressive
correlation structure. In the blockwise correlation structure, a proportion of test statistics
were correlated in units of blocks. The correlation coefficient within block was a constant,
and test statistics were independent across blocks. True null test statistics and true alternative



Journal of Probability and Statistics 9

test statistics were independent. In the autoregressive correlation structure, the correlation
matrix (σij) for dependent test statistics was parameterized by σij(ρ) = ρ|i−j|, where σij(ρ)
is the Pearson correlation coefficient for the ith and jth test statistics and ρ is a correlation
parameter.

Oura et al. [22] provided a sample size calculation method for controlling FDP using
the beta-binomial model. Only test statistics of true alternative hypotheses are allowed to
be dependent, with blockwise correlation structure. For comparison, this method and the
sample size calculation procedure for controlling FDR with dependence adjustment in [18]
were also assessed. Specifically, the criteria for controlling FDP are

P (FDP ≤ 0.05) ≥ 0.95, P
(

U

m1
≥ 0.9

)

≥ 0.8. (3.1)

The criteria for controlling FDR are

FDR ≤ 0.05, P
(

U

m1
≥ 0.9

)

≥ 0.8. (3.2)

Table 2 presents the sample size estimates for the blockwise correlation structure.
Several parameter configurations were used. The block size is 20 or 100, for m = 2000 or
10000, respectively. We observe that the sample size increases as the correlation between test
statistics gets stronger, represented by a greater correlation parameter or a larger proportion
of correlated test statistics. When the correlation is fixed, as the number of tests m increases,
the required sample size decreases. With the other parameters fixed, when the number of true
alternative hypotheses increases (π0 decreases), the required sample size decreases.

The sample sizes for controlling FDP are greater than those for controlling FDR
because controlling FDP is in general more stringent. In the case that π0 = 0.9, pv = 0.3,
ρv = 0.6 and m = 2000 (see Table 2), the sample size for controlling FDP is 81, which is 23%
greater than the sample size for controlling FDR. The sample sizes using the method in [22]
are in parentheses and are slightly smaller than ours. In terms of computational efficiency, our
algorithm converges very fast and generally within 10 steps. The computation is not heavy,
and in fact, very similar and comparable to that in [18] for controlling FDR with dependence
adjustment. The method of Oura et al. [22] is more computationally intensive. It becomes not
feasible when the number of tests or the number of blocks of dependent test statistics is large.
Simulation studies show that FDP is controlled and the power is achievable with the sample
size given by our procedure at the calculated rejection threshold α (results not shown).

Table 3 presents the sample sizes for the autoregressive correlation structure. Similar
trends for sample size are observed as the design parameters vary. The method in [22] is not
applicable to this dependence structure.

3.2. Sample Size Calculation Based on a Prostate Cancer Dataset

We use a prostate cancer dataset as source of correlation structure to illustrate the proposed
sample size calculation method while ensuring overall power. The study by Wang et al.
[28] investigated the association between mRNA gene expression levels and the aggressive
phenotype of prostate cancer. The dataset contains 13935 mRNA measured from 62 patients
with aggressive prostate cancer and 63 patients with nonaggressive disease. The method in
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Table 2: Sample size calculation for controlling FDP and FDR to achieve overall power, blockwise
correlation structure.

π0 ρu ρv pu pv
m = 2000 m = 10000

FDP FDR FDP FDR

0.9

0.2 0.2 0.1 0.1 75 66 68 65
0.5 0.5 0.1 0.1 77 66 70 65
0.8 0.8 0.1 0.1 81 67 74 66
0 0.2 0 0.3 76 66 68 64
0 0.5 0 0.3 78 66 71 64
0 0.6 0 0.3 81 66 73 64
0.2 0 1 0 77 (74) 67 70 67
0.5 0 1 0 79 (75) 69 72 69
0.8 0 1 0 82 (77) 72 75 72

0.7

0.2 0.2 0.1 0.1 53 49 50 48
0.5 0.5 0.1 0.1 54 49 51 48
0.8 0.8 0.1 0.1 55 49 53 49
0 0.2 0 0.3 53 48 50 48
0 0.5 0 0.3 55 48 52 48
0 0.8 0 0.3 58 48 56 48
0.2 0 1 0 54 (53) 49 50 49
0.5 0 1 0 55 (54) 50 50 50
0.8 0 1 0 56 (55) 52 50 52

ρu: correlation between test statistics for which the alternative hypotheses are true; ρv : correlation between test statistics for
which the null hypotheses are true; pu: proportion of correlated test statistics for which the alternative hypotheses are true;
pv : proportion of correlated test statistics for which the null hypotheses are true.

[23] was used to estimate the correlation between gene expression levels. The estimated
average correlation of expression levels of null genes, alternative genes and between null
genes and alternative genes are 0.0040, 0.0043 and −0.0005, respectively.

Sample size was calculated for one-sided t-test. The total number of genes is m =
10000, and the following criteria are to be satisfied: P (FDP ≤ 0.10) ≥ 0.7 and P (U/m1 ≥
0.9) ≥ 0.8. Table 4 presents the sample sizes for various values of m1. We performed
simulation studies to confirm that these sample sizes provided adequate power at the
rejection threshold given by our algorithm. Simulation data were generated with blockwise
dependence structure such that the average correlation was close to the estimated correlation
from the real dataset.

4. Discussion

In practice, when planning a study one typically needs to make some assumptions. For
designing multiple testing studies, a common assumption is that the dependence between
test statistics is weak. In this paper, we provide a computationally effective method of sample
size calculation for controlling FDP under weak dependence while achieving the desired
overall power. This approach uses semiparametric assumptions on dependence structure. We
only need to estimate the Pearson correlation between test statistics, and thus this method is
applicable to many realistic settings where weak dependence can be assumed. The variance
formula of FDP provides a convenient tool to uncover the relationship between the design
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Table 3: Sample size calculation for controlling FDP and FDR to achieve overall power, autoregressive
correlation structure.

π0 ρu ρv pu pv
m = 2000 m = 10000

FDP FDR FDP FDR

0.9

0.2 0.2 0.1 0.1 75 66 67 64
0.5 0.5 0.1 0.1 75 66 67 64
0.8 0.8 0.1 0.1 77 66 68 64
0.2 0.2 0.4 0.4 75 66 67 64
0.5 0.5 0.4 0.4 76 66 68 64
0.8 0.8 0.4 0.4 81 66 69 64

0.7

0.2 0.2 0.1 0.1 53 48 49 48
0.5 0.5 0.1 0.1 53 48 49 48
0.8 0.8 0.1 0.1 54 48 50 48
0.2 0.2 0.4 0.4 53 49 49 48
0.5 0.5 0.4 0.4 54 49 50 48
0.8 0.8 0.4 0.4 56 49 51 48

ρu: correlation parameter for test statistics for which the alternative hypotheses are true; ρv : correlation parameter for
test statistics for which the null hypotheses are true; pu: proportion of correlated test statistics for which the alternative
hypotheses are true; pv : proportion of correlated test statistics for which the null hypotheses are true.

Table 4: Sample size calculation using the prostate cancer dataset.

π0 m1 n P̂(FDP ≤ 0.10) P̂((U/m1) ≥ 0.9) α̂

0.95 500 74 0.830 0.915 0.003
0.9 1000 63 0.855 0.970 0.007
0.85 1500 57 0.885 0.955 0.012
0.8 2000 52 0.875 0.945 0.018
0.75 2500 48 0.870 0.955 0.026
0.7 3000 44 0.915 0.925 0.034
P̂(FDP ≤ 0.10) and P̂((U/m1) ≥ 0.9): empirical probability from 200 simulation runs.

parameters and the variability of FDP under the assumption of weak dependence. Simulation
studies indicate that the algorithm is computationally efficient and stable.

We have used one-sided t-test to illustrate the method, and the procedure can be easily
extended to two-sided t-test and other tests. Common effect size is assumed in the sample size
calculation algorithm. In practice, one can try different effect sizes, see the range of sample
sizes and the variability and then make a decision. Effects of variations on other parameters
such as π0 can be examined similarly.
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